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ABSTRACT

Based on the weighted residual method, a single-step time integration algorithm with higher-order accuracy and
unconditional stability has been proposed, which is superior to the second-order accurate algorithms in tracking
long-term dynamics. For improving such a higher-order accurate algorithm, this paper proposes a two sub-step
higher-order algorithm with unconditional stability and controllable dissipation. In the proposed algorithm, a time
step interval [tk, tk + h] where h stands for the size of a time step is divided into two sub-steps [tk, tk + γ h] and
[tk + γ h, tk + h]. A non-dissipative fourth-order algorithm is used in the first sub-step to ensure low-frequency
accuracy and a dissipative third-order algorithm is employed in the second sub-step to filter out the contribution of
high-frequency modes. Besides, two approaches are used to design the algorithm parameter γ . The first approach
determines γ by maximizing low-frequency accuracy and the other determines γ for quickly damping out high-
frequency modes. The present algorithm uses ρ∞ to exactly control the degree of numerical dissipation, and it
is third-order accurate when 0 ≤ ρ∞ < 1 and fourth-order accurate when ρ∞ = 1. Furthermore, the proposed
algorithm is self-starting and easy to implement. Some illustrative linear and nonlinear examples are solved to
check the performances of the proposed two sub-step higher-order algorithm.

KEYWORDS

Time integration algorithm; two-sub-step; higher-order accuracy; controllable dissipation; unconditional
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1 Introduction

Time integration algorithms are a powerful tool for solving structural dynamics. The accuracy,
efficiency, stability, and numerical dissipation have always been important factors when designing
a new algorithm or improving an existing algorithm. Based on different design ideas, researchers
have developed many types of time integration algorithms, such as the α-algorithms, the composite
algorithms, the conserving energy algorithms, and the higher-order algorithms.

To introduce algorithmic dissipation as well as maintain second-order accuracy, the
α-algorithms [1–3] like the HHT-α algorithm, the three-parameter algorithm were developed.
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By introducing additional parameters in motion equations, the α-algorithms can achieve this
goal. Algorithmic dissipation is beneficial to filtering out high-frequency modes and improving
stability of time integration algorithms in solving nonlinear systems. However, such α-algorithms
with algorithmic dissipation cause more amplitude and phase errors in the low-frequency
region compared to non-dissipative algorithms [4], such as the trapezoidal rule and the central
difference algorithm.

To improve low-frequency accuracy of the α-algorithms, multi-sub-step composite algorithms
were developed. The composite concepts first appeared in Bank et al.’s work [5], and they devel-
oped a two-sub-step algorithm where the trapezoidal rule and the backward difference formula
were combined in a time step. Afterwards, this work was extended to the structural dynamics
systems by Bathe in 2005 [6]. In Bathe’s work, the trapezoidal rule was used in the first-sub-step to
maintain low-frequency accuracy as much as possible and the second-sub-step adopted backward
difference formula to filter out high-frequency mode contribution. Motivated by these works, some
composite algorithms with better numerical properties were proposed in the last two decades, such
as the two-sub-step algorithms [7–9], the three-sub-step algorithms [10–15] and the four-sub-step
algorithms [13,14].

To solve nonlinear systems, conserving energy algorithms were developed. Different from
α-algorithms and composite algorithms, the construction of conserving energy algorithms is based
on the energy principle [16]. Most conserving energy algorithms [17–22] can handle the geometric
nonlinearity problems and one [23] can deal with the systems including geometric nonlinearity
and damping nonlinearity.

To satisfy the pursuit for high accurate solutions, higher-order algorithms [24–32] were devel-
oped. The series algorithms, such as the Taylor series algorithm and the Lie series algorithm, are
classical higher-order algorithms, which cannot be unconditionally stable when the accuracy order
is more than two [25]. For keeping higher-order accuracy and improving stability, the multi-stages
implicit Runge–Kutta algorithm [26], the weighted-residual method-based algorithms [27,28] and
the differential quadrature algorithms [29–31] were proposed. Compared to second-order accurate
algorithms, higher-order algorithms can use larger time step size and have advantages in long-term
tracking. In 2017, the higher-order algorithms based on the weighted residual method proposed
by Kim et al. [28] have the nth-order (n = 1, 2, 3, . . .) accuracy and unconditional stability with
controllable algorithmic dissipation, but the algorithms’ stability for nonlinear problems needs to
be improved.

As can be seen from above review that (1) there are no multi-sub-step time integration algo-
rithms that have higher-order accuracy, unconditional stability and controllable dissipation; (2) the
designs of existing time integration algorithms mainly take accuracy, stability and dissipation into
account rather than the properties of dynamic systems.

In this context, this work is to construct a two sub-step higher-order algorithm based on the
Kim’s work [28]. In the proposed algorithm, a time step [tk, tk+ h] is divided into two sub-steps,
[tk, tk + γ h] and [tk + γ h, tk + h]. Both sub-steps employ the Kim scheme with two collocation
points. To obtain better performance, two approaches are provided for determining the parameter
γ . The first one is to maximize low-frequency accuracy, in which the value of γ is determined by
∂PE (γ )/∂γ = 0 where PE denotes percentage period elongation [33]. The second is for quickly
eliminating high-frequency contribution, and the algorithm with such γ can perform better in the
rigid-flexible coupling and wave propagation systems.
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The rest of the paper is organized as follows. Section 2 presents the formulations of the pro-
posed two sub-step algorithm and the determination method of the parameter γ . The numerical
properties of the proposed algorithm are discussed in Section 3. Numerical comparisons are
provided in Section 4. Finally, the conclusions are drawn in Section 5.

2 The Two Sub-Step Higher-Order Algorithm

This section gives the formulations of the proposed algorithm, in which a time step [tk, tk+h]
is divided into two sub-steps as [tk, tk + γ h] and [tk + γ h, tk + h] where h stands for the time
step size.

2.1 The First Sub-Step Formulations

By using the Lagrange interpolation functions ψ i
t (i= 0, 1, 2), the displacement ut, velocity vt,

and acceleration at in the first sub-step are expressed as

ut =ψ0
t utk +ψ1

t utk+γ h/2+ψ2
t utk+γ h (1)

vt =ψ0
t vtk +ψ1

t vtk+γ h/2+ψ2
t vtk+γ h (2)

at =ψ0
t atk +ψ1

t atk+γ h/2+ψ2
t atk+γ h (3)

where tk < t< tk+ γ h and the Lagrange interpolation functions are

ψ0
t =

2 (t− tk)2− 3 (t− tk) γ h+ (γ h)2
(γ h)2

,

ψ1
t =−4

[
(t− tk)2− (t− tk) γ h

]
(γ h)2

,

ψ2
t =

2 (t− tk)2− (t− tk) γ h

(γ h)2
(4)

The displacement, velocity, and acceleration vectors shown in Eqs. (1)–(3) are independent of
each other, so two residuals are introduced to describe the velocity–displacement relationship and
the acceleration–velocity relationship. The two residuals have the forms as

r1t = vt− u̇t (5)

r2t = at− v̇t (6)

For exact solutions, r1t and r2t are equal to zero. To achieve accurate approximate solutions,
here the residuals r1t and r2t are minimized with the following weighted equations as∫ γ h

0
wτ riτdτ = 0, (i= 1, 2) (7)

∫ γ h

0
wτ

driτ
dt

dτ = 0, (i= 1, 2) (8)
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where τ = t− tk wτ is the weighting function. Substituting Eqs. (1)–(3) into Eqs. (7) and (8) leads
to the velocity–displacement and the acceleration–velocity relationships in matrix form as[
vtk+γ h/2
vtk+γ h

]
=

[
α11

(
θ1i

)
I α12

(
θ1i

)
I

α21
(
θ1i

)
I α22

(
θ1i

)
I

][
utk+γ h/2
utk+γ h

]
+

[
β1

(
θ1i

)
I

β2
(
θ1i

)
I

]
utk +

[
η1

(
θ1i

)
I

η2
(
θ1i

)
I

]
vtk (9)[

atk+γ h/2
atk+γ h

]
=

[
α11

(
θ1i

)
I α12

(
θ1i

)
I

α21
(
θ1i

)
I α22

(
θ1i

)
I

][
vtk+γ h/2
vtk+γ h

]
+

[
β1

(
θ1i

)
I

β2
(
θ1i

)
I

]
vtk +

[
η1

(
θ1i

)
I

η2
(
θ1i

)
I

]
atk (10)

where αij (i, j= 1, 2), βi (i= 1, 2), and ηi (i= 1, 2) are all the functions of θ11 and θ12 which are

θ1i =
∫ γ h
0 wτ τ idτ

(γ h)i
∫ γ h
0 wτdτ

, (i= 1, 2) (11)

where the superscript ‘1’ represents the first sub-step, and θ11 and θ12 can be determined by
maximizing the order of accuracy. For this end, consider a single degree-of-freedom system
as follows

ẍ+ 2ξωẋ+ω2x= 0 (12)

where ξ and ω denote the physical damping ratio and natural frequency respectively. In terms of
the Eqs. (9) and (10) and for this simple system (12), one can obtain a recursive formulation for
first sub-step as[
utk+γ h
vtk+γ h

]
=A

[
utk
vtk

]
(13)

where A is the transfer matrix. The order of accuracy can be designed with the help of local
truncation error σ [33], of which the definition is

σ = utk+γ h−A1utk +A2utk−γ h
(γ h)2

(14)

where A1 = tr (A) and A2 = det (A), which are the functions of θ11 and θ12 . If σ = O
(
hl

)
where

l > 0, the method is lth-order accurate. Through the Taylor series expansion of displacement at
t= tk, the explicit expressions of σ can be obtained as

σ = 4
(
1− 2ξ2

)(
2

(
θ11

)2− θ11 − θ12 +
1
3

)
u(4)tk O

(
h2

)

+ 1
3

(
2θ11 − 1

) (
ωξu(4)tk + u(5)tk

)
O

(
h3

)
+O

(
h4

)
(15)

It follows that the first sub-step method is at least second-order accurate and is fourth-order

accurate if θ11 = 1/2 and θ12 = 2
(
θ11

)2 − θ11 + 1/3 = 1/3. Fortunately, the spectral radius ρ (A) is
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equal to 1 when θ11 = 1/2 and θ12 = 1/3. With the relations between (θ11 , θ
1
2 ) and (αij, βi, ηi), one

can have

α11 = 2
γ h

, α12 = 1
2γ h

, α21 =− 8
γ h

, α22 = 4
γ h

,

β1 =− 5
2γ h

, β2 = 4
γ h

, η1 =−1
2
, η2 = 1 (16)

For obtaining the unknown vectors utk+γ h, vtk+γ h, and atk+γ h in the first-sub-step, we consider
the following equilibrium equations at the time nodes of tk + γ h/2 and tk + γ h, which have the
forms as

Matk+γ h/2+Cvtk+γ h/2+Kutk+γ h/2 =Rtk+γ h/2
Matk+γ h+Cvtk+γ h+Kutk+γ h =Rtk+γ h

}
(17)

where M, C and K are the mass, damping and stiffness matrices; R is the external load vector.
Substituting Eqs. (9) and (10) into Eq. (17) yields utk+γ h as

utk+γ h=
�

K
−1

1

�

R1 (18)

The above effective stiffness matrix
�

K1 and the effective external load vector
�

R1 have the forms
as
�

K1 =
[(
α21α12+α222

)
C1− (α11α12+α12α22) I

]
M + (α22C1−α12I)C +C1K (19a)

�

R1 =
(
C1Rtk+γ h−Rtk+γ h/2

)
+{(β1I −β2C1)C + [(α11β1+α12β2) I − (α21β1+α22β2)C1]M}utk
+{(η1I − η2C1)C + [(α11η1 +α12η2 +β1) I − (α21η1+α22η2 +β2)C1]M} vtk
+{η1I − η2C1}Matk (19b)

where

C1 =
[(
α211+α12α21

)
M +α11C +K

]
[(α21α11+α22α21)M +α21C]−1 (20)

Then the unknown vectors utk+γ h/2 can be obtained as

utk+γ h/2

=
[(
α211+α12α21

)
M +α11C +K

]−1

⎧⎪⎨
⎪⎩
Rtk+γ h/2− [β1C + (α11β1+α12β2)M]utk
− [η1C + (α11η1 +α12η2+β1)M ] vtk − η1Matk
− [(α11α12+α12α22)M +α12C ]utk+γ h

⎫⎪⎬
⎪⎭ (21)

Then, by substituting utk+γ h/2 and utk+γ h into Eqs. (9) and (10), one can arrive at vtk+γ h,
and atk+γ h. And utk+γ h, vtk+γ h, and atk+γ h are the initial conditions of the second sub-step. It
is noteworthy that the weighted residual method is a common way in the construction of time
integration algorithms. It can be seen from Eqs. (5)–(7) that in the present algorithm, the inherent



554 CMES, 2021, vol.126, no.2

relations between displacement, velocity, and acceleration are only satisfied in a weak form, but
the equilibrium equations are satisfied strictly at discrete points, as shown in Eq. (17).

2.2 The Second-Sub-Step Formulations
As in the first sub-step, ut, vt and at within tk + γ h < t < tk + h can also be approximated

using the Lagrange interpolation function, as

ut =ψ0
t utk+γ h+ψ1

t utk+(1+γ )h/2+ψ2
t utk+h (22)

vt =ψ0
t vtk+γ h+ψ1

t vtk+(1+γ )h/2+ψ2
t vtk+h (23)

at =ψ0
t atk+γ h+ψ1

t atk+(1+γ )h/2+ψ2
t atk+h (24)

where

ψ0
t =

2
(
t− tk+γ h

)2− 3 h (1− γ ) (t− tk+γ h
)+ h2 (1− γ )2

(1− γ )2 h2

ψ1
t =−

4
[(
t− tk+γ h

)2− h (1− γ ) (t− tk+γ h
)]

(1− γ )2 h2

ψ2
t =

2
(
t− tk+γ h

)2− h (1− γ ) (t− tk+γ h
)

(1− γ )2 h2 (25)

The velocity–displacement and acceleration–velocity relationships have the matrix forms as[
vtk+(1+γ )h/2
vtk+h

]
=

[
α11

(
θ2i

)
I α12

(
θ2i

)
I

α21
(
θ2i

)
I α22

(
θ2i

)
I

] [
utk+(1+γ )h/2
utk+h

]

+
[
β1

(
θ2i

)
I

β2
(
θ2i

)
I

]
utk+γ h+

[
η1

(
θ2i

)
I

η2
(
θ2i

)
I

]
vtk+γ h (26)

[
atk+(1+γ )h/2
atk+h

]
=

[
α11

(
θ2i

)
I α12

(
θ2i

)
I

α21
(
θ2i

)
I α22

(
θ2i

)
I

] [
vtk+(1+γ )h/2
vtk+h

]

+
[
β1

(
θ2i

)
I

β2
(
θ2i

)
I

]
vtk+γ h+

[
η1

(
θ2i

)
I

η2
(
θ2i

)
I

]
atk+γ h (27)

where αij, β i, ηi (i, j = 1, 2) are the functions of θ21 and θ22 . For the system (12), one can also
obtain a recursive formulation like Eq. (13), as[
utk+h
vtk+h

]
=B

[
utk
vtk

]
(28)

where B is the transfer matrix. Also, according to local truncation error analysis, we can find a
relationship of θ21 and θ22 as

θ22 = 2(θ21 )
2 − θ21 + 1/3 (29)
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which makes the second sub-step method third-order accurate. In terms of the spectral radius of
B, the following relation can be achieved as

ρ∞ = ρ (B)|ωh→∞ = 3θ21 − 2

1− 3θ21
(30)

Then the parameter ρ∞ is introduced to control the damping of the present algorithm. By
using Eqs. (29) and (30), all free parameters in the second sub-step can be explicitly expressed in
terms of ρ∞ as

α11 = 1+ρ∞
(1− γ )h , α12 = 3−ρ∞

4 (1− γ )h , α21 =−4 (1+ρ∞)
(1− γ )h , α22 = 3+ρ∞

(1− γ )h

β1 =− 7+ 3ρ∞
4 (1− γ )h , β2 =

1+ 3ρ∞
(1− γ )h , η1 =−1+ρ∞

4
,η2 = ρ∞ (31)

With these parameters, the method for the second sub-step is unconditionally stable. To
calculate the results at tk+h, we take the equilibrium equations at tk+ (1+ γ )h/2 and tk+h into
account as

Matk+(1+γ )h/2+Cvtk+(1+γ )h/2+Kutk+(1+γ )h/2 =Rtk+(1+γ )h/2
Matk+h+Cvtk+h+Kutk+h =Rtk+h

}
(32)

Substituting Eqs. (26) and (27) into Eq. (32) leads to the displacement utk+h as

utk+h=
�

K
−1

2

�

R2 (33)

The effective stiffness matrix K̂2 and the effective external load vector R̂2 are
�

K2 =
[(
α21α12+α222

)
C2− (α11α12+α12α22) I

]
M + (α22C2−α12I)C +C2K (34a)

�

R2 =
(
C2Rtk+h−Rtk+(1+γ )h/2

)
+ {(

β1I −β2C2
)
C + [(

α11β1+α12β2
)
I − (

α21β1+α22β2
)
C2

]
M

}
utk+γ h

+ {(
η1I − η2C2

)
C + [(

α11η1+α12η2+β1
)
I − (

α21η1+α22η2+β2
)
C2

]
M

}
vtk+γ h

+ {
η1I − η2C2

}
Matk+γ h (34b)

where

C2 =
[(
α211+α12α21

)
M +α11C +K

]
[(α21α11+α22α21)M +α21C]−1 (35)
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and the displacement utk+(1+γ )h/2 can be obtained by

utk+(1+γ )h/2

=
[(
α211+α12α21

)
M +α11C +K

]−1

⎧⎪⎨
⎪⎩
Rtk+(1+γ )h/2−

[
β1C + (

α11β1+α12β2
)
M

]
utk+γ h

− [
η1C + (

α11η1+α12η2+β1
)
M

]
vtk+γ h− η1Matk+γ h

− [(α11α12+α12α22)M +α12C]utk+h

⎫⎪⎬
⎪⎭
(36)

By inserting utk+(1+γ )h/2 and utk+h into Eqs. (26) and (27), we can achieve vtk+h, and atk+h.

2.3 Determination of the Parameter γ
This sub-section aims to present two approaches for determining the last free parameter γ ,

the ratio of the first sub-step size and the entire step size.

2.3.1 Approach 1
The first approach is to preserve low-frequency mode contribution as much as possible. To

reach this end, the value of γ is determined by minimizing percentage period error. Since the
explicit relation among γ , ρ∞ and the phase elongation is complex, the optimal γ for some ρ∞
are listed in Tab. 1. For clearer showing whether or not these values of γ make the phase error
minimum, Figs. 1 and 2 show the percentage amplitude decay and the period elongation vs. γ for
ρ∞ = 0, and Figs. 3 and 4 display the results for ρ∞ = 0.5. It can be seen that these values of
γ can really minimize period elongations, noting that at the minimum point the amplitude decay
is also close to the minimum. To simply obtain the optimal γ for any ρ∞, a fitting algebraic
relationship between ρ∞ and the optimal γ is provided as

γ =− 109
3267

ρ3∞+ 405
3109

ρ2∞− 617
3884

ρ∞+ 1033
1838

(37)

Table 1: The relationships between the optimal γ and ρ∞

ρ∞ γ ρ∞ γ

0 0.5619155759 0.6 0.5063658536
0.1 0.5475324620 0.7 0.5032538458
0.2 0.5352959354 0.8 0.5013104832
0.3 0.5251810305 0.9 0.5002964661
0.4 0.5171007033 0.95 0.5000704930
0.5 0.5108996384 1.0 0.5000000000

Fig. 5 shows the fitted and true values of γ . The proposed algorithm using the γ in Eq. (37),
denoted by ‘Present 1’ in this paper, is recommended for most dynamics problems.
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Figure 1: Percentage amplitude decay vs. γ (ρ∞ = 0, ξ = 0)
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Figure 2: Percentage period elongation vs. γ (ρ∞ = 0, ξ = 0)
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Figure 3: Percentage amplitude decay vs. γ (ρ∞ = 0.5, ξ = 0)
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2.3.2 Approach 2
For rigid-flexible coupling and wave propagation problems, time integration algorithms that

can quickly damp out high-frequency effects are expected. To achieve such a capability, the
parameter γ can be determined by the following second approach.

Fig. 6 shows the variations of the percentage amplitude decay of the proposed algorithm with
γ and ωh for the case of ρ∞ = 0, and the result of ρ∞ = 0.5 is provided in Fig. 7. It can be
seen that the percentage amplitude decay curves are symmetric about γ = 1 for any values of ωh.
Fig. 8 shows the spectral radius vs. ωh for several given γ , indicating that the larger amount of
numerical dissipation can be obtained in the low-frequency range with a larger |γ |.

Figure 6: The variations of percentage amplitude decay with γ and ωh (ρ∞ = 0)
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As is well known, most time integration algorithms with controllable dissipation possess the
biggest amount of dissipation when ρ∞ = 0. It can be seen from Figs. 6–8 that the amount of
dissipation can be improved further by adjusting the values of γ for the proposed algorithm.
For ensuring the accuracy of low-frequency response, the value of γ satisfying ρ = 0.7∼0.8 is
suggested, refer to Fig. 8. The proposed algorithm using the value of γ determined by this
approach is denoted by ‘Present 2’ in the numerical comparisons in Section 4.

Figure 7: The variations of percentage amplitude decay with γ and ωh (ρ∞ = 0.5)
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Figure 8: Spectral radius vs. ωh and γ (ρ∞ = 0): (a) ωh ∈ [0.1, 100]; (b) ωh =
0.1, 0.2, 0.4, 0.6, 1, 4, 10, 100
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After determining γ , the construction of the present algorithm is completed, and its flowchart
and step-by-step implementing procedure are presented in Fig. 9 and Tab. 2 respectively. Using
the Newton iteration method, the proposed algorithm is also applicable to the general nonlinear
dynamics as

Mat+N (vt,ut)=R (t) (38)

where N(vt,ut) is the nonlinear resilience force.

Figure 9: Flowchart of the proposed algorithm for linear systems
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Table 2: Step-by-step implementing procedure of the proposed algorithm for linear systems

A. Initial calculations:
1. Form mass matrix M, stiffness matrix K and damping matrix C.
2. Initialize u0, v0 and a0.
3. Select time step h, the spectral radius ρ∞ and γ , and calculate constants:

α11 = 2
γ h

, α12 = 1
2γ h

, α21 =− 8
γ h

, α22 = 4
γ h

;

β1 =− 5
2γ h

, β2 = 4
γ h

, η1 =−1
2
, η2 = 1;

α11 = 1+ρ∞
(1− γ )h , α12 =

3−ρ∞
4 (1− γ )h , α21 =−4 (1+ρ∞)

(1− γ )h , α22 = 3+ρ∞
(1− γ )h ;

β1 =− 7+ 3ρ∞
4 (1− γ )h , β2 =

1+ 3ρ∞
(1− γ )h , η1 =−1+ρ∞

4
, η2 = ρ∞;

4. Form constant matrices C1 and C2:
C1 =

[(
α211+α12α21

)
M +α11C +K

]
[(α21α11+α22α21)M +α21C ]−1

C2 =
[(
α211+α12α21

)
M +α11C +K

]
[(α21α11+α22α21)M +α21C]−1

5. Form effective stiffness matrices
�

K1 and
�

K2:
�

K1 =
[(
α21α12+α222

)
C1− (α11α12+α12α22) I

]
M + (α22C1−α12I)C +C1K

�

K2 =
[(
α21α12+α222

)
C2− (α11α12+α12α22) I

]
M + (α22C2−α12I)C +C2K

B. For each time step:
<First sub-step>

1. Calculate effective loads
�

R1:
�

R1 =
(
C1Rtk+γ h−Rtk+γ h/2

)+{(β1I −β2C1)C + [(α11β1+α12β2) I − (α21β1+α22β2)C1]M}utk+{(η1I − η2C1)C + [(α11η1+α12η2 +β1) I − (α21η1 +α22η2+β2)C1]M} vtk + (η1I − η2C1)Matk
2. Solve for displacement at time tk+ γ h:
utk+γ h =

�

K
−1

1

�

R1

3. Solve for displacement at time tk+ γ h/2:

utk+γ h/2 =
[(
α211+α12α21

)
M +α11C +K

]−1

⎧⎨
⎩
Rtk+γ h/2− [β1C + (α11β1+α12β2)M ]utk
− [η1C + (α11η1 +α12η2+β1)M ] vtk − η1Matk
− [(α11α12+α12α22)M +α12C ]utk+γ h

⎫⎬
⎭

4.Calculate velocities and accelerations at time tk+ γ h:
vtk+γ h/2 = α11utk+γ h/2+α12utk+γ h+β1utk + η1vtk
vtk+γ h= α21utk+γ h/2+α22utk+γ h+β2utk + η2vtk
atk+γ h = α21vtk+γ h/2+α22vtk+γ h+β2vtk + η2atk
<Second sub-step>

1. Calculate effective loads
�

R2:
�

R2 =
(
C2Rtk+h−Rtk+(1+γ )h/2

)+ {(
β1I −β2C2

)
C + [(

α11β1+α12β2
)
I − (

α21β1+α22β2
)
C2

]
M

}
×utk+γ h+

{(
η1I − η2C2

)
C + [(

α11η1+α12η2+β1
)
I − (

α21η1+α22η2+β2
)
C2

]
M

}
vtk+γ h

+{
η1I − η2C2

}
Matk+γ h

2. Solve for displacement at time tk+ h:

utk+h =
�

K2

−1�
R2
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Table 2 (continued).

3. Solve for displacement at time tk+ (1+ γ )h/2:

utk+(1+γ )h/2 =
[(
α211+α12α21

)
M +α11C +K

]−1

⎧⎨
⎩
Rtk+(1+γ )h/2−

[
β1C + (

α11β1+α12β2
)
M

]
utk+γ h

− [
η1C + (

α11η1+α12η2+β1
)
M

]
vtk+γ h− η1×Matk+γ h− [(α11α12+α12α22)M +α12C ]utk+h

⎫⎬
⎭

4. Calculate velocities and accelerations at time tk+ h:

vtk+(1+γ )h/2 = α11utk+(1+γ )h/2+α12utk+h+β1utk+γ h+ η1vtk+γ h
vtk+h = α21utk+(1+γ )h/2+α22utk+h+β2utk+γ h+ η2vtk+γ h
atk+h= α21vtk+(1+γ )h/2+α22vtk+h+β2vtk+γ h+ η2atk+γ h

3 Properties Analysis

This section is to discuss the proposed algorithm’s properties, including efficiency, stability,
dissipation, accuracy, and convergence rates. In this work, the present algorithm is compared with
the single-step fourth-order Kim method [28], the single-step fourth-order IHOA-4 [32], and the
two-sub-step second-order ρ∞-Bathe method [7]. The accuracy of different types of algorithms
should be compared under the same computational cost. In terms of the number of times the
equilibrium equation is used in a time step, the time step sizes of these algorithms should satisfy
4h (IHOA− 4)= 2h (ρ∞−Bathe)= 2h(Kim)= h (Present) (indicating that the step size of IHOA-4
is a quarter of the step size of the present method, for example) to ensure that the accuracy
comparison is conducted under roughly equal computational costs.

3.1 Stability, Dissipation and Accuracy
In general, a SDOF system like (12) is used to examine the properties of a time integration

algorithm for linear systems. The spectral analysis of Present 2 have been presented Section 2.3.2,
so this section mainly discusses the numerical properties of the ‘Present 1’. Figs. 10–12 show
the spectral radius vs. ωh and Figs. 13 and 14 show the percentage amplitude decay and period
elongation vs. δ(ωh) where δ(ωh) = (ωh)/n (n stands for the number of times the equilibrium
equation is used in a time element), keeping same computational costs. It can be seen from
Figs. 10–12 that the present algorithm is unconditionally stable for undamped and damped sys-
tems, and its numerical dissipation can be exactly and smoothly controlled by ρ∞. Figs. 13 and
14 illustrate that (1) if ρ∞ = 1, Present 1 almost has the same amplitude and phase accuracy
as the Kim algorithm; (2) if ρ∞ �= 1, Present 1 is more accurate than the Kim algorithm. Since
the amplitude errors of them are all zero when ρ∞ = 1, the relevant results are not plotted
in Fig. 13.
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Figure 10: Spectral radius vs. ωh for Present 1 (ξ = 0)
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Figure 11: Spectral radius vs. ωh for Present 1 (ξ = 0.1)
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Figure 12: Spectral radius vs. ωh for Present 1 (ξ = 0.2)
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Figure 13: Percentage amplitude decay vs. δ(ωh) (ξ = 0)
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Figure 14: Percentage period elongation vs. δ(ωh) (ξ = 0)

3.2 Convergence Rates
The convergence rates of the proposed algorithm are checked in this section. Consider a

SDOF system as

ẍ+ 2ξωẋ+ω2x= r (t) (39)

where ω= 2, r(t)= sin t, and the initial displacement and velocity are zero. The decrease rates of
absolute errors as the step size decreases are defined as the convergence rates, and displacement,
velocity and acceleration may have different convergence rates. The ρ∞-Bathe algorithm [7] is
second-order accurate, so its results are plotted here as a reference. The value of the parameter
γ has no effect on algorithmic order, refer to Eq. (15), so only the results of Present 1 are
shown here.

The undamped case is considered first. Fig. 15 shows the absolute errors of displacement,
velocity, and acceleration. It can be seen that the proposed algorithm and the Kim algorithm are
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both fourth-order accurate when ρ∞ = 1, and they are both third-order accurate otherwise; the
present algorithm is more accurate than the Kim algorithm when 0 ≤ ρ∞< 1.
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Figure 15: Convergence rates of the undamped system (ξ = 0)

For the damped case, ξ = 0.1 is used. It can be seen from Fig. 16 that the proposed algorithm
is still fourth-order accurate when ρ∞ = 1 and third-order accurate when 0≤ ρ∞< 1.
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Figure 16: Percentage period elongation vs. δ(ωh) (ξ = 0.1)

4 Numerical Experiments

To verify the performance of the proposed algorithm, some numerical experiments are con-
ducted here. The proposed algorithm is compared with the Kim algorithm [28], the IHOA-4 [32],
and the ρ∞-Bathe algorithm [7]. In all simulations, the time step size of the IHOA-4 is provided
and the sizes of other algorithms can be determined by the relations of 4h(IHOA− 4)= 2h(ρ∞−
Bathe)= 2h(Kim)= h(Present).
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4.1 Bi-Material Bar Problem
In this example, consider a linear bi-material bar subjected to a harmonic displacement

excitation at the left end [28], as shown in Fig. 17. The motion equation of the bi-material
bar is

∂

∂x

(
E (x)A

∂u (x, t)
∂x

)
= ρA∂

2u (x, t)
∂t2

, 0≤ x≤L, t≥ 0 (40)

with the initial and boundary conditions of

u (x, 0)= 0, u̇ (x, 0)= 0

u (0, t)= 1
10

sin (2π t) , u (L, t)= 0 (41)

The dimensionless mass density, sectional area and length are assumed as ρ = 1, A = 1
and L = 1 respectively, and the elasticity modulus is E (x) = E1 for 0 ≤ x ≤ L/2
and E (x)= E2 for L/2< x≤ L. Two combinations of E1 and E2 are considered below, and the
bar is modelled with two quadratic elements.

Figure 17: A bi-material bar with a harmonic displacement excitation at the left end

4.1.1 The First Case (E1 = 10 and E2 = 1)
This case is used to test the performance of the higher-order accurate algorithms for long-term

tracking. The step size h= 0.005≈Tmin/6 where Tmin ≈ 0.0344138, and the reference solutions are
achieved via the mode superposition method. For long-term simulations, numerical dissipation is
not expected, so ρ∞ = 1 is employed in all algorithms. Figs. 18–20 illustrate the results of the
middle point of the bar for the time interval [498,500], where one can see that the second-order
accurate ρ∞-Bathe algorithm have obvious errors and other fourth-order accurate algorithms’
results agree well with the reference solution.
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Figure 18: The displacement of the middle point for the first case
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Figure 19: The velocity of the middle point for the first case
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Figure 20: The acceleration of the middle point for the first case

4.1.2 The Second Case (E1 = 5000 and E2 = 1)
The second case is designed to show the better performance of numerical dissipation of the

proposed algorithm over other higher-order algorithms. The time step size h= 0.005 is used, and
ρ∞ = 0 is employed. To better handle the present rigid-flexible coupling problem, the parameter
γ of the proposed algorithm is determined by Approach 2. It can be seen from Figs. 21–23
that: (1) the proposed algorithm can eliminate high-frequency effects without introducing excessive
errors; (2) the Kim algorithm has obvious numerical oscillations; (3) the IHOA-4 loses stability
due to its conditional stability. To make the figure clearer, the acceleration results of the IHOA-4
are omitted in Fig. 22.
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Figure 22: The velocity of the middle point for the second case
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Figure 23: The acceleration of the middle point for the second case
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Moreover, the CPU time required by different algorithms in this example are presented in
Tab. 3 where one can observe that the computational costs of different algorithms are almost
equal when the step sizes satisfy the relation 4h(IHOA− 4) = 2h(ρ∞ − Bathe) = 2h(Kim) =
h(Present).

Table 3: CPUs of different time integration algorithms in Example 1

Total time IHOA-4 [32] ρ∞-Bathe [7] Kim [28] Present

Case 1 500 0.8850 0.6972 0.7820 0.6845
Case 2 500 / / 0.7904 0.6736

4.2 Rigid Pendulum System
Consider a nonlinear pendulum system [17] pinned at the top and free at the bottom,

as shown in Fig. 24. The material parameters EA = 1010N, ρA = 6.57 kg/m and the length
l0 = 3.0443 m are adopted, and the rotation of the pendulum is started by an initial tangential
velocity of v0 = 7.72 m/s at the free end. Since the axial stiffness is huge, the motion of the
pendulum is like a rigid rotation. A linear truss element is used to model the pendulum, so the
system has two DOFs.

Figure 24: Truss model of the rigid pendulum

The step size h= 0.05 s, and ρ∞ = 0 is used. The results of the ρ∞-Bathe algorithm with an
extremely small time step size serve as the reference solutions. Figs. 25–27 show the results of the
free end in the x direction within [0, 10 s]. It can be seen that the IHOA-4 and the Kim algorithm
fail. In fact, this simple problem has also defeated some other famous algorithms, such as the
trapezoidal rule. Also, we can find that the ρ∞-Bathe algorithm exhibits phase lag.
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Figure 25: Displacement of the free end in the horizontal direction

Figure 26: Velocity of the free end in the horizontal direction

Figure 27: Acceleration of the free end in the horizontal direction
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4.3 The Two-Story Shear Building
As shown in Fig. 28, in this example a two-story shear building is considered, which has two

degrees of freedom. The lumped masses of the bottom and the top floors are mb = 103 kg and
mt = 104 kg, respectively. The nonlinear stiffness for each story is

k= k0
[
1+α (Δu)2

]
(42)

where k0 is the initial stiffness and Δu represents the story drift. For the bottom story, k0 =
108 N/m, and the k0 = 105 N/m is for the top story. Two stores are subjected to the same the
external force f1 = f2 = 10 sin (t). The coefficients α = 100 and α =−0.1 are used for the bottom
and top stories respectively. The step size h= 0.0625 s, and ρ∞ = 0 is used. The reference solution
is achieved through the ρ∞-Bathe algorithm with a much smaller step size. Figs. 29–31 provide
the results of the top story. One can see that: (1) The non-dissipative IHOA-4 loses stability; (2)
The ρ∞-Bathe algorithm and the Kim algorithm have larger errors than the present method.

Figure 28: Two-story shear building

Figure 29: Displacement of the top story
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Figure 30: Velocity of the top story

Figure 31: Acceleration of the top story

5 Conclusions

Based on the single-step Kim algorithm, this work proposed a two sub-step higher-order time
integration algorithm with unconditional stability and controllable dissipation. A non-dissipative
fourth-order accurate scheme is used in the first sub-step, and a third-order accurate scheme with
controllable dissipation is used in the second-sub-step.

As to the determination of the parameter γ , the ratio between the first-sub-step size and
the entire step size, this work provided two approaches for achieving different goals. One
approach maximizes low-frequency accuracy and the other can quickly damp out high-frequency
mode effects.

The numerical properties and simulations showed that the present two sub-step algo-
rithm has accuracy, dissipation, and stability advantages over the Kim algorithm and the
ρ∞-Bathe algorithm.
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