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Abstract: An increasing number of studies provide evidence for the existence of a microbiota-gut-brain axis and its

potential involvement in the development of sporadic Parkinson’s disease and other neurodegenerative conditions.

The neuropathologic hallmark of Parkinson’s disease is the presence of brain intraneuronal aggregates of misfolded

alpha-synuclein, known as Lewy bodies. Some gut microbiota products may trigger alpha-synuclein conformational

changes in the neurons of the enteric nervous system, which can then spread to the brain in a prion-like fashion

through the vagus nerve. Others may interfere with neuroinflammatory pathways and susceptibility to

neurodegeneration. In this review, we assess the potential role of putative gut microbiota products in the

etiopathogeny of Parkinson’s disease, with a special emphasis on functional bacterial amyloid proteins, bacterial

biosurfactants, endotoxins and short-chain fatty acids. The possible roles of molecular hydrogen, a common by-

product of bacterial fermentation, are also addressed.

Abbreviations
BBB: blood brain barrier
CNS: central nervous system
Fap: functional amyloid in Pseudomonas
H-NS: histone-like nucleoid-structuring protein
IHF: integration host factor
IL-1β: interleukin-1 beta
iNOS: inducible nitric oxide synthase
LPS: lipopolysaccharide
NF-κB: nuclear factor kappa-light-chain-enhancer of

activated B cells
PD: Parkinson’s disease
SCFA: short-chain fatty acids
SIBO: small intestine bacterial overgrowth
TLR: toll-like receptor
TNF-α: tumour necrosis factor-alpha

Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder of
the central nervous system (CNS) resulting in progressive
motor and non-motor manifestations (Berg et al., 2015;
Braak et al., 2003). The etiopathogeny of sporadic cases is
incompletely understood, and currently, there are no
disease-modifying treatments.

Pathologically, PD is a proteinopathy characterized by
misfolding, aggregation, and intraneuronal accumulation of
alpha-synuclein, with subsequent neuroinflammatory changes
and neurodegeneration (Braak et al., 2003; Spillantini et al.,
1998; Spillantini et al., 1997; Walker et al., 2016). As in the
case of other alpha-synucleinopathies, the misfolded alpha-
synuclein gains amyloid properties and putative neurotoxic
functions (Araki et al., 2019; Braak and Del Tredici, 2017).
Self-aggregation of the misfolded alpha-synuclein results in
intraneuronal aggregates known as Lewy bodies, the
pathological hallmarks of PD (Araki et al., 2019; Baba et al.,
1998; Braak et al., 2003; Spillantini et al., 1998; Spillantini et
al., 1997; Walker et al., 2016).

Based on their previous findings concerning the
topographical sequence (or stages) of Lewy pathology
development in the brain of people with PD and the early
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presence of Lewy bodies in the neurons of the enteric nervous
system, olfactory bulb, and dorsal motor nucleus of the vagus
nerve, Braak et al. (2006) hypothesised that the alpha-
synuclein misfolding process originates in the nasal mucosa
and the gut (Braak et al., 2006; Braak et al., 2003; Friedland,
2015; Hawkes et al., 2007). This was further refined into the
dual-hit theory, which states that a neurotropic infectious
pathogen, viral or with prion-like properties, enters the
brain by transsynaptic retrograde transmission via the vagus
and olfactory nerves, thus bypassing the circulatory system
and blood-brain-barrier (BBB) (Angot and Brundin, 2009;
Hawkes et al., 2007, 2009; Walker et al., 2016). The current
view is that an exogenous factor triggers the initial alpha-
synuclein conformational changes, which then self-
propagate mainly via the olfactory and/or vagus nerve,
reaching the brain (Araki et al., 2019; Braak and Del
Tredici, 2017). The triggers for the pathologic amyloid
transformation of alpha-synuclein remain unknown.

Arguments for the potential roles of the microbiota-gut-
brain axis in the etiopathogeny of sporadic PD include the
early involvement of the enteric nervous system, with
chronic constipation that typically occurs before the motor
onset of the disease (Berg et al., 2015; Martinez-Martin et
al., 2007), the early presence of Lewy pathology in intestinal
neurons (Braak et al., 2006; Braak et al., 2003) and presence
of proinflammatory gut dysbiosis in people with PD, with
increases in faecal Verrucomicrobiaceae and Akkermansia,
which degrade the intestinal mucus layer, and decreases in
the beneficial Prevotellaceae, Roseburia and Faecalibacterium
being more consistently reported (Aho et al., 2019; Baldini
et al., 2020; Boertien et al., 2019; Cattaneo et al., 2017;
Cirstea et al., 2020; Gabrielli et al., 2011; Hill-Burns et al.,
2017; Keshavarzian et al., 2015; Minato et al., 2017;
Nishiwaki et al., 2020; Nuzum et al., 2020; Pietrucci et al.,
2019; Scheperjans, 2016; Unger et al., 2016). The causal
relation between the microbiota changes and PD is still
unclear; however, Minato et al. (2017) found that lower
baseline fecal Bifidobacterium and Atopobium correlate with
PD symptom severity at 2 years. The functional impact of
these differences in the composition of the gut microbiota
also needs clarification, various models predicting changes
in the expression of some gut microbiota metabolites, with
possible consequences on its global function (Baldini et al.,
2020; Bedarf et al., 2017; Cirstea et al., 2020; Nishiwaki et
al., 2020; Nuzum et al., 2020). Contextual indirect evidence
for the potential role of the microbiota in the etiopathogeny
of PD also comes from epidemiological studies that show
increased risk of PD in people with prior Helicobacter pylori
infection (Huang et al., 2018; Nielsen et al., 2012) and with
inflammatory bowel disease (Park et al., 2019; Villumsen et
al., 2019; Weimers et al., 2019), the latter mitigated by early
effective treatment (Peter et al., 2018). Furthermore, the risk
of PD is lower in people that underwent truncal vagotomy
for peptic or duodenal ulcer (Liu et al., 2017; Svensson
et al., 2015), as well as in those that underwent an
appendectomy and possibly tonsillectomy (Liu et al., 2020),
putative explanations being disruption of the pathology
dissemination pathway and removal of tissues with
high alpha-synuclein load, respectively. In addition,
intestinal inflammatory changes and altered intestinal

barrier permeability have been reported in people with PD
(Houser et al., 2018; Schwiertz et al., 2018), suggesting that
direct contact between alpha-synuclein found in enteric
neurons and microbiota products is plausible. Another
study supporting the plausibility of direct contact between
human alpha-synuclein and microbiota products within the
gut found that enteric neurons’ overexpression of alpha-
synuclein can be induced by local viral infections
(Stolzenberg et al., 2017), while Uesaka et al. (2016) found
that the gut lining contains a category of enteroendocrine
cells having properties of neurons and being connected
directly to alpha-synuclein-containing neurons (Uesaka et
al., 2016). Arguments supporting the role of the gut
microbiota in the etiopathogeny of PD also come from
experimental animal models and in vitro studies, the most
notable being brought by Sampson et al. (2016), who
performed in vivo experiments on alpha-synuclein
overexpressing mice, showing that the gut microbiota is
needed for Lewy body pathology, motor impairment, and
microglia activation. Such data suggested an active gut-brain
signalling pathway between the microbiota and the brain
(Sampson et al., 2016). Moreover, microglia activation, an
important player in PD (Hirsch and Hunot, 2009), is
modulated by gut bacteria in mice (Erny et al., 2015).

Amyloids are self-aggregating proteins with fibrillary
morphology and beta-sheet secondary structure. In vitro
studies have shown that alpha-synuclein can aggregate,
forming amyloid fibres or fibrils with a cross-beta structure
(Conway et al., 1998; Greenwald and Riek, 2010; Soto,
2003). These results are supported by in vivo murine
experiments on the propagation of alpha-synuclein amyloid
fibrils, which can spread from neuron to neuron in a prion-
like fashion (Luk et al., 2012; Masuda-Suzukake et al., 2013).
As mentioned, Lewy bodies are abnormal aggregations of
misfolded alpha-synuclein encountered in PD and other
alpha-synucleinopathies (Araki et al., 2019; Baba et al., 1998;
Braak et al., 2003; Spillantini et al., 1998; Walker et al.,
2016). Thus, PD is actually a type of amyloidosis in which
misfolded alpha-synuclein is the pathologic amyloid,
resulting in the accumulation and spread of alpha-synuclein
amyloid fibrils (Araki et al., 2019), not only in the brain but
also in the autonomic nerve fibres that innervate visceral
organs such as the intestine and heart (Gelpi et al., 2014).

Environmental factors are thought to play important
roles in triggering alpha-synuclein misfolding and Lewy
body formation in sporadic PD but are largely unknown.
Recent evidence shows that cross-reactivity and seeding
between distinct amyloid proteins and alpha-synuclein can
occur (i.e., transient protein-protein interactions between
distinct amyloid proteins and native alpha-synuclein can
result in the formation of amyloid alpha-synuclein) (Chen et
al., 2016; Chorell et al., 2015; Evans et al., 2015; Sampson et
al., 2020). Considering the dual-hit hypothesis and the large
surface of the gastrointestinal tract where alpha-synuclein in
enteric neurons could be exposed to the endoenvironment
of the intestinal lumen, molecular xenobiotics of the gut
microbiota pose a particular interest as possible triggers of
the initial alpha-synuclein misfolding and self-aggregation
events, which may then self-propagate along the neurons of
the vagus nerves and sympathetic chains, reaching the brain.
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Increasingly detailed knowledge of the mechanisms by
which the gut microbiota products contribute to
neurodegeneration could lead to the identification of valuable
therapeutic targets and the development of therapeutic
interventions that could slow down, or even stop or prevent,
pathological protein accumulation in the brain. The scope of
this review is to highlight the main products of bacteria
found in the gut microbiota that are potentially involved in
the etiopathogeny of sporadic PD (see Tab. 1). Most of the
existing literature reports data on short-chain fatty acids
(SCFA). Relatively few data (coming mostly from animal or
cellular models) are available on functional bacterial amyloid
proteins, bacterial biosurfactants, endotoxins, and other
categories of bacterial products. Thus, our review will provide
a concise description of the possible contribution of these
products to the development and spread of PD pathology.
With this purpose, we will provide a critical presentation of
the role of the functional bacterial amyloid proteins curli and
functional amyloids in Pseudomonas (Fap), the bacterial
biosurfactant rhamnolipid, the bacterial endotoxins
lipopolysaccharides (LPS), and the microbial metabolites
SCFA (also see Fig. 1). We will also discuss molecular
hydrogen, a common by-product of bacterial carbohydrate
metabolism with putative neuroprotective effects.

Fig. 1 exemplifies the possible roles of functional bacterial
amyloid proteins (Curli and Fap), bacterial biosurfactants,
lipopolysaccharide (LPS) and short-chain fatty acids (SCFA),
putatively produced by the gut microbiota, in the development
and spread of sporadic Parkinson’s disease (PD) pathology.
PD is a proteinopathy characterized by amyloid
transformation of native alpha-synuclein, with pathologic
misfolding, aggregation and accumulation of aggregates (i.e.,
Lewy bodies, Lewy neurites) and subsequent
neurodegeneration. The Braak hypothesis and dual-hit theory
(see text) state that in most people with PD the alpha-
synuclein misfolding process originates in the gut and
olfactory mucosa, were is initiated by an unknown pathogen.
The current view is that alpha-synuclein conformational
changes spread transsynaptically, from the gut and olfactory
mucosa neurons to the brain, via the respective nerves, by a
prion-like mechanism. In this review we focus on spreading
via the vagus nerve, one of the main bidirectional
communication pathways of the gut-brain axis. The presence
of a proinflammatory and mucolytic microbiota in people with
PD, as well as lower concentrations of SCFA, results in
alteration of the intestinal barrier, possibly allowing direct
contact between some gut lumen xenobiotics (such as the
above mentioned bacterial products) and enteric neurons that
express alpha-synuclein. Moreover, intestinal inflammatory
changes may increase alpha-synuclein expression in enteric
neurons. In vitro and in vivo (animal models) studies suggests
that the functional bacterial amyloid proteins curli and Fap,
the bacterial biosurfactant rhamnolipid and the endotoxin LPS
are able to induce alpha-synuclein conformational changes and
pathologic aggregation. Further details are found in Tab. 1.

Functional Bacterial Amyloid Proteins–Curli and Fap

Amyloids were initially described in association with human
diseases, including the broad group of neurodegenerative

proteinopathies, PD included. They consist of protein
monomers, which can self-assemble, forming beta-strands
perpendicular to the fibril axis, the so-called cross-beta
structure (Nelson et al., 2005; Tycko, 2004).

The concept of functional amyloids was proposed for
the first time by Chapman et al. (2002) who observed that
curli protein produced by Escherichia coli is biochemically
similar to amyloid proteins that are associated with
diseases. Since then, functional amyloids have been
identified in many organisms, including humans, being
involved in a broad variety of physiological functions
(Fowler et al., 2007; Hammer et al., 2008). It is thought
that the amyloid proteins are so widespread in physiology
because their fibrillary aggregate-forming structure confers
them with excellent building material properties. Although
functional amyloids from different organisms have the
same ability to form amyloid fibrils, their monomers share
little to no similarity in amino acid sequence (Shewmaker
et al., 2011).

Functional bacterial amyloid proteins are extracellular
proteins produced by many symbiotic and pathogenic
bacteria, including Escherichia, Pseudomonas, Staphylococcus,
Streptococcus, Bacillus, Mycobacteria, Citrobacter, Klebsiella,
and Salmonella species, in which they support growth and
survival. They are insoluble and have high mechanical and
chemical stability (Otzen, 2010). One of their main roles is
related to biofilm formation, an extracellular matrix with a
complex structure that provides a living environment for
most gut bacteria (O’toole et al., 2000). The matrix is formed
by an association of amyloid proteins as scaffold and
exopolysaccharides (Zogaj et al., 2003). The bacterial amyloid
proteins have other functions as well: forming a physical
barrier with a protective role against other species of bacteria,
helping to bind each other, acting as scavengers for toxins,
and providing the necessary moisture (Blanco et al., 2012;
Romling, 2005; Zogaj et al., 2003).

Functional bacterial amyloid proteins can induce cross-
seeding amyloid formation both in vitro and in vivo
(Lundmark et al., 2005; Zhou et al., 2012) and may be a
template for human alpha-synuclein amyloid fibrils
formation (Chen et al., 2016; Chorell et al., 2015; Evans et
al., 2015; Sampson et al., 2020) Interestingly, functional
bacterial amyloids are recognised by the innate immune
system as a pathogen-associated molecular pattern, the
immune response involving toll-like receptor TLR-1 and
TLR-2, nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) and inducible nitric oxide synthase
(iNOS), the same as in the case of misfolded alpha-
synuclein that occurs in PD (Daniele et al., 2015; Tukel
et al., 2010; Tukel et al., 2005; Venegas and Heneka, 2017).

The most studied functional bacterial amyloid proteins
in connection with the microbiota-gut-brain axis are curli,
the first functional amyloid discovered, and the more
recently described Fap.

Curli
Curli is an extracellular protein produced by Enterobacteriaceae,
especially by E. coli and Salmonella (Evans and Chapman, 2014;
Olsen et al., 1989; Tursi and Tukel, 2018; Zogaj et al., 2003). It
contributes to biofilm formation, gut colonization, immune
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TABLE 1

Bacterial products that may play a role in the etiopathogeny of sporadic Parkinson’s disease

Bacterial product Possible mechanisms Supporting evidence

Functional bacterial amyloid proteins

Curli–functional bacterial amyloid protein,
produced by Enterobacteriacea (e.g., E. coli,
Salmonella); main role is in bacterial biofilm
formation; the expression of the Csg subunits
is highly regulated by local environmental
factors and is coordinated at the level of the
biofilm community.

CsgA and CsgE promote human alpha-
synuclein conformational changes and
fibrillation (i.e., cross-species seeding)–
possibly deleterious in PD.
CsgC inhibits human alpha-synuclein
conformational changes–possibly beneficial/
protective.
May induce intestinal mucosa immune
responses–possibly deleterious.

Experimental-in vitro studies (Chorell et al.,
2015; Evans et al., 2015) and in vivo PD
models (Chen et al., 2016; Sampson et al.,
2020)

Fap-functional bacterial amyloid protein,
produced by many Pseudomonas strains and
other bacteria; main role is in bacterial
biofilm formation.

Fap can induce alpha-synulein
conformational changes and fibrillation.
Removing the three imperfect repeats of the
FapC subunit slows down the fibrillation of
alpha-synuclein, but does not prevent it.

Experimental-in vitro studies (Christensen et
al., 2019)

Bacterial biosurfactants

Rhamnolipid-glycolipid biosurfactant
produced by Pseudomonas and other
bacteria; main roles are in modulating
bacterial biofilm formation, bacterial motility
and protection against monocyte-derived
macrophages and polymorphonuclear
leukocytes.

Rhamnolipid enhances aggregation of
human alpha-synuclein, inducing formation
of alpha-synuclein fibril-like structures–
possibly deleterious.

Experimental-in vitro studies (Andersen et
al., 2018)

Endotoxins

Lipopolysaccharide (LPS)–endotoxin
produced by Gram-negative bacteria;
bacterial virulence factor.

LPS increases human alpha-synuclein
expression and triggers/enhances its
aggregation, inducing PD-like pathology,
alters the intestinal and blood-brain barriers,
induces innate immunity responses and
activates the microglia.

Experimental-in vitro studies (Bhattacharyya
et al., 2019) and in vivo PD models (Kim et
al., 2016; Liu and Bing, 2011)

Bacterial metabolites

Short chain fatty acids (SCFA) -butyrate,
acetate and propionate are the main
metabolits of bacterial carbohydrate
metabolism.

SCFA promote intestinal motility and
maintain the integrity of the intestinal
barrier (which prevents direct contact
between enteric alpha-synuclein and
amyloidogenic xenobiotics and the passage
into circulation of substances that may have
proinflammatory or neurotoxic effects); may
also modulate microglia activation–possibly
protective.

Experimental–in vivo studies (Sampson et
al., 2016)
Human studies–reduced concentration of
SCFA in PD fecal samples (Unger et al.,
2016); decreased butyrate production
capacity of gut microbiota in PD (Cirstea et
al., 2020); increase of SCFA in PD plasma
samples, possibly reflecting altered intestinal
barrier (Shin et al., 2020).

Molecular hydrogen-common bacterial
byproduct resulting from carbohydrate
fermentation; it is used for the detection of
hydrogen-producing small intestine bacterial
overgrowth

Molecular hydrogen easily passes
membranes; it has antioxidant properties
(neutralizes hydroxyl radicals); may play a
role in neuroprotection; may decrease
inflammation–possibly beneficial role in PD.

Experimental in vivo studies–in mouse and
rat models molecular hydrogen may slow-
down the progression of PD pathology (Fu
et al., 2009; Fujita et al., 2009).
Human studies–fecal microbiota in PD is less
abundant in hydrogen-producing bacteria
(Scheperjans et al., 2015; Suzuki et al., 2018);
PD microbiota produces lower amounts of
molecular hydrogen (Ostojic, 2018; Suzuki et
al., 2018; Yoritaka et al., 2013); positive
results of small pilot trial of hydrogenated
water in PD (Yoritaka et al., 2013).
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activation and cell invasion (Barnhart and Chapman, 2006). It
may induce intestinal mucosa immune response (Nishimori et
al., 2012; Oppong et al., 2015) and regulate gut epithelial
barrier, allowing bacterial translocation (Oppong et al., 2013).
It possesses all the properties of amyloids (Chapman et al.,
2002; Nilsson, 2004), but it differs from disease-associated

amyloids because its beta-sheet assembly is the product of a
dedicated and strictly regulated biogenesis pathway and not of
pathologic misfolding (Blanco et al., 2012).

The major subunit of curli is CsgA, which is capable of
self-polymerizing in vitro. As a result, beta-sheet-rich
amyloid fibres are formed (Chapman et al., 2002; Dueholm

FIGURE 1. Exemplifies the possible roles of functional bacterial amyloid proteins (Curli and Fap), bacterial biosurfactants, lipopolysaccharide
(LPS) and short-chain fatty acids (SCFA), putatively produced by the gut microbiota, in the development and spread of sporadic Parkinson’s
disease (PD) pathology. PD is a proteinopathy characterized by amyloid transformation of native alpha-synuclein, with pathologic misfolding,
aggregation and accumulation of aggregates (i.e., Lewy bodies, Lewy neurites) and subsequent neurodegeneration. The Braak hypothesis and
dual-hit theory (see text) state that in most people with PD the alpha-synuclein misfolding process originates in the gut and olfactory mucosa,
were is initiated by an unknown pathogen. The current view is that alpha-synuclein conformational changes spread transsynaptically, from the
gut and olfactory mucosa neurons to the brain, via the respective nerves, by a prion-like mechanism. In this review we focus on spreading via
the vagus nerve, one of the main bidirectional communication pathways of the gut-brain axis. The presence of a proinflammatory and
mucolytic microbiota in people with PD, as well as lower concentrations of SCFA, results in alteration of the intestinal barrier, possibly
allowing direct contact between some gut lumen xenobiotics (such as the above mentioned bacterial products) and enteric neurons that
express alpha-synuclein. Moreover, intestinal inflammatory changes may increase alpha-synuclein expression in enteric neurons. In vitro
and in vivo (animal models) studies suggests that the functional bacterial amyloid proteins curli and Fap, the bacterial biosurfactant
rhamnolipid and the endotoxin LPS are able to induce alpha-synuclein conformational changes and pathologic aggregation. Further details
are found in Tab. 1.
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et al., 2011; Wang et al., 2007). CsgA amyloids form a very
stable cross-beta structure that establishes close interactions
with side chains on adjacent beta-sheets (Collinson et al.,
1999; Chapman et al., 2002; Gerstel and Romling, 2001;
Nelson et al., 2005; Shewmaker et al., 2009). The curli fibres
are very stable, resistant to protease degradation and to
denaturation by detergents (Chapman et al., 2002).

The potential pathologic role played by curli in PD was
highlighted by an in vivo experiment where gut exposure to
the functional bacterial amyloids curli produced by E. coli
enhanced the aggregation of human alpha-synuclein in
Fisher 344 rat brains and transgenic Caenorhabditis elegans
muscle (Chen et al., 2016). Recently, Sampson et al. (2020)
also found that the mono-colonisation of mice that
overexpress human alpha-synuclein with curli-producing E.
coli accelerates the development of alpha-synuclein
aggregation in the gut and the brain and exacerbates
gastrointestinal dysfunction and motor impairment, by a
curli-dependent cross-seeding mechanism; oral
administration of a gut-restricted amyloid inhibitor reduced
these findings (Sampson et al., 2020).

Curli gene expression
Curli expression is controlled both on the cellular level and
within the bacterial biofilm community by environmental
signals and chemical gradients, like temperature, oxygen or
osmolarity (Gerstel and Romling, 2001; Olsen et al., 1993a;
Prigent-Combaret et al., 1999). The seven genes for curli
(csg) are located in two divergently transcribed operons,
csgDEFG and csgBAC (Hammar et al., 1995; Rudd, 2000).
One of the most complex regulated promoters of the E. coli
genome is the csgDEFG (Ishihama, 2010). There is also an
internal regulation of curli expression by csgD, the master
regulator of curli biogenesis and the first gene product of
csgDEFG operon (Evans and Chapman, 2014), which is
necessary for transcription of the csgBAC operon. CsgD is a
member of the FixJ/LuxR family of transcriptional
regulators coordinating the expression of some biofilm
components such as cellulose and curli (Brombacher et al.,
2003; Hammar et al., 1995; Ogasawara et al., 2011). The
csgDEFG promoter expression is modulated by
transcriptional regulators, such as the catabolite repressor/
activator protein Cra, the cAMP receptor protein CRP, the
protein RcdA (Brown et al., 2001; Ogasawara et al., 2010b;
Reshamwala and Noronha, 2011; Shimada et al., 2012;
Zheng et al., 2004).

In E. coli there are two DNA global regulatory protein
complexes which modulate curli gene expression in an
antagonistic way–i.e., integration host factor (IHF), which
promotes curli gene expression while the histone-like
protein (H-NS) represses it (Gerstel et al., 2003; Ogasawara
et al., 2010a; Olsen et al., 1993b). The regulatory proteins,
both negative and positive, bind simultaneously in a
competitive way. CsgDEFG transcript is also regulated by
small regulatory ribonucleic acids (RNAs), both negatively
(e.g., by OmrA, OmrB, McaS, GcvB, RprA) and positively
(e.g., by ArcZ, SdsR) (Holmqvist et al., 2010; Jorgensen
et al., 2013; Mika et al., 2012; Monteiro et al., 2012;
Olsen et al., 1993b).

Curli structure and CsgA amyloid assembly
Curli has two subunits, CsgA, the major one, and CsgB, the
minor one. They are encoded by csgBAC operon (Collinson
et al., 1996, 1997; Olsen et al., 1993a). CsgA is a soluble
peptide, secreted across the outer membrane, in an
unstructured form (Collinson et al., 1991; Chapman et
al., 2002; Cherny et al., 2005; Gibson et al., 2007; Olsen
et al., 1993a), and together with CsgB fibrils, which act
as a nucleator, it is transformed into an amyloid
structure (Hammar et al., 1996; Hammer et al., 2007), by
nucleation-precipitation (Desvaux et al., 2009). In vitro
CsgA polymerization involves three phases: A lag phase,
a fibre elongation phase and a stationary phase
(Chapman et al., 2002; Wang et al., 2007). The CsgA can
adopt toxic oligomeric forms, thus the cells that
assemble functional amyloids like curli developed
mechanisms to limit this cytotoxicity associated with
preamyloid oligomers: Employment of chaperones to
prevent inappropriate aggregation; localization of
amyloidogenic proteins to specific regions in or outside
the cell; temporal control to minimize toxic oligomeric
intermediates (Blanco et al., 2012). The interactions
between CsgA and other Csg components (CsgC-G)
support all these mechanisms.

A third protein, CsgC, is periplasmic and is proposed to
have a role in subunits secretion (Gibson et al., 2007; Taylor et
al., 2011) and maybe in CsgA folding and assembly of the
mature curli protein (Gibson et al., 2007). This is a beta-
sheet rich protein that has an immunoglobulin-like fold and
a conserved CXC motif. Other roles presumed to be played
by CsgC involve the regulation of CsgG outer membrane
assembly and pore activity (Taylor et al., 2011). CsgD is a
protein that controls and helps biofilm formation by
managing curli production (Brombacher et al., 2003;
Hammar et al., 1995; Ogasawara et al., 2011; Romling et al.,
2000). Proteins CsgE, CsgF, and CsgG are involved in the
outer membrane secretion apparatus. CsgG participates
in the formation of a pore-like structure in the outer
membrane, required for secretion of CsgA and CsgB into
the extracellular space (Epstein et al., 2009; Narita et al.,
2004; Robinson et al., 2006). Here, the two subunits
participate to form amyloid fibres (Hammer et al., 2007).
CsgE and CsgF play chaperone-like functions supporting
the secretion and the attachment of curli fibres to the
cell surface (Nenninger et al., 2011; Robinson et al.,
2006). CsgF membrane-associated and surface-exposed
protein is essential for CsgB surface exposure and for
effective CsgA polymerization (Chapman et al., 2002;
Epstein et al., 2009; Hammer et al., 2007; Nenninger
et al., 2009). CsgE, a periplasmic protein, is considered
to direct CsgA to the CsgG pore-like structure and
mediate its secretion, as it inhibits CsgA polymerization
in vitro (Nenninger et al., 2011).

Interaction with alpha-synuclein
The above-mentioned study of Sampson et al. found CsgA to
be involved in human alpha-synuclein fibril formation
(Sampson et al., 2020). Chorell et al. (2015) showed that
CsgE accelerates human alpha-synuclein amyloid formation.

6 EMILIA MANOLE et al.



Interestingly, CsgC was found to inhibit amyloid formation
of human alpha-synuclein in vitro (Chorell et al., 2015;
Evans et al., 2015).

Functional amyloids in Pseudomonas (Fap)
Other bacterial functional amyloids, analogous to curli
amyloid produced by Escherichia coli, are functional
amyloids in Pseudomonas (Fap), produced by many
Pseudomonas strains (Dueholm et al., 2010).

Fap expression is controlled by a single six-gene operon,
fap (Dueholm et al., 2010). Dueholm et al. (2013) showed that
the fap operon is a molecular machine for functional amyloid
formation. The major Fap subunit is FapC. It consists of 316
amino acid residues plus a 24-amino acid signal sequence
(Bleem et al., 2018; Dueholm et al., 2010). Its structure
includes three imperfect sequence repeats, R1-3, of 37
amino acid residues (Dueholm et al., 2010), separated by
two “linker” regions, L1-2 (Dueholm et al., 2013). Similar to
curli, Fap can induce alpha-synuclein conformational
changes and fibrillation (Christensen et al., 2019). Recently,
Christensen et al. (2019) demonstrated that removing the
three imperfect repeats of FapC slows down the fibrillation
of alpha-synuclein, but does not prevent it.

Another Fap structure is FapB, a nucleator protein,
analogous with CsgB of curli that has a 38% sequence
identity to FapC and is supposed to serve as a template for
rapid polymerization of the fibrils outside the cell (Bleem et
al., 2018; Dueholm et al., 2010). The rest of the proteins
encoded by the fap operon constitute four other subunits:
FapF subunit which forms the outer membrane pores
participating in amyloid precursors translocation (Rouse et
al., 2017), FapA subunit represented by chaperones guiding
monomers through the periplasm and FapE and FapD,
auxiliary regulators and proteases (Dueholm et al., 2013).
FapF is thought to represent a precursor of the signalling
peptides called bacteriocins (Dirix et al., 2004).

Barnhart and Chapman revealed that fapA-F function is
analogous to the E. coli csg operons (csgBAC and csgDEFG)
(Barnhart and Chapman, 2006). Fap operon does not
include a transcription factor equivalent to CsgD,
organization of fap genes into a single operon needing no
internal transcription factor, as Dueholm et al. showed
(Dueholm et al., 2013). These authors proposed that Fap are
extracellular biofilm components of equal importance to
polysaccharides, other proteins, and extracellular DNA
(Dueholm et al., 2013).

Using a combination of bioinformatics and protein
engineering, Bleem et al. (2018) examined the FapC
sequence in greater detail. They identified specific motifs
implicated in amyloid formation and established the
particular significance of the third repeat motif in
promoting fibril formation, contributing to understanding
the mechanism of amyloid polymerization in P. aeruginosa
(Bleem et al., 2018). The authors observed that mutations in
the third repeat of FapC, R3, reduced amyloid propensity,
increasing its susceptibility to exogenous inhibitors. They
also showed the existence of a disulphide bond between two
monomers in a second conserved sequence region, a CXXC
motif near the C-terminus of FapC, which could serve as an
additional molecular reinforcement in mature fibrils.

Christensen et al. (2019) demonstrated that the disulphide
bond formation delays fibrillation in Pseudomonas, but
also delays fibrillation of human alpha-synuclein
(Christensen et al., 2019).

All the above data could be used to find effective
inhibitors of fibril formation and biofilm establishment in
vivo, as new therapeutic targets within the microbiota-gut-
brain axis, with the aim of preventing or slowing down the
progression of PD and other neurodegenerative conditions.

Biosurfactants–Rhamnolipid

There are few data regarding the rhamnolipids produced by
gut bacteria and their ability to induce alpha-synuclein
misfolding.

Rhamnolipids are biosurfactant glycolipids produced by
bacteria like Pseudomonas sp., which modulate bacterial
biofilms (Pamp and Tolker-Nielsen, 2007). They are
composed of a glycosyl head group, mono- or di- rhamnose,
and a branched carboxylated alkyl chain, beta-
hydroxydecanoic acid (Lang and Wullbrandt, 1999).

Rhamnolipids have many functions, such as modulation
of bacterial motility (Wang et al., 2014) and bacterial biofilm
development (Pamp and Tolker-Nielsen, 2007); they can
modify the cell surface of bacteria (Sotirova et al., 2009),
participate in protein transport across the human stratum
corneum (Meyer-Hoffert et al., 2011) and protect against
monocyte-derived macrophages and polymorphonuclear
leukocytes (Van Gennip et al., 2009). Although
rhamnolipids are known to affect many proteins, like bovine
serum albumin (Sanchez et al., 2008), alpha-lactalbumin,
myoglobin (Andersen and Otzen, 2014), less is known about
gastrointestinal tract protein damage (Markou and
Apidianakis, 2014).

Andersen et al. (2018) reported the impact of
rhamnolipid on the aggregative behaviour of the alpha-
synuclein (Andersen et al., 2018). Their group showed that
alpha-synuclein, which is natively unfolded, can suffer
amyloid conformational changes when exposed to
biosurfactants, such as the rhamnolipid produced by P.
aeruginosa (Andersen et al., 2018). The monomeric
rhamnolipid enhances the ability of alpha-synuclein to
permeabilize membranes, and the micellar rhamnolipid can
induce the formation of a protein beta-sheet structure with
a worm-like fibrillary appearance (Andersen et al., 2018).
Moreover, in the absence of rhamnolipid, alpha-synuclein
can reduce biofilm formation by Pseudomonas; conversely,
at physiological temperatures, rhamnolipid induces the
rapid formation of alpha-synuclein fibril-like structures
(Andersen et al., 2018).

Endotoxins–Lipopolysaccharide

Research has shown a correlation between PD and
alterations in gut microbiota, as well as gastrointestinal
inflammation (Heintz-Buschart et al., 2018; Hill-Burns
et al., 2017; Houser et al., 2018; Houser and Tansey, 2017;
Nuzum et al., 2020; Schwiertz et al., 2018). Various studies
report an increased level of pathogenic Gram-negative
bacteria (Proteobacteria, Enterobacteriaceae, Escherichia sp.)
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in individuals with PD (Keshavarzian et al., 2015; Li et al., 2017;
Scheperjans et al., 2015).

LPS is an endotoxin derived from Gram-negative
bacteria cell walls, which is associated with increased
oxidative stress and intestinal inflammation (Fang, 2016;
Guo et al., 2015; Loffredo et al., 2020; Nighot et al., 2017).
LPS is composed of 3 distinct units, a hydrophobic hexa-
acylated lipid A moiety, a polysaccharide domain O-antigen,
and a core oligosaccharide that covalently bonds the two
other entities (Bhattacharyya et al., 2019). It is known that
LPS can modulate alpha-synuclein aggregation in vitro and
cause many pathological PD-like effects in experimental in
vivo models (Kim et al., 2016; Liu and Bing, 2011).

In PD, the intestinal barrier is disrupted and LPS can
enter the systemic circulation (Parashar and Udayabanu,
2017). A recent study found that increased serum levels of
zonulin (a protein responsible for the disassembly of
intercellular tight junctions) (Ajamian et al., 2019) are
correlated with serum LPS in patients with
neurodegenerative diseases (Loffredo et al., 2020). The
permeability of intestinal tight junctions may also be
increased by LPS (Choi et al., 2018; Fang, 2016). Alteration
of the intestinal barrier could be involved in the
etiopathogeny of PD by facilitating direct contact between
enteric alpha-synuclein and amyloidogenic xenobiotics
(including bacterial products of the gut microbiota, LPS
itself being potentially amyloidogenic) and by allowing
passage of LPS and other xenobiotics into the bloodstream –
with potential neurotoxic and neuroinflammatory
consequences, increasing susceptibility to neurodegeneration
in the presence of misfolded alpha-synuclein (Van and
Derkinderen, 2019). Moreover, LPS may also induce
intestinal inflammatory changes (possibly enhanced in the
presence of proinflammatory gut microbiota) and local
overexpression of alpha-synuclein, as seen in animal models
(Van and Derkinderen, 2019), thus increasing exposure to
amyloidogenic factors.

In vitro studies are in agreement with the above, the
exposure to LPS of IEC-6 cells resulting in a reduction and
altered distribution of the tight junction markers ZO-1
(zonula occludens protein-1) and E-cadherin around the cell
membrane (Gorecki et al., 2019). The same study showed
that in vivo, the administration of LPS to transgenic Thy-1-
αSyn mice, a murine PD model, led to early motor
manifestations as compared to untreated Thy-1- α Syn mice.

Other rodent models receiving LPS treatment exhibited
hallmarks of PD pathology and other characteristic features:
microglial inflammation in the substantia nigra, reduced
dopamine production and motor impairments (Sharma and
Nehru, 2015), increased alpha-synuclein expression (Kelly et
al., 2014), selective dopaminergic neuronal loss and
nigrostriatal alpha-synuclein aggregation (He et al., 2013).
LPS induces peripheral inflammation and neuroinflammation
through the TLR-4/NF-κB pathway, as well as the increased
production of inflammatory cytokines, such as tumor
necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)
(Mafra and Fouque, 2015; Perez-Pardo et al., 2019). The
presence of proinflammatory cytokines impairs the BBB
integrity and is responsible for the enhanced susceptibility to
toxins from the gut (Bodea et al., 2014). Over-activation of

microglia causes damage to neurons (Kannarkat et al., 2013;
Zhang et al., 2005).

Alpha-synuclein misfolding and aggregation are favored
by the inflammatory environment (Gao et al., 2011). Nuclear
magnetic resonance spectroscopy, Bhattacharyya et al. (2019)
showed that the direct interaction of LPS with alpha-synuclein
modulates the protein’s conformation into alternative
nucleating forms and stabilizes the α-helical intermediates in
the alpha-synuclein aggregation pathway (Bhattacharyya et
al., 2019). After misfolding and aggregation, alpha-synuclein
is released into the extracellular space and can enter another
cell, where it can serve as a template for further misfolding
of monomeric alpha-synuclein (Angot and Brundin, 2009;
Brundin et al., 2008; Dunning et al., 2012).

Bacterial Metabolites–Short-Chain Fatty Acids and
Molecular Hydrogen

Recent data show that somemetabolic pathways are enriched in
the faecal microbiota of people with PD, suggesting increased
production capacity of potentially deleterious metabolites
such as p-cresol, phenylacetylglutamine and methionine,
while pathways with beneficial metabolites, such as the SCFA
butyrate pathway, are reduced (Baldini et al., 2020; Cirstea et
al., 2020). Consistent findings concern the SCFA, which we
will further discuss, along with molecular hydrogen, another
by-product of bacterial carbohydrate metabolism, with
putative neuroprotective effects.

Short-chain fatty acids
SCFA are fermentation products generated by bacteria,
including those in the gut microbiota, through various
metabolic pathways (Sampson et al., 2016). The most
abundant SCFA in the human body are butyrate, acetate
and propionate (Dalile et al., 2019). They are used locally by
colonocytes, as well as absorbed in the colon and are
transported to the liver via the portal circulation (Morrison
and Preston, 2016), where they are used as energy substrates
for hepatocytes (Schonfeld and Wojtczak, 2016), while a
minor fraction enters the systemic circulation (Boets et al.,
2015). SCFA maintain the integrity of the intestinal barrier,
regulate intestinal motility, mucus production and several
immunological processes in the body (Canani et al., 2011;
Lewis et al., 2010; Unger et al., 2016). Most SCFA can reach
the CNS and cross the BBB (Perry et al., 2016; Sampson et
al., 2016). A study on mice showed that they can decrease
the permeability of the BBB and increase the expression of
occludin in the BBB tight junctions (Braniste et al., 2014).

Several studies have investigated the link between SCFA
and PD (Cirstea et al., 2020; Shin et al., 2020; Unger et al.,
2016). Unger et al. (2016) found a significantly reduced
concentration of acetate, propionate and butyrate in faecal
samples from patients with PD compared to healthy
controls. Moreover, SCFA-producing bacteria, such as
Roseburia and Faecalibacterium, are more abundant in
healthy individuals (Bedarf et al., 2017; Hopfner et al., 2017;
Keshavarzian et al., 2015; Li et al., 2017; Nishiwaki et al.,
2020; Nuzum et al., 2020).

Administration of sodium butyrate (a histone deacetylase
inhibitor) has proven beneficial in animal models of PD,
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improving motor impairment and dopamine deficiency (Paiva
et al., 2017; Sharma et al., 2015; St Laurent et al., 2013).
However, in germ-free mice overexpressing alpha-synuclein,
administration of SCFA led to microglia activation, alpha-
synuclein aggregate formation and neuroinflammation
(Sampson et al., 2016). A recent study analysed the possible
remote effects of SCFA on the CNS, by measuring their
plasma concentration (Shin et al., 2020). In contrast to
faecal samples, plasma SCFA were increased in PD, the
authors suggesting that this paradoxical finding could be the
result of intestinal wall leakage caused by gut dysbiosis and
local low-grade inflammation (Shin et al., 2020).

Gut microbial composition and SCFA production can be
regulated indirectly by the ingestion of probiotics or
prebiotics, the latter acting as a substrate for bacteria in the
colon (Gibson et al., 2017; Leblanc et al., 2017; Sanders,
2008). Diet can also positively influence the microbiome and
it has been suggested that a vegetarian diet increases the
availability of fermentable substrates and may have a
beneficial effect on the clinical course of PD (Derrien and
Veiga, 2017; Hegelmaier et al., 2020; Klimenko et al., 2018;
Martinez et al., 2013; Wong et al., 2018).

Molecular hydrogen
Molecular hydrogen is a common bacterial by-product
resulting from carbohydrate fermentation. It is produced by
the human gut microbiota and easily crosses membranes,
reaching the bloodstream and being exhaled – thus its use
in the hydrogen breath test for the detection of small
intestine bacterial overgrowth (SIBO) (Ostojic, 2018). It has
antioxidant properties, neutralizing hydroxyl radicals, and
may decrease inflammation, with putative neuroprotective
effects (Ohta, 2014).

Experimental evidence coming from mouse and rat
models suggest that molecular hydrogen may slow down the
progression of PD pathology (Fu et al., 2009; Fujita et al.,
2009). Moreover, a small pilot double-blind placebo-
controlled randomized trial found that 1 litre of
hydrogenated water per day improves motor outcomes in
people with PD, at 48 weeks (Yoritaka et al., 2013). Other
data from human studies suggest that the faecal microbiota
of people with PD is less abundant in hydrogen-producing
bacteria (e.g., Prevotella) compared to that of healthy
controls (Scheperjans et al., 2015; Suzuki et al., 2018). Small
studies also suggest that the small intestine microbiota of
people with PD may produce lower amounts of molecular
hydrogen, as measured in the exhaled air (Ostojic, 2018;
Suzuki et al., 2018; Yoritaka et al., 2013).

Conclusions

An increasing number of studies suggest that sporadic PD
may start in the gut and olfactory mucosa, Lewy pathology
spreading to the brain, via the vagus and olfactory nerves,
through a prion-like mechanism.

Gut dysbiosis is present in people with PD compared to
healthy controls, but the causality relation between the
composition and function of the gut microbiota and
sporadic PD has not been proven yet. In this review we
brought together the latest data, coming mostly from in

vitro studies and animal models, regarding the bacterial
products that can trigger alpha-synuclein misfolding in
experimental settings and thus may be involved in the
etiopathogeny of sporadic PD. Available evidence suggests that
products of bacteria found in the gut may result in alteration of
the intestinal barrier, may lead to overexpression of enteric
alpha-synuclein and may play key roles in triggering alpha-
synuclein self-propagating misfolding events that result in
alpha-synuclein self-aggregation and formation of Lewy bodies.
Microbiota products that enter the bloodstream may also have
neuroinflammatory and neurotoxic effects and may interfere
with neuroprotection pathways, modulating neuronal
susceptibility to neurodegeneration.

Currently, there are no disease-modifying treatments for
neurodegenerative conditions, including PD. Amyloidogenic
bacterial products, especially functional bacterial amyloid
proteins, biosurfactants and endotoxins are possible triggers of
the initial pathologic alpha-synuclein misfolding in sporadic
PD, making them potentially attractive therapeutic targets for
preventing or slowing down the progression of the disease.
This theory however has a series of limitations, mainly related
to the lack of direct evidence on the interaction between the
amyloidogenic bacterial products and alpha-synuclein within
the human gut. Further research is needed.
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