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Abstract: Because of the abundance of clustering methods, comparing between 
methods and determining which method is proper for a given dataset is crucial. 
Especially, the availability of huge experimental datasets and transactional and 
the emerging requirements for data mining and the like needs badly for 
clustering algorithms that can be applied in various domains. This paper presents 
essential notions of clustering and offers an overview of the significant features 
of the most common representative clustering algorithms of clustering categories 
presented in a comparative way. More specifically the study is based on the 
numerical type of the data that the algorithm supports, the shape of the clusters, 
and complexity. The experiments were done using nine clustering algorithms 
representing the common clustering categories on eight 2D clustered datasets 
differ in the clusters’ shapes and density of the data points. Furthermore, the 
comparison was done from the point of view seven performance measures. 

Keywords: Clustering algorithms; clustering taxonomy; clustering validation 
indices; partition-based clustering; hierarchical-based clustering; density-based 
clustering. 

1 Introduction  
Clustering means dividing the data into groups that are useful, meaningful, or both; the greater the 

difference between clusters and the greater the homogeneity (or similarity) within a cluster, the better the 
clustering result [1–3]. Tab. 1 describes the clustering steps and their descriptions. Clustering has long 
played a substantial role in a wide variety of areas: Biology, pattern recognition, machine learning, 
information retrieval, data mining, psychology, and other social sciences. The best definition of clustering 
depends on the required results and the data nature. Clustering is considered as a type of classification in 
that it generates cluster labels of the objects. Thus, clustering is known as unsupervised classification. 
Machine learning includes variant topics (e.g., feature selection [4], regression [5], and classification [6]). 
In classification, the objects in the dataset are assigned with specific classes [7]. 

The lack of precise definition of the notion “cluster” led to developing many clustering methods each 
of which based on different induction principle [8,9]. Clustering algorithms can be classified from various 
points of view. Fahad et al. [10] categorized clustering algorithms to partitioning-based, hierarchical-
based, density-based, grid-based, and model-based. Grid-based algorithms are included in density-based 
[11]. Dervis et al. [12] and Fraley et al. [13] classified the clustering algorithms as hierarchical clustering 
and partitional clustering. Han et al. [14] categorized the methods into three categories: Model-based 
clustering, density-based methods, and grid-based methods. Clustering methods can be classified 
according to: Type of data (e.g., numerical or categorical), similarity between two objects, optimization of 
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the clustering criterion, and fundamental concepts and theory on which the clustering analysis is based (e.g., 
statistics, fuzzy theory). From the point of view of partitioning technique, clustering methods can be 
classified into three essential types (Tab. 2): i) Partition-based clustering; the algorithm partitions the dataset 
into a set of (typically) separated clusters called partitions, each partition states a cluster which contains at 
least one object and each object should be categorized to one cluster. Partition-based clustering algorithms 
require the number of clusters to be set by the user. There are many methods using partition-based clustering 
such as K-means [14,15], K-medoids [16], K-modes [17], PAM [18], CLARA [19], CLARANS [20], FCM 
[21], and CluStream [22,23], ii) Hierarchical-based clustering; the algorithm proceeds sequentially by either 
splitting larger clusters, or by combining smaller groups into larger ones, a tree of clusters resulted from the 
algorithm is called dendrogram, agglomerative and divisive are two types of hierarchical-based clustering. 
Unlike agglomerative approach which uses bottom-up strategy (i.e., initially, each object represents a 
cluster/partition of its own, and then these clusters are successively combined until the wished structure of 
the cluster is obtained), divisive approach uses top-down strategy (i.e., initially, all objects belong to one 
cluster, this cluster is divided into sub clusters, and successively this procedure continues until the desired 
structure of the cluster is obtained). Division or migration of the clusters is performed according to similarity 
measure to optimize some criterion (e.g., a sum of squares). Agglomerative [24], ROCK [25], BIRCH [26], 
and Chameleon [27] are examples of algorithms that use hierarchical-based clustering, and iii) Density-
based clustering; the algorithm groups the neighbors objects of the dataset into groups based on density 
conditions. The density-based clusters are separated from one another by low density regions and are often 
considered to be outliers [14,15]. The points that belong to a cluster are drawn from an identified probability 
distribution [28]. DBSCAN [29], and OPTICS [30] use density-based clustering technique. 

  

Table 1: Clustering steps and their descriptions 

Step Description 
  

1- Feature selection 
 

 Clustering instances depends on set of features. The main goal is selecting the convergent 
features of the instances to be clustered. 

2- Choice of 
clustering 
algorithm 

 Choosing the algorithm that is more convenient for the data on hand. Clustering criterion 
and similarity measure are selected in tandem: 
- Optimizing the cost function (clustering criterion) and expecting the type of generated 

clusters. 
- Ensuring that the selected features share evenly to the computation of the closeness 

measure and no features dominate others. 

3- Validation the 
results 

 Verifying the correctness of the clustering algorithm results using appropriate techniques 
and criteria. 

4- User decision  Choosing the results obtained or starting from the beginning using different parameters or 
perhaps changing different algorithm. 

 
 

The type of features allowed in the dataset determines the algorithm used in the clustering, for 
example, statistical algorithms are used for clustering numeric data, conceptual algorithms are used for 
clustering categorical data, fuzzy clustering algorithms allow object to be classified into all clusters with a 
1 ranging from 0 to 1, this membership degree indicates the similarity of the object to the mean of the 
cluster. For an object, the sum of the memberships is equal to 1. Unlike fuzzy clustering algorithms (a.k.a. 
soft clustering), crisp clustering (a.k.a. hard clustering) allows object to be classified to one and only one 
cluster. From another point of view of determining the number of clusters, clustering algorithms can be 
classified into user-dependent; the algorithm requires the user to determine the number of clusters, and 
self-dependent; the algorithm itself determines the number of clusters, others are mixed; determining the 
number of clusters is optional. Fig. 1 provides the essential categorization of clustering techniques from 
the point of view of portioning, computing, and determining number of clusters. 
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Table 2: Three essential types of clustering categories 
Category Technique General characteristics 
Partition-based 
clustering 

Distance based - Find clusters of spherical shape 
- May use medoid or mean (etc.) to represent the center of the 

cluster 
- Effective for small/medium datasets 

   

Hierarchical-
based clustering 

Top-down or down-
top decomposition 

- Clustering is a multiple levels decomposition (i.e., 
hierarchical) 

- Cannot correct erroneous splits or merges. 
- May consider object “linkages” or combine other techniques 

(e.g., microclustering) 
   

Density-based 
clustering 

low-density regions 
separating high-
density regions of 
objects 

- Can find arbitrarily shaped clusters 
- Minimum number of neighbors of points is required for 

each point. 
- May filter out outliers 

 

 
Figure 1: Clustering algorithms categorization and some examples of clustering algorithms 

Motivation: In real-life applications, the main issue is to perform cluster analysis of the dataset. 
Some of real-life examples, where clustering data is very important, are: Gene expression analysis 
(clustering data that contain thousands of genes under hundreds of conditions), text documents (clustering 
documents are based on similarities of words in a subset of terms and the frequency of words), customer 
recommendation systems (clustering customers with some overlapping preferences depend on the type of 
product), etc. 

Objective: This paper revises some of main methods to clustering algorithms comparison, presents 
the R and Python packages in the comparisons, and evaluates the clustering algorithms from the point of 
view of time, Adjusted Rand Index (ARI), Fowlkes-Mallows Index (FMI), Normalized Mutual 
Information (NMI), Homogeneity, Completeness, and V-Measure (Fig. 2). In addition, the author 
highlighted the set of best clustering algorithms for dataset. 

Organization: The rest of this paper is divided as follows: Section 2 discusses the related work. 
Section 3 presents the benchmark datasets clustering algorithms. The chosen clustering algorithms are 
discussed in Section 4. The experimental implementation is discussed in Section 5. Fig. 3 shows the 
structure of this survey. 
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Figure 2: Clustering algorithms and validity measures used in this study 

 

 
Figure 3: Organization of survey 

2 Related Works 
Gang et al. [31] used six clustering algorithms, eleven cluster validity indices, and three MCDM 

methods over bankruptcy risk and three real-life credit risk datasets to present a multiple criteria decision 
making (MCDM) based approach to rank the selection of widespread clustering algorithms. Their results 
showed that there is no algorithm achieves the best performance on all. Their results showed that no 
algorithm can achieve the best efficiency and performance on all indices for any dataset and, therefore, 
using more than one performance measure is mandatory. 

Tomi et al. [32] performed a comparative analysis of clustering algorithms for text independent 
speaker verification. The comparison was done between K-means, expectation–maximization, random 
swap, pairwise nearest neighbor, split, split-and-merge, genetic algorithm, self-organizing map, and fuzzy 
C-means. The main conclusion they obtained is: The order of the model is the most important parameter, 
whereas the choice of the clustering method is critical only if small model size is used. 

Marcilio et al. [33] provided analysis of 35 microarray cancer gene expression datasets (14 double-
channel cDNA datasets and 21 single-channel Affymetrix chips datasets) using 7 different clustering 
approaches (complete linkage (CL), single linkage (SL), shared nearest neighbor-based clustering (SNN), 
spectral clustering (SPC), mixture of multivariate Gaussians (FMG), k-means (KM), and average linkage 
(AL)) and four proximity measures (Cosine (C), Pearson's Correlation coefficient (P), Euclidean Distance 
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(E), and Spearman's correlation coefficient (SP). From their experimental results, they inferred that the 
FMG showed the best performance followed by KM from the point of view of recovery of actual 
structure of the datasets, regardless of the measure used. 

Ivan et al. [34] compared five clustering algorithms (CLICK, hierarchical clustering, k-means, 
dynamical clustering, and self-organizing maps (SOM)) for datasets of gene expression. The authors 
applied k-fold cross-validation process adapted to unsupervised approaches to evaluate the clustering 
algorithms. Some of the conclusions the authors got are: 1) Hierarchical clustering methods are affected 
to noisy and outliers, therefore, it has low accuracies for the Functional Classification  (FC) datasets, 2) 
Dynamical clustering, k-means, and SOM give better accuracies in all experiments, 3) Selecting the 
parameters in SOM requires more complex experiments, this disadvantage does not exist in dynamical 
clustering and k-means, and 4) The clustering structure in SOM is more informative than dynamical 
clustering and k-means, because clustering structure in SOM depends on neighborhood relations returning 
topological map. 

Lance et al. [35] presented a survey of various subspace clustering methods, and compared the two 
main methods to subspace clustering using accuracy tests and empirical scalability. The authors compared 
between representative top-down algorithm (FINDIT) and bottom-up algorithm (FINDIT). They 
concluded from their experiments that bottom-up approaches perform well in very high dimensionality 
datasets. They measured the running time of the two algorithms to measuring the scalability of the 
compared algorithms. 

Ujjwal et al. [36] evaluated the performance of single linkage, hard K-Means, and a simulated 
annealing from the point of view of four clustering validity indices, namely Dunn’s index, a recently 
developed index I, Calinski-Harabasz index, and Davies-Bouldin index for both real-life and artificial 
datasets with clusters number varying from two to ten. When the appropriate clusters number is achieved, 
I attained its maximum value. I is considered to be more reliable and consistent in indicating the correct 
clusters number. 

Sylvain et al. [37] compared four algorithms: Restricted Neighborhood Search Clustering (RNSC), 
Markov Clustering (MCL), Molecular Complex Detection (MCODE), and Super Paramagnetic Clustering 
(SPC). The authors sampled the parameter space, analyzed the sensitivity of the methods to the 
parameters, and selected optimal parameters. In various proportions, the authors randomly added/removed 
edges to/from the test graph to evaluating the robustness from the point of view of false negatives and 
false positives. The authors applied the algorithms to six datasets from the General Repository for 
Interaction Datasets (GRID). 

Abla et al. [38] implemented and compared between four algorithms namely, agglomerative 
hierarchical, K-means, SOM, and DBSCAN on four sparse industrial datasets (Logistics, Automotive 
quality systems, Aircraft, and Customer’s requirements). The authors used Nbclust package to find the 
appropriate number of clusters. Eight validity indices (C-index, CH, Dunn, Gamma, BH, DB, tau, and 
Connectivity) were used for comparing between the compared algorithms. The authors highlighted 
efficient clustering algorithm. As a general conclusion, DBSCAN is recommended for noisy dataset, K-
means for the big dataset, and SOM for small dataset. 

C´assio et al. [39] presented a comparative study of three clustering algorithms: MR-Stream, 
CluStream, and STREAM on 90 synthetic datasets. The datasets were created from spatial point processes 
following Mixtures of Gaussians or Gaussian distributions. The experiments were executed in three 
scenarios: 1) High dimensional with concept drift, 2) Low dimensional, and 3) Low dimensional with 
concept drift. The authors concluded that CluStream performs better than the other algorithms from the 
point of view of the quality of clustering at a higher execution time cost. 

Marina et al. [40] compared three model-based clustering algorithms (Expectation–Maximization 
(EM), agglomerative clustering, and Classification EM (CEM)) on high dimensional discrete features 
datasets. Each algorithm uses the same underlying model (e.g., naive-Bayes with a hidden root node). The 
authors found that EM algorithm significantly performs better than the other methods. 
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Tagaram [41] examined two clustering algorithms K-Medoids and K-Means. The author concluded 
that the execution time of K-Means is convenient efficient for small data sets; however, the number of 
clusters must be known in advance. On the other hand, K-Medoids performs better for big datasets.  
Dongkuan  et al. [1] introduced the core and basic of commonly used clustering algorithm from 19 
categories. The authors specified the source and analyzed the pros and cons of each algorithm. The 
authors took into account the essential elements required in the clustering process such as the similarity 
measurement or distance and evaluation indicators. 

Pranav et al. [42] compared between eight clustering algorithms from different categories. These 
algorithms are: K-means, K-means++, Kernel K-means, Hierarchical clustering, Fuzzy CMeans, Model 
based, DBSCAN, and OPTICS on CURE-T2-4K and CLUTO-T8-8K datasets. The authors concluded 
that the compared algorithms could not precisely identify the clusters, the algorithms are sensitive to noise 
and outliers, computational complexity and high time. 

3 Benchmark Datasets 
The main problem one may face with clustering is deciding the number of clusters that fits the 

dataset. 2D-datasets are used in most algorithms’ experimental evaluations to enable the reader to visually 
verify the validity of the obtained results (i.e., how well the clustering algorithm generated the clusters of 
the data set). It is clear that dataset visualization is a significant verification of the clustering results. In the 
case of large multidimensional datasets, effective dataset visualization would be difficult. 

To compare the chosen clustering algorithms, eight clustered 2D-datasets (Tab. 3 summarizes the 
number of instances, number of features, and number of clusters) are used in the experiments, Fig. 4 
presents the panels of the benchmark dataset used. In the first panel, the dataset namely Aggregation 
dataset consists of seven perceptually distinct collections of points. The features of the dataset create 
difficulties (e.g., uneven-sized clusters, narrow bridges between clusters, etc.). In the second panel, the 
dataset namely compounds consists of six groups varying in the shape, and densities. 

 In the left-upper part of the panel, the clusters are not really well separated because they touch. The 
separation between the clusters can be perceived by the low density where the clusters touch. In the left-
bottom part of the panel, the points fall into two well separated nested distinct clusters, the right part 
presents two nested, not separated, areas of different point densities. The third panel presents 31 randomly 
placed 2-D Gaussian groups of 100 points each. The dataset in the fourth panel consists of two clusters 
not really well separated because they touch.  

In the fifth panel, the dataset is clustered into two separated groups where the density varies within 
each cluster but the separation between the two clusters is still substantial. The dataset in the sixth panel 
consists of a circular group with an opening part near the bottom; the circular cluster includes two 
Gaussian distributed groups inside. The Spiral dataset in the seventh panel has two well separated nested 
distinct clusters in 2-circle dataset. The last panel contains 15 similar 2-D Gaussian distributions that are 
positioned in rings. 

Table 3: Datasets used in the experiments 

 

 

 

 

 

Dataset #instances #features #clusters References 
Aggregation 788 2 7 [43,44] 
Compound 399 2 6 [45,46] 
D31 3100 2 31 [47,48] 
Flame 240 2 2 [49,50] 
Jain 373 2 2 [51,52] 
Pathbased 300 2 3 [53,54] 
Spiral 312 2 3 [54,55] 
R15 600 2 15 [48,56] 
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Figure 4: Benchmark datasets 

4 Chosen Clustering Algorithms 
Presenting a whole list of all clustering methods is hard; this is because of the intersection of 

research fields, the diversity of information, and the expansion of modern computer technology. So, from 
the three essential commonly used categorizations (density-based clustering, hierarchical-based clustering, 
and partition-based clustering), one or several algorithm(s) from each category will be discussed in detail. 
The chosen algorithms in this study are partitioning and hierarchical user-dependent algorithms, where, 
the datasets on hand are clustered data and the number of clusters is known. Here, the categories and their 
algorithms examples are indicated in Tab. 4. 

Table 4: Clustering algorithms and their categories considered in the analysis. The first column presents 
the algorithm name. The second column presents the categories of the algorithms. The third column gives 
short descriptions of the algorithm. The fourth and fifth columns present the programming languages and 
function/library, respectively. The sixth column presents the time complexities. The last column is for the 
references. (n: The number of objects, k: The number of clusters, t: The number of iterations, and s: The 
size of the sample) 

Algorithm name Category Short descriptions language Function Complexity References 

K-means Partitioning 

- It is a centroid-based clustering 
algorithm. 

- It clusters data by separating 
samples in groups. 

- The centroid of the cluster is 
defined as the mean of all pints
inside this cluster.

Python KMeans/ 
Scikit learn O(nkt) [57–60]  

X-means Partitioning 

- It is a K-means based
algorithm. 

- It makes a local decision to 
determine which subset of the
current centroids to be split to
better fit the data. 

- The decision is based on
Bayesian Information Criterion
(BIC).

Python xmeans/ 
pyclustering 

O(nkt) [61][62] 
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PAM 
(Partitioning 
Around Medoids) 

Partitioning 

- It is a medoids-based 
clustering algorithm. 

- It selects representative points 
K to form the initial clusters, 
and then repeatedly goes to 
better representatives of the 
cluster. 

R pam/ 
cluster O(k(n-k)2t) [63][64] 

       

Fuzzy C-means Partitioning 

- It is a membership-based 
clustering algorithm. 

- It assigns membership to each 
point of the data. 

- The membership degree is 
based on distance between the 
data point and each cluster 
center, and ranging between 0 
and 1. 

Python FCM/ 
pyclustering O(n) [65–67] 

       

CLARA 
(Clustering 
LARge 
Applications) 

Partitioning 

- It is an implementation of 
PAM method in a subset of the 
dataset. 

- It selects a random sample of 
the dataset. 

- It builds clusters from multiple 
samples. 

- The best clustering is returned 
as the output. 

R 
clara/ 
cluster 
 

O(ks2+k(n-k)) [63][64] 

       

CLARANS 
(Clustering Large 
Applications 
based upon 
RANdomized 
Search) 

Partitioning 

- It is a medoids-based 
clustering algorithm. 

- It presents a trade-off between 
the effectiveness and the cost 
to obtain clustering. 

- It combines the sampling 
techniques with PAM. 

Python 
clarans/ 
pyclustering 
 

O(n2) [21][63][68] 

       

Agglomerative hierarchical 

- It is a "bottom-up" method. 
- It starts with each object as a 

separate cluster itself, and 
according to a distance 
measure, it successively 
merges groups 

Python 

agglomerati
veClusterin
g/ 
Scikit learn 

O(n2* log n) [9][69][70] 

       
BIRCH 
(Balanced 
Iterative 
Reducing and 
Clustering using 
Hierarchies) 

hierarchical 

Partitions incoming data points 
in a dynamic and incremental 
way using a hierarchical data 
structure (i.e., CF-tree) 

Python birch/ 
Scikit learn O(n) [27][71][72] 

       

Cure 
(Clustering Using 
REpresentatives) 

hierarchical 

- It adopts a middle ground 
between all point extremes and 
the centroid based. 

- Well scattered points from 
each cluster are selected to 
represent the cluster, and then 
shrunk toward the cluster 
center. 

Python cure/ 
pyclustering O(n2 log n) [61][73][74] 

4.1 K-means 
K-means is the most commonly and simplest used clustering algorithm. It partitions the dataset into 

K clusters (C1, C2, . . ., CK), represented by their means or centers to minimize some objective function 
(e.g., squared error function). The parameter k must be supplied by the user in advance. K-means 
algorithm may be considered as a gradient-decent procedure, which begins with an initial group of K 
cluster-centers and successively updates it to decreasing the error function. Fig. 5 shows how K-means 
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clusters the datasets. The pseudo-code of K-means algorithm is as follows: 

Algorithm 1 K-Means 
Input - Dataset 

- number of clusters 
Output - K clusters 
  

Step-1: - Initialize K centers of the cluster  
Step-2: - while no change in centroids of the cluster do 

- Calculate the mean of all  the objects belonging to that cluster 
    𝜇𝜇𝑘𝑘 =  1

𝑁𝑁𝑘𝑘
 ∑ 𝑥𝑥𝑞𝑞

𝑁𝑁𝑘𝑘
𝑞𝑞=1  

    where 𝜇𝜇𝑘𝑘is the mean of cluster k and 
   𝑁𝑁𝑘𝑘 is the number of points belonging to that cluster 

- Assign objects to the closest cluster centroid 
- Update cluster centroids based on the assignment 

- end while 
 

 

Figure 5: Clustering datasets using K-means 

4.2 X-means 
It is a powerful modulation of the popular k-means algorithm [75]. X-means takes an initial number 

and maximum number of clusters as parameters, X-means starts analysis from the initial number to select 
the optimal number of clusters based on Bayesian Information Criterion (BIC) computation [76,77]. Fig. 
6 shows how X-means clusters the datasets. The pseudo-code of X-means algorithm is as follows: 

Algorithm 2 X-means 
Input - Dataset 

- initial number 
- maximum number of clusters 

Output - X clusters 
  

Step-1: - For each centroid 
- Consider their current locations 
- Consider the bounding box geometry 
- Calculates the membership of each centroid for a subset of points 
- Record the centroid set and its score 
- If score of new centroid better than previous one then 
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- Accept new record 
- Else  

- Keep previous centroid 
- End if 

- End for 

Step-2: - If new number of clusters > maximum number of clusters then 
- Stop  
- Record the best score 

- Else 
- Go to Step-1 

- End if 

 

 
Figure 6: Clustering datasets using X-means 

4.3 CLARANS 
CLARANS does not use auxiliary structures and uses randomized search, increasing dimensionality 

has no significant effect CLARANS performance [21, 78, 79]. It does not inspect every neighbor of a 
node; however, CLARANS inspects a sample of the node’s neighbors. Fig. 7 shows how CLARANS 
clusters the datasets. The pseudo-code of CLARANS algorithm is as follows: 

Algorithm 3 CLARANS 
Input - X – Dataset 

- K – number of clusters 
- Numlocal – number of iterations 
- Maxneighbor – number of adjacent nodes  

  

Output - K clusters 
  

Step-1: - Initialize i=1, mincost is a relatively large number. 
Step-2: - Set current as an arbitrary node  
Step-3: - Set j to 1 
Step-4: - Use random search to generate neighbor S of the current 

- Randomly check maxneighbor neighbors 
Based on a cost function, calculate the cost differential of these two nodes. 

Step-5: - If (cost of S < cost of current) then 
- Set current to S 
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- Go to Step-3 
- Otherwise 
- Increment j by 1 

Step-6: - If (j <= maxneighborset) then 
- Go to Step-4 

- Otherwise 
- Increment j by 1 

Step-7: - If (j > maxneighbor) then 
- If (cost of current < cost of mincost) then 

- Set mincost to cost of current 
- Set bestnode to current 

Step-8: - Increment I by 1 
- If (I > numlocal) 

- Output bestnode and stop. 
- Otherwise 

- Go to step-2 

Figure 7: Clustering datasets using CLARANS 

4.4 Fuzzy C-Means 
FCM is a representative method of fuzzy clustering technique which is based on K-means to 

partition the dataset into clusters [10,80]. FCM algorithm is considered as a "soft" clustering method (i.e., 
the object is assigned to a cluster with a degree of belief) [81]. In each cluster, FCM finds the most 
characteristic point, named as the centre; the membership degree is computed for each object in the 
clusters, an object may belong 80% to one cluster and 20% to another [82]. Fig. 8 shows how FCM 
clusters the datasets. The pseudo-code of FCM algorithm is as follows: 

Algorithm 4 FCM Algorithm 
Input - X - Dataset 

- C - number of clusters 
- t - convergence threshold (termination criterion) 

Output - U - membership matrix 

Step-1: - Randomly initialize matrix U 

Step-2: - Repeat 
- Calculate the cluster centroids.
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Figure 8: Clustering datasets using FCM 

4.5 CLARA 
CLARA is an extension to PAM to deal with large datasets. Instead of finding medoids for all the 

dataset, a small sample of the data is considered, which in turn reduces computing time. Then, CLARA 
applies PAM algorithm to generate the optimal set of medoids for that sample. In order to minimizing the 
sampling bias, the clustering and sampling processes are repeated for a pre-specified number of times. Fig. 
9 shows how CLARA clusters the datasets.  

 
Figure 9: Clustering datasets using CLARA 

The pseudo-code of CLARA algorithm is as follows: 

- Compute dissimilarity between data points and 
centroids. 

- Compute a new U. 
- Until 

- The improvement between consecutive iterations is 
below t. 
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Algorithm 5   CLARA 
Input - X - Dataset 

- C -  number of clusters 
  

Output C clustered data 

Step-1: - Randomly create multiple subsets with fixed size 

Step-2: - Compute PAM algorithm on each subset 
- Select the corresponding number of representative objects (medoids). 
- Assign each object of the dataset to the closest medoid. 

Step-3: - Measure of the goodness of the clustering (e.g., mean of the dissimilarities of the objects to their 
closest medoid). 

Step-4: - Repeat  
- Step-1.  

- Until 
- The goodness in Step-3 is found. 

4.6 PAM 
PAM algorithm is based on the search for number of representative observations (medoids) among 

the observations of the data set. As their name evoked, these observations should represent the various 
aspects of the data structure. After finding a set of k medoids, the k clusters are built by assigning each 
observation of the dataset to the nearest medoid. Fig. 10 shows how PAM clusters the datasets. The PAM 
algorithm consists of two phases, BUILD and SWAP, as follows: 

Algorithm 6 PAM 
Input - X - Dataset 

- K -  number of clusters 
  

Output - K clustered data 

 Phase 1: BUILD (finds the K objects) 

Step-1: - Repeat 
- Consider an object i (not yet been selected) 

Step-2: - Consider a non-selected object j 

Step-3: - Calculate the difference between dissimilarity d( j , i) with object i. and the 
dissimilarity Dj with the most similar previously selected object: 

𝐶𝐶𝑗𝑗𝑗𝑗 = max (𝐷𝐷𝑗𝑗 − 𝑑𝑑(𝑗𝑗, 𝑖𝑖), 0) 
- If this difference > 0, object j contributes on the decision of selecting object i.  

Step-4: - Calculate the gain obtained from the selection of object i in Step-3: 
�𝐶𝐶𝑗𝑗𝑗𝑗
𝑗𝑗

 

Step-5: - The not yet selected object i should be selected to:  

            𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗𝑚𝑚𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚  � 𝐶𝐶𝑗𝑗𝑗𝑗
𝑗𝑗

 

Step-6: - Until 
- K objects have been found 

 Phase 2: Swap (improves the set of medoids and the clustering yielded by this set) 

Step-7: - Consider all pairs of objects (h, i), which object h has not been selected and object i has been 
selected. 

- Consider a non-selected object j and calculate the contribution 𝐶𝐶𝑗𝑗𝑗𝑗ℎto the swap 

Step-8: - Calculate the summation of the contributions 
𝑇𝑇𝑗𝑗ℎ = �𝐶𝐶𝑗𝑗𝑗𝑗ℎ

𝑗𝑗
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Step-9: - Select the pair (h, i) which 

           𝑗𝑗,ℎ
𝑚𝑚𝑗𝑗𝑚𝑚𝑗𝑗𝑚𝑚𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚  𝑇𝑇𝑗𝑗ℎ 

Step-10: - If (𝑇𝑇𝑗𝑗ℎ< 0) then 
- Go to Step-7 

- Otherwise 
- The objective value cannot be decreased 
- Stop 

- End if 
 

           

 
Figure 10: Clustering datasets using PAM 

4.7 Agglomerative  
In the agglomerative hierarchical clustering, each object represents a cluster; each data point is 

treated as a singleton cluster. The desired cluster structure is obtained by successively merging the 
clusters according to fixed rules [82,83]. Fig. 11 shows how agglomerative clusters the datasets. The 
pseudo-code of agglomerative algorithm is as follows: 

Algorithm 7 Agglomerative 
Input - X – Dataset 

- C -  number of clusters 
  

Output - C clustered data 
Step-1: - Start with a sample xi, i = 1, …,n, considered as n singleton clusters 
Step-2: - Define a dissimilarity d for all pairs of disjoint 
Step-3: - Among all possible pairs of singletons; find the minimum dissimilarity d(xi, xj ) and join the xi and xj singletons. 
Step-4: - There are n−1 clusters C1,1, …,C1,n−1. Find 

  𝑗𝑗≠𝑗𝑗′                              

�𝑗𝑗∗,𝑗𝑗′∗�=𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑗𝑗𝑚𝑚  𝑑𝑑(𝐶𝐶1,𝑗𝑗,𝐶𝐶1,𝑗𝑗′) 
 

- Merge 𝐶𝐶1,𝑗𝑗∗ ,𝐶𝐶1,𝑗𝑗′∗ 
Step-5: - If (the desired number of clusters is obtained) then 

- Stop.  
- Otherwise 

- Go to Step-4. 
- End if 
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4.8 BIRCH 
BIRCH builds a dendrogram which known as clustering feature (CF) tree. It uses tree structures to 

partition objects hierarchically where the low-level node can be considered as “microclusters”. BIRCH 
then applies other clustering methods to do macroclustering on the microclusters. CF-tree is based on two 
parameters: threshold T and branching factor B (maximum number of the children per nonleaf node). 
When a data point is encountered, the algorithm starts from the root and chooses the closest node at each 
level. If the closest leaf group for this point is finally identified, the algorithm tests whether this point 
belongs to the elected cluster or not. If not, a new cluster is generated with a diameter greater than the 
predefined T (maximum diameter of the sub-clusters stored at leaf nodes of the CF-tree). T and B control 
the resulting size of the tree. Using a clustering feature, useful statistics of a cluster can easily be derived, 
for example: 
 

 
Figure 11: Clustering datasets using agglomerative 

• Cluster’s centroid, x0: 

𝑥𝑥0 =
∑ 𝑥𝑥𝑗𝑗𝑚𝑚
𝑗𝑗=1

𝑛𝑛
=
𝐿𝐿𝐿𝐿
𝑛𝑛

                                                                                                                                                                    (1) 

• Radius, R: 

𝑅𝑅 = �∑ (𝑥𝑥𝑗𝑗 −𝑚𝑚
𝑗𝑗=1 𝑥𝑥0)2

𝑛𝑛
= �𝑛𝑛𝐿𝐿𝐿𝐿 − 2𝐿𝐿𝐿𝐿2 + 𝑛𝑛𝐿𝐿𝐿𝐿

𝑛𝑛2
                                                                                                       (2) 

• Diameter, D: 

𝐷𝐷 = �
∑ ∑ (𝑥𝑥𝑗𝑗 −𝑚𝑚

𝑗𝑗=1 𝑥𝑥𝑗𝑗)𝑚𝑚
𝑗𝑗=1

2

𝑛𝑛(𝑛𝑛 − 1) = �
2𝑛𝑛𝐿𝐿𝐿𝐿 − 2𝐿𝐿𝐿𝐿2

𝑛𝑛(𝑛𝑛 − 1)                                                                                                         (3) 

Fig. 12 shows how BIRCH clusters the datasets. The pseudo-code of BIRCH algorithm is as follows: 
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Algorithm 8 BIRCH 

Input - X – Dataset 
- C – Number of clusters 
- T – Maximum diameter of a cluster R 
- Branching factor 

  

Output - C clustered data 
- Clustering feature (CF): 3-D vector of information about the     clusters of objects, CF = 〈𝑛𝑛, 𝐿𝐿𝐿𝐿, 𝐿𝐿𝐿𝐿〉, LS: 

The linear sum of n points (∑ 𝑥𝑥𝑗𝑗𝑚𝑚
𝑗𝑗=1 ), SS: Square sum of data points (∑ 𝑥𝑥𝑗𝑗2𝑚𝑚

𝑗𝑗=1 ) 

Step-1: - Load the data into memory: An initial CF-tree is created 

Step-2: - Condense data: A larger T is used to rebuild the CF-tree. 

Step-3: - Global clustering: Apply the existing clustering method on CF leaves. 

Step-4: - From Step-3 reassign new data points to the closest centroid and perform additional passes through the 
dataset. 

 

 
Figure 12: Clustering datasets using BIRCH 

4.9 CUREs 
CURE is more robust to outliers, and identifies the clusters that have wide variances in size and non-

spherical shapes. This can be achieved by representing each cluster by a fixed number of points. Scattered 
points from the cluster are selected to generate these points. CURE applies a specified fraction to shrink 
the points toward the cluster’s center. Having an abundance of representative points per the cluster helps 
CURE to modify well to the geometry of the non-spherical shapes, also the shrinking helps to weaken the 
effects of outliers. CURE employs a combination of partitioning and random sampling. CURE partitions 
a random sample selected from the dataset and partially clusters each partition, then, it clusters the partial 
clusters in a second pass to introduce the desired clusters. CURE algorithm is divided into initialization 
and completion phases. The clustering steps using Cure are described in Fig. 13. 

 

Figure 13: Overview of CURE 
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Fig. 14 shows how CURE clusters the datasets. The pseudo-code of CURE algorithm is as follows: 

Algorithm 9 CURE 
Input - X – Dataset 

- K – Number of clusters 
  

Output - K clustered data 

 Phase 1: Initialization 

Step-1: - Draw a random sample from the dataset. 

Step-2: - Partition this sample into p equal-sized partitions. 

Step-3: - In each partition, cluster the points into 𝑚𝑚
𝑝𝑝𝑞𝑞

 clusters, where m is the number of points, q is the desired 

reduction of the points in a partition, using CURE’s clustering algorithm to obtain the total of 𝑚𝑚
𝑞𝑞

 clusters. 

Step-4: - Eliminate outliers (first stage of outlier elimination). 

Step-5: - Use CURE’s clustering algorithm to cluster the 𝑚𝑚
𝑞𝑞

 clusters found in Step-3 until only K clusters remain. 

Step-6: - Eliminate outliers (second stage of outlier elimination). 

 Phase 2: Completion 

Step-7: Remaining data points will be assigned to the nearest cluster to get a complete clustering. 

 
Figure 14: Clustering datasets using CURE 

5 Experimental Implementation 
5.1 Clustering Validation Indices 

Several performance indices are used for cluster evaluation [84]. Indices measure the 
correspondence between two clusters of the same dataset and are based on how the pairs of objects are 
clustered [85]. Seven common indices are discussed in the following subsections. 

5.1.1 Adjusted Rand Index  
The Rand Index (RI) [86,87] is used in comparing an induced clustering structure (C1) a given 

clustering structure (C1) with an induced clustering structure (C2). Assume that a is the number of pairs 
of cases that are assigned to the same group in C1 and in the same group in C2; b be the number of pairs 
of cases that are in the same group in C1, but not in the same group in C2; c be the number of cases that 
are in the same group in C2, but not in the same group in C1; and d be the number of pairs of cases 
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assigned to different clusters in C1 and C2. The quantities d and a can be considered as agreements, and c 
and b as disagreements. The RI is defined as: 

𝑅𝑅𝑅𝑅 =  𝑚𝑚+𝑑𝑑
𝑚𝑚+𝑏𝑏+𝑐𝑐+𝑑𝑑

                                                                                                                                                (4) 

RI lies between 0 and 1. When the two clusters agree perfectly, the RI is 1. A problem with RI is that the 
expected value of two random groups does not take a constant value (e.g., zero) [88]. Adjusted Rand Index (ARI) 
is suggested to overcome this disadvantage [89,90]. ARI is an improvement of RI and can be computed by 

𝐴𝐴𝑅𝑅𝑅𝑅 =
�𝑚𝑚2�(𝑚𝑚+𝑑𝑑)−[(𝑚𝑚+𝑏𝑏)(𝑚𝑚+𝑐𝑐)+(𝑐𝑐+𝑑𝑑)(𝑏𝑏+𝑑𝑑)]

�𝑚𝑚2�
2
−[(𝑚𝑚+𝑏𝑏)(𝑚𝑚+𝑐𝑐)+(𝑐𝑐+𝑑𝑑)(𝑏𝑏+𝑑𝑑)]

                                                                                                (5) 

With maximum value 1 and expected value zero. Where n is the number of objects. ARI measures 
not only the correct separation of objects belonging to different clusters but also the relation between the 
objects of the same cluster. ARI pays attention to the relation between objects than to the relation between 
each object and its target label. ARI evaluates the ability of the method to separate the objects belonging 
to different clusters [85]. 

5.1.2 Fowlkes-Mallows Index 
Fowlkes-Mallows Index (FMI) [91] measures the similarity of two clusters of a set of points. A 

higher value for the FMI means a greater similarity between the clusters. FMI is defined as the geometric 
mean between the recall and precision: 

𝐹𝐹𝐹𝐹 = � 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

. 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

                                                                                                                                               (6) 

where FP is the number of False Positive, TP is the number of True Positive, and FN is the number of 
False Negative. FMI lies between 0 and 1; a high value means a good similarity between the clusters. The 
validity of FMI can be tested by comparing unrelated two clusterings which the value of FMI approaches 
zero making FMI is an accurate representation for unrelated data. If the dataset contains noise, the value 
of FMI decreases. Thus, FMI is a reliable index for measuring the similarity between two clusters. 

5.1.3 Normalized Mutual Information 
Normalized Mutual Information (NMI) measures the consistency between two clusters. Let two 

clusters 𝐶𝐶𝑚𝑚 = {𝐶𝐶1𝑚𝑚 ,𝐶𝐶2𝑚𝑚 , … ,𝐶𝐶𝑘𝑘𝑎𝑎
𝑚𝑚 } and 𝐶𝐶𝑏𝑏 = {𝐶𝐶1𝑏𝑏 ,𝐶𝐶2𝑏𝑏 , … ,𝐶𝐶𝑘𝑘𝑏𝑏

𝑏𝑏 } with ka and kb clusters, respectively, the NMI is 
defined as [92]: 

𝑁𝑁𝐹𝐹𝑅𝑅�𝑐𝑐𝑚𝑚 , 𝑐𝑐𝑏𝑏� =
−2∑ ∑ 𝑚𝑚𝑖𝑖𝑗𝑗

𝑎𝑎𝑏𝑏log (
𝑛𝑛𝑖𝑖𝑗𝑗
𝑎𝑎𝑏𝑏 𝑛𝑛

𝑛𝑛𝑖𝑖
𝑎𝑎 𝑛𝑛𝑗𝑗

𝑏𝑏)𝑘𝑘𝑏𝑏
𝑗𝑗=1

𝑘𝑘𝑎𝑎
𝑖𝑖=1

∑ 𝑚𝑚𝑖𝑖
𝑎𝑎 log (

𝑛𝑛𝑖𝑖
𝑎𝑎

𝑛𝑛
𝑘𝑘𝑎𝑎
𝑖𝑖=1 )+∑ 𝑚𝑚𝑗𝑗

𝑏𝑏 log (
𝑛𝑛𝑗𝑗
𝑏𝑏

𝑛𝑛
𝑘𝑘𝑏𝑏
𝑗𝑗=1 )

                                                                                                        (7) 

where n is the total number of the patterns in the dataset, 𝑛𝑛𝑗𝑗𝑚𝑚 represents the number of the patterns in cluster 
𝐶𝐶𝑗𝑗𝑚𝑚 ∈ 𝑃𝑃𝑚𝑚, 𝑛𝑛𝑗𝑗𝑗𝑗𝑚𝑚𝑏𝑏 denotes the number of the shared patterns between clusters 𝐶𝐶𝑗𝑗𝑚𝑚and 𝐶𝐶𝑗𝑗𝑏𝑏 ,𝐶𝐶𝑗𝑗𝑚𝑚 ∈ 𝐶𝐶𝑚𝑚 and 𝐶𝐶𝑗𝑗𝑏𝑏 ∈ 𝑃𝑃𝑏𝑏. 

5.1.4 Homogeneity, Completeness, and V-measure 
Homogeneity analysis [93] is a well-known technique for optimizing the homogeneity of the 

variables forms of simplification and manipulation. Historically, the idea of the homogeneity is related to 
the idea in which different features may measure the same thing. Thus, the number of features can be 
reduced or a lower weight for such feature a feature is put to get fair cases comparing other features 
[94,95]. Homogeneity and completeness scores are formally given by: 

ℎ = 1 − 𝐻𝐻�𝐶𝐶�𝐾𝐾�
𝐻𝐻(𝐶𝐶)                                                                                                                                                (8) 

where 𝐻𝐻(𝐶𝐶|𝐾𝐾) is the classes' conditional entropy and is given by: 
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𝐻𝐻(𝐶𝐶|𝐾𝐾) =  ∑ ∑ 𝑚𝑚𝑐𝑐,𝑘𝑘
𝑚𝑚

.  log �𝑚𝑚𝑐𝑐,𝑘𝑘
𝑚𝑚𝑘𝑘
�                                                                                                       |𝐾𝐾|

𝑘𝑘=1
|𝐶𝐶|
𝑐𝑐=1 (9) 

and 𝐻𝐻(𝐶𝐶) is the classes' entropy and is given by: 

𝐻𝐻(𝐶𝐶) =  −∑ 𝑚𝑚𝑐𝑐
𝑚𝑚

|𝐶𝐶|
𝑐𝑐=1  . log �𝑚𝑚𝑐𝑐

𝑚𝑚
�                                                                                                                     (10) 

where n is the total number of the instances, 𝑛𝑛𝑐𝑐,𝑘𝑘 is the number of instances from the class 𝑐𝑐 assigned to 
the cluster 𝑘𝑘, 𝑛𝑛𝑘𝑘 and 𝑛𝑛𝑐𝑐 are the number of instances belonging to class 𝑘𝑘 and cluster 𝑐𝑐 respectively. The 
entropy of clusters 𝐻𝐻(𝐾𝐾) and the conditional entropy of clusters given class 𝐻𝐻(𝐾𝐾|𝐶𝐶) are defined in a 
symmetric manner. The clustering completeness is satisfied when all the data points which are elements 
of a given class are members of the same cluster. Completeness is symmetrical to the homogeneity. A 
clustering result satisfies completeness if all the data-points that are members of a given class are 
elements of the same cluster. Completeness is given by: 

𝑐𝑐 = 1 − 𝐻𝐻�𝐾𝐾�𝐶𝐶�
𝐻𝐻(𝐾𝐾)                                                                                                                                              (11) 

V-measure [96,97] is based upon homogeneity and completeness, and defined as the harmonic mean 
of completeness and homogeneity:  

𝑣𝑣 = 2 .  ℎ.𝑐𝑐
ℎ+𝑐𝑐

                                                                                                                                                                (12) 

The specifications of the computer used to carry out the experiments are: Intel Core i5-2400 (3.10 
GHz) processor, 16 GB memory, 1 TB HDD, R (version 3.5.2) and Python (version 3.7) programming 
language, and Gnu/Linux Fedora 28 OS. Tab. 4 shows the performance measures comparison. Tab. 5 
shows the clustering validation indices comparison from the point of view of time, ARI, FMI, NMI, 
Homogeneity, Completeness, and V-Measure. 

Table 5: Clustering validation indices comparison. The first column is the dataset name, the second 
column is the algorithm used, and from the third column to the ninth column are the performance indices 
(bold font indicates better value) 

Dataset Algorithm 

Time 
(lower 

is 
better) 

ARI FMI NMI Homogeneity Completeness V-Measure 
(higher 

is 
better) 

(higher 
is 

better) 

(higher 
is 

better) 

(higher is 
better) 

(higher is 
better) 

(higher is 
better) 

A
gg

re
ga

tio
n

 

K-means 0.1468 0.7624 0.8159 0.8805 0.9287 0.8347 0.8792 

Agglomerative 0.0953 0.8133 0.8559 0.9214 0.9647 0.8799 0.9204 

BIRCH 0.5176 0.7334 0.7900 0.8475 0.8863 0.8103 0.8466 

Cure 0.0563 0.9935 0.9949 0.9896 0.9898 0.9893 0.9896 

X-means 0.0579 0.7321 0.7890 0.8510 0.8905 0.8132 0.8501 

FCM 0.0649 0.7333 0.7895 0.8395 0.8734 0.8070 0.8389 

CLARANS 157.2657 0.6085 0.6883 0.7817 0.8107 0.7538 0.7812 

CLARA 0.0030 0.6793 0.7457 0.8271 0.8610 0.7946 0.8265 

PAM 0.4070 0.7745 0.8255 0.8890 0.9361 0.8442 0.8878 
         

co
m

po
un

d
 

K-means 0.1071 0.4975 0.6181 0.6718 0.7428 0.6075 0.6684 

Agglomerative 0.1460 0.5178 0.6344 0.6994 0.7706 0.6348 0.6961 

BIRCH 0.0367 0.7833 0.8449 0.8080 0.8101 0.8059 0.8080 

Cure 0.0110 0.8355 0.8861 0.8420 0.8071 0.8783 0.8412 

X-means 0.5594 0.7218 0.7958 0.7414 0.7716 0.7124 0.7408 

FCM 0.0066 0.4952 0.6162 0.6623 0.7336 0.5979 0.6588 

CLARANS 117.6188 0.6651 0.7562 0.6428 0.6655 0.6210 0.6424 

CLARA 0.0030 0.5074 0.6261 0.6724 0.7417 0.6095 0.6692 

PAM 0.0750 0.4752 0.6030 0.6974 0.7594 0.6405 0.6949 
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d3
1

 
K-means 0.0095 0.9529 0.9544 0.9672 0.9672 0.9673 0.9672 

Agglomerative 0.0068 0.9201 0.9227 0.9508 0.9506 0.9511 0.9508 

BIRCH 0.0082 0.8836 0.8874 0.9404 0.9380 0.9428 0.9404 

Cure 0.0206 0.7751 0.7968 0.9279 0.8906 0.9668 0.9272 

X-means 0.1290 0.5004 0.5681 0.8181 0.7452 0.8982 0.8146 

FCM 0.0617 0.8528 0.8581 0.9348 0.9305 0.9392 0.9348 

CLARANS 44.8495 0.5673 0.5928 0.8239 0.7990 0.8495 0.8235 

CLARA 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 

PAM 54.5050 0.9993 0.9994 0.9995 0.9995 0.9995 0.9995 
         

fla
m

e
 

K-means 0.5295 0.4534 0.7364 0.3989 0.4101 0.3881 0.3988 

Agglomerative 0.0338 0.1872 0.6237 0.3297 0.3291 0.3303 0.3297 

BIRCH 0.0561 0.3851 0.7139 0.2780 0.2784 0.2775 0.2780 

Cure 0.0922 0.0128 0.7300 0.0479 0.0130 0.1767 0.0242 

X-means 0.0470 0.4649 0.7417 0.4269 0.4391 0.4150 0.4267 

FCM 0.0441 0.4880 0.7530 0.4422 0.4547 0.4301 0.4420 

CLARANS 17.8446 0.1871 0.6497 0.1137 0.1074 0.1204 0.1135 

CLARA 0.0010 0.9964 0.9966 0.9971 0.9971 0.9971 0.9971 

PAM 0.0050 0.5116 0.7646 0.4582 0.4708 0.4459 0.4580 
         

ja
in

 

K-means 0.2240 0.3241 0.7005 0.3706 0.4070 0.3375 0.3690 

Agglomerative 0.0189 0.5146 0.7904 0.5068 0.5492 0.4678 0.5052 

BIRCH 0.5982 0.5016 0.7048 0.4968 0.5379 0.4387 0.4799 

Cure 0.0111 0.0279 0.5893 0.2235 0.2377 0.2102 0.2231 

X-means 0.0184 0.3241 0.7005 0.3706 0.4070 0.3375 0.3690 

FCM 0.0146 0.2658 0.6101 0.3888 0.5380 0.2809 0.3691 

CLARANS 327.2452 0.5498 0.8558 0.4701 0.4060 0.5442 0.4651 

CLARA 0.0010 0.4752 0.6030 0.6974 0.7594 0.6405 0.6949 

PAM 0.0160 0.2607 0.6712 0.3348 0.3682 0.3045 0.3333 
         

pa
th

ba
se

d
 

K-means 0.0142 0.4613 0.6617 0.5470 0.5128 0.5834 0.5458 

Agglomerative 0.0334 0.4847 0.6738 0.5671 0.5374 0.5985 0.5663 

BIRCH 0.0418 0.4789 0.6695 0.5519 0.5240 0.5813 0.5512 

Cure 0.0326 0.4572 0.6598 0.5437 0.5085 0.5814 0.5425 

X-means 0.1676 0.4618 0.6620 0.5475 0.5133 0.5839 0.5463 

FCM 0.0142 0.3990 0.6519 0.5039 0.4008 0.6337 0.4910 

CLARANS 1.4503 0.0276 0.5118 0.1648 0.1133 0.2398 0.1539 

CLARA 0.0010 0.9993 0.9994 0.9995 0.9995 0.9995 0.9995 

PAM 0.0090 0.4582 0.6604 0.5445 0.5092 0.5822 0.5433 
         

sp
ir

al
 

K-means 0.0124 -0.0057 0.3277 0.0007 0.0007 0.0007 0.0007 

Agglomerative 0.0278 -0.0057 0.3277 0.0007 0.0007 0.0007 0.0007 

BIRCH 0.0181 0.0130 0.4196 0.0155 0.0122 0.0197 0.0150 

Cure 0.0370 0.0680 0.4951 0.1672 0.1278 0.2188 0.1614 

X-means 0.0661 -0.0060 0.3276 0.0004 0.0004 0.0004 0.0004 

FCM 0.0351 -0.0060 0.3274 0.0005 0.0005 0.0005 0.0005 

CLARANS 39.8868 0.0064 0.3705 0.0136 0.0128 0.0144 0.0136 

CLARA 0.0020 0.2607 0.6712 0.3348 0.3682 0.3045 0.3333 

PAM 0.0170 -0.0031 0.3341 0.0029 0.0028 0.0029 0.0029 
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15

 

K-means 0.7554 0.9928 0.9932 0.9942 0.9942 0.9942 0.9942 

Agglomerative 0.0204 0.9928 0.9932 0.9942 0.9942 0.9942 0.9942 

BIRCH 0.0327 0.9717 0.9735 0.9810 0.9808 0.9811 0.9810 

Cure 0.0212 0.9821 0.9833 0.9873 0.9872 0.9873 0.9873 

X-means 0.0452 0.9928 0.9932 0.9942 0.9942 0.9942 0.9942 

FCM 0.0342 0.8853 0.8936 0.9496 0.9432 0.9560 0.9496 

CLARANS 0.1610 0.6351 0.6698 0.8340 0.8078 0.8610 0.8335 

CLARA 0.0150 0.4582 0.6604 0.5445 0.5092 0.5822 0.5433 

PAM 0.0160 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

5.2 Experimental Results and Discussion 
This section discusses and compares between the clustering validation measures. The clustering 

algorithm is considered to be efficient if it achieves higher ARI, FMI, NMI, Homogeneity, Completeness, 
and V-Measure in less time. 

5.2.1 Time and Performance Indices Analysis 
For Aggregation, compound, flame, jain, pathbased, spiral, and R15 datasets, CLARA has the least 

time, and behaves somewhat similar to k-means in d31 dataset. However, its clustering performances are 
low for all datasets. CLARANS has the worst time; however, the clustering performances are not the best. 
For Aggregation and compound datasets, cure gives the best clustering performances and its time behaves 
somewhat similar to the time of CLARA t has the lowest time. For d31 dataset, PAM has worst time and 
clustering performances are very close to 1. For flame dataset, CLARA has the least time and its 
clustering performances close to 1. For jain dataset, CLARANS has the worst time, however, it gives 
better ARI and FMI, CLARA has the best time and gives better NMI, Homogeneity, Completeness, and 
V-Measure. For pathbased and spiral datasets, CLARA gives the best clustering performances with the 
least time. For R15, K-means, X-means, and Agglomerative give the same clustering performances, the 
time of each X-means and Agglomerative is similar somewhat to the time of CLARA that has the least 
time, and K-means has the longest time. 

5.2.2 Discussion 
The partitional algorithms, K-means, X-means, CLARA, CLARANS, PAM, and FCM are applicable 

to the numerical datasets. In addition, the partitional algorithms are unable to handle the outliers and noise. 
Moreover, these algorithms are based on a specific assumption of portioning the dataset. Thus, the 
algorithms need to determine the number of the clusters in advance. CLARANS needs more parameters 
such as the maximum number of neighbors of the node. The clustering process creates set of some 
representative points of the extracted clusters. Depending on the algorithm, these points may be the 
medoids or the centers. 

The objective of K-Means is to minimize the distance of the representative point of a cluster from 
the objects within this cluster, while PAM is a medoid-based. The clustering criterion of CLARANS and 
CLARA is medoid-based, which means that the objective of them is to minimize the distance of the 
representative point (i.e., medoid) of a cluster from the objects within this cluster. CLARANS and 
CLARA apply clustering of the dataset; therefore, they may treat larger datasets than PAM. More 
specifically, CLARA considers multiple samples of the dataset on hand and applies PAM on each sample. 
Then, the output is the best clustering. 

The main issue with this approach is that the efficiency depends on the size of the sample. Also, the 
samples of a dataset influence the clustering results. Thus, if a sample is biased, a good clustering resulted 
based on some samples will not necessarily represent the good clustering of the whole dataset. 
CLARANS is a mixture of CLARA and PAM. A key difference between PAM and CLARANS is that 
CLARANS searches a subset of the dataset in order to define clusters. Unlike CLARA which has a fixed 
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sample at every stage, CLARANS draws the subsets with some randomness in each stage of the search. 
CLARANS is more scalable and efficient than both PAM and CLARA. 

The algorithms described above consider that the object may belong to only one cluster, therefore, 
they are considered to be crisp clustering algorithms. In the real-life cases, it is hard to define the 
boundaries of a cluster. FMC, which is based on K-means clustering criterion, is a representative method 
of the fuzzy clustering which is an uncertainty-based technique. FCM assigns the object to a cluster with a 
degree of belief. Unlike K-means which is given a specific number of the clusters K and depends on once-
only placement of the initial centroids, X-means had to search for this number in the range [2…K] and 
gradually adds new centroids in the areas where they are added. 

One issue with X-means is that the splitting criterion is an experimental choice, for example, BIC 
performs well for some test-sets and applications and Minimum Description Length (MDL) [98] and 
Akaike Information Criterion (AIC) [99] perform well for others. Hierarchical clustering methods are 
more efficient in handling outliers and noise than partitional algorithms. BIRCH uses CF-tree hierarchical 
data structure for multiphase clustering. In BIRCH, a good clustering is yielded from a single scan. To 
improve the quality, one or more additional scans can be used. BIRCH handles only numerical data, and 
may create different clusters it is order-sensitive (i.e., different clusters may be generated for different 
orders of the same data). 

When redistributing the objects in the final phase, BIRCH uses only the centroid of the cluster, thus, 
if the clusters do not have uniform shape and size, BIRCH does not perform well. On the other hand, 
CURE utilizes a combination of partitioning and random sampling to handle large datasets. CURE 
identifies clusters having wide variances in size and non-spherical shapes using multiple points to 
represent each cluster. These representative points of the cluster are generated by selecting the well-
scattered points from the cluster of interest and shrinking these selected points toward the centre of this 
cluster by a specified fraction. 

On the other hand, CURE is sensitive to some parameters (e.g., shrink factor used for handling 
outliers, number of partitions, and number of representative points). Thus, the selection of these 
parameters influences the quality of the clustering results. Agglomerative algorithm produces a series of 
clustering schemes of decreasing the number of clusters at east step. Merging the two closest clusters into 
one at each step results a new scheme [100]. 

5.2.3 Conclusion 
Cluster analysis is one of the most important tasks in various research fields. The major aim of 

clustering is to extract and identify significant groups of objects in underlying dataset. Thus, clustering 
criterion is the basis of the clustering so that the data points in the same cluster are closer to each other 
than data points in other clusters. Since clustering is applied in various fields, a number of clustering 
algorithms and techniques have been proposed. The main characteristics of clustering algorithms have 
been presented in this paper. 

Moreover, the classifications of the algorithms belonging to different categories have been discussed, 
and the representative algorithms of each category have been presented. The author concluded the 
discussion on the clustering algorithms by a comparative presentation. The benchmark datasets are 
clustered and the number of clusters is known in advance, therefore, the clustering algorithms used do not 
determine the number of clusters but take the number of clusters as a parameter. Moreover, an important 
issue the author discussed is the cluster validity. The comparison was done from the point of view seven 
performance measures.  

Empirically, the author conducted extensive experiments where the most representative approaches 
from each of the categories have been compared using various datasets. The author measured the 
effectiveness of the candidate algorithms through a number of tests. In addition, the author highlighted the 
set of algorithms that are the best performing. 
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