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Abstract: Due to the lack of consideration of movement behavior information 
other than time and location perception in current location prediction methods, 
the movement characteristics of trajectory data cannot be well expressed, which 
in turn affects the accuracy of the prediction results. First, a new trajectory data 
expression method by associating the movement behavior information is given. 
The pre-association method is used to model the movement behavior information 
according to the individual movement behavior features and the group movement 
behavior features extracted from the trajectory sequence and the region. The 
movement behavior features based on pre-association may not always be the best 
for the prediction model. Therefore, through association analysis and importance 
analysis, the final association feature is selected from the pre-association features. 
The trajectory data is input into the LSTM networks after associated features and 
genetic algorithm (GA) is used to optimize the combination of the length of time 
window and the number of hidden layer nodes. The experimental results show 
that compared with the original trajectory data, the trajectory data associated 
with the movement behavior information helps to improve the accuracy of 
location prediction. 

Keywords: Location prediction; information association; feature selection; GA-
LSTM 

1 Introduction 
With the development of GPS and the prosperity of the taxi industry, a large amount of trajectory 

data is generated from moving vehicles every day. The trajectory data not only reflects the driving path of 
the vehicle, but also reflects the behavior of residents and urban traffic characteristics [1]. The application 
research of GPS trajectory data has attracted the attention of academia and industry. The main research 
directions are location-based services (LBS) [2] and intelligent transportation (ITS) [3]. Location 
prediction is the core and underlying support of LBS. Predicting the behavior of vehicles and users 
through trajectory features can provide more accurate and professional services [4]. Therefore, how to 
effectively and accurately predict the next location or target location has become a hot issue in the 
research field of location prediction.  

In recent years, there have been many research results in location prediction. Reference [5] proposed 
a destination prediction method based on frequent pattern mining. However, frequent pattern mining is 
only suitable for specific situations, and the maintenance of the decision tree is complicated, and it will 
take a lot of time to process a large amount of trajectory data. The Markov-based location prediction 
method has also made remarkable achievements. Reference [6] predicted the destination of the taxi 
through the low-order Markov method, but the Markov prediction method cannot solve the long-term 
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dependence of a large amount of trajectory data. The emergence of Recurrent Neural Networks (RNN) 
has solved the above problems and has become a general model in recent years. For time series data, the 
RNN model can capture the correlation between data [7], so it has become a general model for time series 
data prediction. However, RNN cannot solve the problem of long-term dependence. The LSTM model is 
a variant of RNN, which solves the long-term dependency problem [8–10]. For time series data, each 
record is a context sequence, so time and sequence are especially important in trajectory data. The time 
window is introduced in RNN to alleviate the over-fitting problem and enhance the correlation between 
time series data. For the length of the time window, too small or too large will have a great impact on the 
prediction results. Commonly used methods always use time interval mode, average value or empirical 
value to determine the length of the time window [11]. However, the above methods are suitable for data 
sets with good data quality and time distribution, but not for data sets with uneven time intervals. 
Reference [12] optimized the window size in the LSTM model by genetic algorithm. At the same time, 
network parameters such as hidden node numbers can also be optimized by GA [13,14]. 

In addition, trajectory data preprocessing can improve data quality, but data processing should not 
only focus on improving data quality, but also pay attention to improving data expression ability through 
trajectory data analysis and mining [15,16]. For trajectory data, it is important to express the movement 
behavior of the trajectory. Reference [17] associated the individual movement behavior information of the 
vehicle with the original data. In the traffic environment, a certain amount of individual movement 
behaviors will lead to group movement behaviors, and then affect individual movement behaviors. 
Therefore, vehicle movement behavior should not be limited to individuals. References [18,19] 
considered the scene features and traffic environment of the trajectory. The above two methods both 
improve the prediction accuracy by adding associated information, but the choice of associated 
information is subjective, and the effectiveness of the added information is not analyzed. In trajectory 
expression, it is not that the more relevant information contained the better. On the contrary, high-
correlation features and low-contribution features will cause model complexity and increase training time. 
Therefore, when adding relevant information, their importance and relevance should be considered. 

In order to solve the above problems, First, we pre-correlates the movement behavior features of 
vehicles from the individual movement behavior and group movement behavior, and obtains the behavior 
features values through statistics, calculation, visualization and other methods. Second, analyzes the 
importance and relevance of pre-associated movement behavior features to remove redundant and low 
contribution features, and then obtains the final association features. Third, the original data is 
incorporated with the association features and put into LSTM, and GA was used to optimize the length of 
window and the number of hidden layer node. Finally, the experiment is designed to verify the influence 
of trajectory data associated with movement behavior information on prediction accuracy. 

2 Trajectory Expression Based on Associating Movement Behavior Information   
2.1 Expression of Trajectory  

The data set used in this paper contains the GPS trajectories of 10,357 taxis in Beijing from February 2 
to February 8, 2008. The data set includes vehicle’s time and location information. Tab. 1 shows a sample of 
track points. A track point contains attributes as follows: 1) Taxi ID; 2) date time; 3) longitude; 4) latitude. 

The trajectory can be expressed as: Tra1 = (tra1i|i = 1,2,⋯ , n), tra1i = (ti, loni, lati) , where 
ti,loni, lati represent the time, longitude and latitude in i − th trajectory point tra1i. 

Table 1: Example of original trajectory data 

id time longitude latitude 

10 2008-02-02 16:31:43 116.39407 39.84887 

10 2008-02-02 16:32:50 116.39412 39.84417 
10 2008-02-02 16:34:35 116.39452 39.83635 
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2.2 Information Pre-Association Based on Movement Behavior 
The movement behavior of vehicles is composed of individual movement behavior and group 

movement behavior. The individual movement behavior is the movement behavior of a single moving 
object, such as velocity and direction of a single vehicle. The group movement behavior shows the 
aggregation characteristics of a large number of moving objects in the movement law and trend and its 
research object is region. In this section we extract the moving behavior features of vehicles from 
individual and group movement features and show the calculate method. 

2.2.1 Individual Movement Behavior 
 Velocity feature 
The velocity of the vehicle is different every moment. The next location is related to the speed of the 

previous moment, and the velocity can reflect the driving state of the vehicle. The velocity of the i − th 
trajectory point Vi is calculated as follows: 

𝑉𝑉𝑖𝑖 =
2∗𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎�𝑎𝑎𝑖𝑖𝑎𝑎2��𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖−𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖−1�2 �+𝑎𝑎𝑐𝑐𝑎𝑎(𝑙𝑙𝑎𝑎𝑙𝑙𝑖𝑖−1)∗𝑎𝑎𝑐𝑐𝑎𝑎(𝑙𝑙𝑎𝑎𝑙𝑙𝑖𝑖)∗𝑎𝑎𝑖𝑖𝑎𝑎2�

�𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖−𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖−1�
2 �

𝑙𝑙𝑖𝑖−𝑙𝑙𝑖𝑖−1
                                                        (1) 

 Direction feature 
The direction of the vehicle in driving is dynamic, and the direction can reflect the dynamic change 

trend .The direction is the angle between the two locations and the north direction. The velocity of the i −
th trajectory point Di = 1 is calculated as follows: 

𝐷𝐷𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑙𝑙𝑙𝑙𝑙𝑙�𝑎𝑎𝑎𝑎𝑎𝑎(𝑙𝑙𝑎𝑎𝑎𝑎𝑖𝑖 2⁄ + 𝜋𝜋 4⁄ )/𝑎𝑎𝑎𝑎𝑎𝑎(𝑙𝑙𝑎𝑎𝑎𝑎𝑖𝑖−1 2⁄ + 𝜋𝜋 4⁄ )�,𝑚𝑚𝑙𝑙𝑚𝑚(|𝑙𝑙𝑙𝑙𝑎𝑎𝑖𝑖−1 − 𝑙𝑙𝑙𝑙𝑎𝑎𝑖𝑖−1|, 180)�           (2) 

2.2.2 Group Movement Behavior 
 Traffic Rush feature 
During rush hours, the vehicle will slow down and may even remain stationary. Therefore, the 

characteristics of traffic rush is a great significance to predict the next location. Reference [16] analyzed 
the peak period characteristics based on Beijing taxi data. The results are as follows: On weekdays, the 
peak traffic hours are 7:00-10:00 and 17:00-20:00. On weekends, peak traffic hours are 13:00-15:00. The 
traffic rush feature value of the i − th trajectory point T_Ri = 1, if ti in rush hours. Otherwise, T_Ri = 0. 

 Grid Area feature 
In order to study the traffic characteristics, this paper adopts the grid division method for analysis. 

Divide the area enclosed by the track points into a 500 m grid. The location of the  i − th trajectory point 
will be converted into grid area G_idi. On the one hand, point movement can be converted into regional 
movement; on the other hand, regional characteristics can be analyzed from group vehicles. 

 Grid Velocity feature 
The grid velocity value of the  i − th trajectory point G_Vi is a macro expression of Vi, which can 

reflect the traffic environment where the vehicle is located. When ti belongs to the peak period, the G_Vi 
is the average velocity of m trajectory points entered into the grid G_idi  in rush hour, otherwise, the 
average velocity is trajectories’ velocity in the off-peak period. 

  Grid Congestion feature 
According to the classification standard of urban traffic congestion by the Ministry of Public 

Security, the grid congestion feature value of the  i − th trajectory point G_Ci is calculated as Eq. (3): 

𝐺𝐺_𝐶𝐶𝑖𝑖 = �
1,⋯⋯⋯⋯⋯𝐺𝐺_𝑉𝑉𝑖𝑖 ≤ 20𝑘𝑘𝑚𝑚/ℎ
2,⋯⋯⋯⋯⋯𝐺𝐺_𝑉𝑉𝑖𝑖 ≤ 30𝑘𝑘𝑚𝑚/ℎ
3,⋯⋯⋯⋯⋯𝐺𝐺_𝑉𝑉𝑖𝑖 ≥ 20𝑘𝑘𝑚𝑚/ℎ

                                                                                                   (3) 

After adding pre-association features of individual and group movement behavior information, the 
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trajectory points will contain more state information. The trajectory expression is changed as：Tra2 =
(tra2i|i = 1,2,⋯ , n), tra2i = {ti, loni, lati, Vi, Di, T_Ri, G_idi, G_Vi, G_Ci}. The example is shown in Tab. 2.  

Table 2: Example of trajectory data after pre-association 
Time Longitude Latitude Velocity Direction Traffic- 

rush 
Grid- area Grid- 

velocity 
Grid-
congestion 

2008-02-02 
16:31:43 

116.39407 39.84887 18.361 176.387 0 198414 24.243 2 

2008-02-02 
16:32:50 

116.39412 39.84417 28.113 179.532 0 197448 23.258 2 

2008-02-02 
16:34:35 

116.39452 39.83635 29.869 177.750 0 195516 29.845 2 

2.3 Feature Selection 
After adding pre-associated features, the trajectory data dimension will be expanded to 9. However, 

the current features are not necessarily optimal expression for location prediction. This paper uses random 
forest algorithm to estimate the importance of features. The basic idea is to rearrange the order of 
eigenvalues and observe how much accuracy is reduced. The correlation coefficient is calculated by Eq. 
(4). The feature correlation degree is obtained from Tab. 3. Based on the above results, low contribution 
and high correlation features will be removed, and the final correlation feature will be selected. The 
results are as follows: 
𝜌𝜌
𝑋𝑋,𝑌𝑌=𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌)

𝛿𝛿𝑋𝑋𝛿𝛿𝑌𝑌
= 𝐸𝐸(𝑋𝑋𝑌𝑌)−𝐸𝐸(𝑋𝑋)𝐸𝐸(𝑌𝑌)

�𝐸𝐸�𝑋𝑋2�−𝐸𝐸2(𝑋𝑋)�𝐸𝐸�𝑌𝑌2�−𝐸𝐸2(𝑌𝑌)

                                                                                                            (4) 

Table 3: Correlation degree table 

Coefficient Correlation degree 

0.8–1.0 pole strength 

0.6–0.8 strong 
0.4–0.6 moderate 
0.2–0.4 weak 
0.0–0.2 pianissimo 

According to Fig. 1, we can see that the most important for location prediction is location 
information. The velocity feature's contribution to the location prediction is the lowest, which is marked 
as low contribution. The reason may be that the time interval is large, the average speed cannot express 
the vehicle state, and the relative grid speed can better express it. In Fig. 2, there is a strong correlation 
between grid congestion and grid velocity. With reference to their importance evaluation, grid velocity 
has a greater contribution to prediction accuracy, so grid congestion features are removed. Therefore, 
seven features are selected: time, longitude, latitude, direction, traffic rush, grid area and grid 
velocity .After feature selection, the final trajectory of this model is expressed as：Tra3 = (tra3i|i =
1,2,⋯ , n), tra3i = {ti, loni, lati, Di, T_Ri, G_idi, G_Vi}. The example is shown in Tab. 4.  
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Figure 1: Importance coefficient of features  

 
Figure 2: Correlation coefficient of features  

Table 4: Example of trajectory data after feature selection 
Time Longitude Latitude Direction Traffic rush Grid area Grid velocity 

2008-02-02 
16:31:43 

116.39407 39.84887 176.387 0 198414 24.243 

2008-02-02 
16:32:50 

116.39412 39.84417 179.532 0 197448 23.258 

2008-02-02 
16:34:35 

116.39452 39.83635 177.750 0 195516 29.845 

3 Next Location Prediction 
The overall framework of GA-LSTM is composed of data processing module, optimization 

algorithm module and prediction module, as shown in Fig. 3. The data set is standardized and classified 
into training data set and test data set. Put the training data set into the LSTM model optimized by GA to 
train the network, and finally put the test data set into the network to predict the next location. 
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Figure 3: Location prediction framework 

3.1 LSTM Networks 
The difference between the LSTM model and the original RNN model is that it contains a gate 

structure, which consists of a forget gate, an input gate and an output gate. The structure of LSTM is 
shown in Fig. 4. According to the structure of the gate, choose the information to forget and remember. 
The calculation method is shown in the Eqs. (5) and (6). 

At current time t, LSTM has three inputs: Input value at current time xt` LSTM output value at last 

time ht−1` Cell state at last moment Ct−1; LSTM has two outputs：LSTM output value at current time 

ht` Cell state at current time Ct. 

 
Figure 4: LSTM unit structure   

𝑓𝑓𝑙𝑙 = 𝜎𝜎�𝑤𝑤𝑓𝑓 . [ℎ𝑙𝑙−1,𝑥𝑥𝑙𝑙] + 𝑏𝑏𝑓𝑓�, 𝑖𝑖𝑙𝑙 = 𝜎𝜎(𝑤𝑤𝑖𝑖. [ℎ𝑙𝑙−1,𝑥𝑥𝑙𝑙] + 𝑏𝑏𝑖𝑖), 𝑙𝑙𝑙𝑙 = 𝜎𝜎(𝑤𝑤𝑐𝑐. [ℎ𝑙𝑙−1,𝑥𝑥𝑙𝑙] + 𝑏𝑏𝑐𝑐)                              (5)    

𝐶𝐶′𝑙𝑙 = tanh(𝑤𝑤𝑎𝑎 . [ℎ𝑙𝑙−1,𝑥𝑥𝑙𝑙] + 𝑏𝑏𝑎𝑎) ,𝐶𝐶𝑙𝑙 = 𝑓𝑓𝑙𝑙 ∗ 𝐶𝐶𝑙𝑙−1 + 𝑖𝑖𝑙𝑙 ∗ 𝐶𝐶′𝑙𝑙,ℎ𝑙𝑙 = 𝑙𝑙𝑙𝑙 ∗ tanh (𝐶𝐶𝑙𝑙)                                       (6)                                      
wf, wi, wo are weight matrices for the corresponding inputs of the network activation functions σ. In 

this paper, we use square loss function given by the following Eq. (7), Where  y is observed value, y′ is 
predict value and  n1 is the number of all predicted values.  
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = � 1
𝑎𝑎1
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦′𝑖𝑖)2
𝑎𝑎1
𝑖𝑖=1                                                                                                                         (7)  

3.2 GA Based LSTM Optimization 
Genetic algorithm originated from the computer simulation of biological system. It is a stochastic 

global search and optimization method developed by imitating the evolution mechanism of natural 
organisms, and is often used to solve combinatorial optimization problems. In this paper, we select GA to 
obtain the optimal combination of window size w and hidden layer node h. Specific algorithm is shown in 
Algorithm 1. 

Algorithm 1: GA-LSTM 
Input: populationSize, max generation(maxgen) 
Output: Optimal parameter combination (w,h) 
1: gen = 0; //initialize the value of generation. 
2: pop [gen] = initializePopulation (populationSize);//create primary population. 
3: fitvalue = rank (LSTM (pop [gen])); //calculate population’s fitness value. 
4: While gen < maxgen //judge termination condition. 
5:      parents = selectParents (fitvalue);//select excellent individuals. 
6:      pop [gen + 1] = crossover (parents); 
7:      pop [gen + 1] = mutate (pop [gen + 1]);//mutate and product a new population. 
8:      (w,h) = min (LSTM (pop [gen + 1]));//record the optimal solution. 
9:      fitvalue = rank (LSTM (pop [gen + 1]));//calculate new population’s fitness value. 
10:     gen++; 

11: End   

4 Experiments and Evaluations      
4.1 Experimental Settings 

Program Language: Python 3.7.7 and MATLAB; Integrated development environment: matlab2018a, 
spyder4.1.3; LSTM is implemented in Keras library with tensorflow as the back end. 

4.2 Model Parameter Settings 
The optimal combination of hidden layer node number and window size of LSTM is solved by GA. 

Set the population scale is 50, and the maximum iteration is 100. The error reached the minimum before 
40 generation, and the corresponding combination value is (5, 80). The parameter configuration of LSTM 
model is shown in Tab. 5. 

Table 5: LSTM parameter settings 

Parameter Parameter value 
Time Window 5 
Hidden Nodes 80 
Epoch 200 
Learning Rate 0.01 

4.3 Evaluation Metric  
In order to express the performance of the model accuracy, root mean square error (RMSE) is used 
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as the evaluation metric. The smaller the RMSE is, the higher the accuracy is. The calculation method is 
shown in the Eq. (8), where p and p′ are the observed value and the predicted value, n2 is the number of 
all predicted values.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = � 1
𝑎𝑎2
∑ (𝑝𝑝𝑖𝑖 − 𝑝𝑝′𝑖𝑖)2
𝑎𝑎2
𝑖𝑖=1                                                                                                                     (8)  

4.4 Experiment and Analysis 
The experiment is designed to verify the influence of different trajectory expressions and parameters 

optimized based on genetic algorithm on the prediction model. The experiment results are as follows: 

 
Figure 5: RMSE of LSTM in different trajectory expressions 

 
Figure 6: RMSE of GA-LSTM in different trajectory expressions  
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Figure 7: RMSE of GA-LSTM in different epochs  

It can be seen from Fig. 5 that after the information is associated, the model is more complicated and 
the training time is longer due to the increase of the dimensionality. Therefore, compared with the model 
represented by the original trajectory, the convergence speed of the prediction model based on the 
information-related trajectory data is slightly slower, but the impact is not significant. As shown in Fig. 6, 
after using GA to optimize the number of hidden nodes and the window size, the error of the model 
reaches the minimum error in the range significantly faster than that without GA. This shows that proper 
window size and hidden layer nodes can improve the model learning efficiency, and GA is effective for 
optimization of combination parameters. 

Fig. 7 increases the number of iterations. It can be seen that as the number of iterations increases, the 
prediction errors of tra1 and Tra1  are smaller than those of Tra2 , indicating that the model using    
associated features still has an accuracy advantage under the condition of increasing g iterations. 

Table 6: Performance of prediction model under different trajectory expressions 

 GA-LSTM  LSTM 

 Training time 
(s) 

Predict time 
(s) 

RMSE 
 

 Training time 
(s) 

Predict time 
(s) 

RMSE 
 

Tra1 51.60 2.86 0.04  55.09 2.96 0.04 

Tra2 58.12 3.07 0.01  68.01 3.26 0.02 
Tra3 56.50 2.93 0.01  60.22 3.17 0.02 

According to Tab. 6, it can be seen that the RMSE of the prediction model expressed by the 
trajectory of Tra2  is lower than that of the prediction model expressed by the trajectory of Tra1 . 
Therefore, the association of movement information features helps to improve the accuracy of location 
prediction. In addition, compared with the RMSE of the prediction model expressed using Tra2, the 
RMSE of the prediction model expressed using Tra3 hardly increased, and the training time is shorter. 
Therefore, feature selection can reduce the complexity of the model without increasing the prediction 
error. Under the same prediction model, the RMSE of the prediction model using genetic algorithm is 
obviously greater than that of the prediction model without GA optimization. Therefore, GA is effective 
for optimizing model parameters. 
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5 Conclusion 
This paper designs a location prediction method that combines GA-LSTM and related movement 

behavior feature information, and uses Beijing taxi data to test the prediction error. The results show that 
associating movement behavior features and then selecting features will help reduce the accuracy of 
prediction and the complexity of the model, and GA can optimize parameters within the search range. The 
significance of this work is that accurate prediction of vehicle location can make the recommendation 
service more professional and provide technical support for ITS optimization. 
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