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Abstract: The bioactive triterpenoid 3-oxo-6-β-hydroxy-β-amyrin (1) has been isolated from multiple plant sources. In this

study, chloroform fraction of Pistacia integerrima extract was processed for the isolation of the compound. The compound

identity was confirmed by advanced spectroscopy technique. X-ray crystallography was applied for molecular structure

confirmation. In addition, compound 1 was screen for its activity on reversal of MDR (multidrug resistance) mediated

by P-gp (P-glycoprotein). This was accomplished by using rhodamine123 exclusion on multidrug-resistant human

ABCB1 gene transfected mouse T-lymphoma cell line. Outcomes revealed that MDR reversing effect was comparable to

verapamil as positive control in vitro. Treatment of TPA-induced tumor promotion with 3-oxo-6β-hydroxy- β-amyrin

led to reduction in the applied anti-tumor promotion experiment. The chemo-preventive effect of 3-oxo-6β-hydroxy- β-

amyrin was comparable to curcumin as positive control based on the reduction of immediate early tumor antigen

expression. Molecular docking by applying Autodock Vina 1 and i-GEMDOCK v 2.1 tools indicated that compound 1

gives good docking results, as determined by their fitness score and specificity. Moreover, results showed that compound

1 isolated from Pistacia integerrima precisely attached to a region where co-crystallized ligand for receptor previously

existed. Our findings may explain the use of Pistacia integerrima plant extracts as an anticancer agent in folk medicine.

Introduction

The most important difficulty in chemotherapy and in the cure
of cancer are the resistance pattern of cancer cells knowns as
multidrug resistance (MDR) (Szabó and Molnar, 2016).
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The resistance of Cancer cells to anticancer agents is developed
through several mechanisms. One of such mechanisms is
the overexpression of the ATP-binding cassette (ABC)
transporters. These transporters are actually largest family of
proteins that are bound to the membrane and bind with ATP
(Leonard et al., 2003; Gottesman and Ambudkar, 2001). In
energy dependent manner, ABC efflux transporters extrude
amphipathic compounds against the concentration gradient.
A number of ATP-binding cassette transporters play a
physiological role, i.e., protection of liver, kidney and brain
(Gottesman and Ambudkar, 2001; Sarkadi et al., 2006;
Szakács et al., 2006).

P-glycoprotein is the first known drug efflux encoded
with the gene ABCB1. This protein consists of 1,280 amino
acids and two transmembrane domains (Szakács et al.,
2006). Additionally, in several human cancers the
overexpression of this protein occurs and can eject a wide-
ranging of drugs, i.e., antibiotics, anticancer, antidepressants,
and others (Caraci et al., 2011). So, it decreases drug
accumulation in multidrug-resistant cells. Some drugs have
been proposed to suppress the activity of ABCB1, e.g.,
tamoxifen, dexniguldipine, valspodar and tariquidar (Lopez
and Martinez-Luis, 2014; Germann et al., 1993). In
carcinogenesis studies, assessment of EBV-EA inhibition is
employed as preliminary screening model for in-vitro
antitumor enhancing potential of different chemo-
preventive agents. EBV is a herpes family virus capable of
several cancers (such as gastric cancer, nasopharyngeal
carcinoma, Hodgkin’s lymphoma, among others). Presence
of antibody to the EA of EBV indicates that EBV is active,
replicating and capable of cancerous transformation. So, any
inhibitor of the EA is considered to have anticancer effect
(Kapadia et al., 2000).

MRP1 (multidrug-resistant protein-1) was initially
described in doxorubicin-resistant lung cancer cells.
Without expression of ABCB1, it displays a multi-drug
resistant phenotype (Cole et al., 1992). MRP1 shows
overexpression in intestines, blood-brain barrier, & oral
mucosa (He et al., 2011); however, among the organ in lung
its expressed higher and this may have a protective role in
air contamination and toxin enter through inhalation
(Sakamoto et al., 2013). The physiological substrates of
multidrug-resistant protein-1 are reported to be glutathione
conjugates leukotriene C4, bile acid, and folic acid. It
showed resistance against, methotrexate, vincristine, and
etoposide doxorubicin (Cole and Deeley, 2006).
Approximately 31.6% of lung tumors have been identified to
have MRP1 expression and showed weak response to
cisplatin therapy with paclitaxel, gemcitabine and
vinorelbine (Li et al., 2009).

Furthermore, Doyle et al., (1998) first cloned the BCRP
(Breast Cancer Resistance Protein) through MCF-7 (drug-
resistant breast cancer cell line). Breast cancer resistance
protein with a size of 72 kDa is a half transporter member
of the ATP-binding cassette transporter subfamily G
(ABCG2). Owing to its presence in tissues including liver,
placenta, ovary, colon, small intestine, prostate gland, and
brain, the expression of BCRP overlaps largely with ABCB1
(Doyle et al., 1998). Similarly, it was noted that
overexpression is often linked with the resistance of large

number of anticancer compound, i.e., mitoxantrone,
antifolates, flavopiridol camptothecins and anthracyclines
(Assaraf, 2006; Bihorel et al., 2007; Robey et al., 2007). A
number of publications have dealt with the large
occurrences of drug efflux mechanism in cancer region.
Number of literature described significant relation
overexpression of MRP1 or ABCB1 and improper treatment
response in leukemia & solid tumors (Larkin et al., 2004;
Damiani et al., 2006; Brinkhuis et al., 2002), whereas others
literature have also cited a prognostic relationship for BCRP
overexpressions (Nampoothiri et al., 2008).

Pistacia integerrima is a well-known member of family
Anacardiaceae family, which is commonly known as Kakar
sigghi in Eastern Himalayan (Ismail et al., 2011), at an
altitude of 2.4 to 3.6 km. This is a medium sized deciduous
plant with folkloric health modulating importance for a
number of ailments. Previous studies have indicated that
this plant has anti-inflammatory, expectorant, blood
purifier, gastroprotective, anti-asthmatic, antidiarrheal
properties (Uddin et al., 2011; Ahmad et al., 2010).
Particularly, the gall of P. integerrima tree has been
traditionally used to cure diarrhea, asthma, psoriasis, fever,
liver disorders, and oxidative stress, etc. (Uddin et al., 2012a;
Uddin et al., 2012b; Ullah et al., 2014). The barks of P.
integerrima are also used in the folkloric system for the
treatment of cough, asthma, fever, diarrhea, snake bite as
well as jaundice (Rahman et al., 2011). Amyrin type of
terpenes has been reported for significant anticancer and
cytotoxic activity (Wen et al., 2018; Mishra et al., 2016).
3-oxo-6β-hydroxy-β-amyrin is a bioactive amyrin type of
triterpenoids which has documented for significant
β-secretase, α-glucosidases activity (Bawazeer et al., 2020a).
3-oxo-6β-hydroxy-β-amyrin has also documented for anti-
inflammatory, muscle relaxation, gastrointestinal, and anti-
pyretic potential (Rauf et al., 2016a; Bawazeer et al., 2020a).
In continuation of our phytochemical and pharmacological
investigations of P. integerrima extracts, we have isolated the
triterpenoid 3-oxo-6 β-hydroxy- β-amyrin (1), also
β-sitosterol and stigmasterol from the chloroform fraction of
the plant extract. This compound has been identified as
3-oxo-6β-hydroxy- β-amyrin based on 2-D NMR and single
X-ray crystallography techniques. Accordingly, the current
finding was performed to discover the reversal ability of the
isolated compound for multidrug-resistance in mouse
lymphoma cells.

Materials and Methods

Chemicals and equipment
All the chemicals as well reagents used in this screening test
were commercially grade. Melting points were calculated
through Bicote (Bibby Scientific limited, UK) melting point
apparatus. We recorded FT-IR spectra as KBr disks, from
400 to 4000 cm–1, on Nicolet 380 FT-IR spectrophotometer
(Thermo Scientific, UK), and UV-Vis spectra, 200 to
700 nm, were acquired with the aid of a Hitachi-U-3200
(Japan) instrument with chloroform solutions (1-cm cell).
1H-NMR (500 MHz), 13C-NMR (125 MHz), HMBC (500
MHz), and HSQC (600 MHz) spectra were acquired with a
NMR spectrometer (AVANCEIII AV600) equipped with a
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Cryoprobe in solvent (CDCl3) and employed with TMS
(internal standard). Chemical shifts were reported as ppm
(parts per million) and expressed as δ units, while the values
for J (coupling constant) were expressed in Hz (Hertz). In
order to obtain EI-mass spectral data mass spectrometer
(JMS-HX-110; JEOL) was employed; EI source 70 eV.
Colum chromatography was performed with the help of
Merck silica gel-60 having dimensions as 0.063 to 0.200
mm, whereas aluminum TLC-plates in which silica gel was
pre-coated with F254 (fluorescence indicator) was supplied
by Fluka.

Plant collection
The bark of Pistacia integerrima was procured from village
Razagram, KPK, Pakistan (Feb, 2010). Identification and
authentication were done by a botanist, Prof. Dr. Abdur
Rashid, University of Peshawar (UOP), Pakistan. The
voucher specimen (Bot. 20037(PUP) was submitted to
herbarium at the Department of Botany, UOP, Pakistan.

Preparation of extract
After collection, the P. integerrima bark was dried under shade
at 25°C followed by grinding to form uniform powdery
sample. This powder was then subjected to methanol for
extraction purposes (Bawazeer, 2020b). The extraction was
repeated three times. Solvents were evaporated from the
methanolic extracts, under reduced pressure provided a
syrupy liquid (400 g). The syrup liquid substance was
sequentially fractioned between butanol-water, chloroform-
water, n-hexane-water, and ethyl acetate-water. Afterwards,
chloroform (CHCl3) fraction was concentrated by rotary
evaporation using anhydrous Na2SO4 and resultant residue
obtained weighed 98.6 g. A small quantity (10 gram) of
CHCl3 extract was processed through column
chromatography (silica gel based) and was initially eluted
using n-hexane followed by elution with mixture of
n-hexane and ethyl acetate solvent system in an increasing
polarity manner. Ten fractions (F-1 to F-10) of the eluted
liquid were collected. On TLC profiling, the fraction F-3
(60 mg; eluted with n-hexane-ethyl acetate, 82:18, v/v)
resulted colorless crystals (compound 1). Later by decantation
process, these crystals were separated from the solution.
Finally, compound 1 was identified and characterized as
3-oxo-6β-hydroxy-β-amyrin by different spectroscopic
techniques such as 1H-NMR, 13C-NMR, IR, and mass
spectral data, the data was compared to literature and found
identical (Wang et al., 2005).

In-vitro EVA-EA (Epstein-Barr-Virus early antigen) activation
induction assay
Compound 1, 3-oxo-6β-hydroxy- β-amyrin was evaluated in
vitro against EBV-EA, activation assay. Concisely, Raji cells
(lymphoblastoid cells) derived from Burkitt’s lymphoma
carried by EBV genome. These cells were cultured using
RPMI-1640 medium provided 10% fetal bovine serum
(FBS). Using an indirect immunofluorescence technique,
smears from cell suspension were made (Kapadia et al.,
2000; Wang et al., 2006). EBV-EA activation was less than
0.1% in experimented subline of Raji cells. For 48 hours,
cells were incubated in medium (1 mL) containing butanoic

acid (4 mM), TPA (12-O-tetradecanoylphorbol-13-acetate)
[32 pM = 20 ng in 2 µL dimethyl sulfoxide (DMSO)] and
test compounds (various amount) dissolved in 2 µL of
DMSO. By indirect immunofluorescence assay the EBV-EA-
inducing cells were stained. A minimum of 500 cells were
calculated for each assay, and number of positive (stained
cells) were noted. EBV-EA induction (average) of
experimented biomolecule (compound-1) was determined in
ratio relative to the control experiment (100%), processed
with butanoic acid (4 mM) and 12-O-tetradecanoylphorbol-
13-acetate (32 pM). Around 35% was calculated the EBV-
EA induction. By using trypan blue staining method,
viability of treated Raji cells was noted where viability of
cells for TPA-positive control was >80%. So, just those
compounds showing induction <80% (% of control) of the
EBV-active cells (having cell viability >60%) were capable of
inhibiting the activation due to promoter substances.
Curcumin was used as a standard compound (Wang et al.,
2006; Zhang et al., 2013).

MDR reversal assay
The following procedure was applied on mouse lymphoma
cells for determination of reversal MDR of compound 1.
Medium (McCoy’s 5A) consists of 10% inactivated (by heat)
horse serum provided with antibiotics and L-glutamine was
employed to grow L5178 and L5178Y MDR cell lines. As
mentioned earlier by Rauf et al. (2015b), the L5178 mouse
T-cell lymphoma parent cells were stably infected with pHa
MDR1/A retrovirus. The L5178Y (MDR1-expressing cell
line) was selected by culturing the transfected cells with
colchicine containing medium. Then, Cells were distributed
using aliquots (0.5 mL) into Eppendorf tubes after being
adjusted to a density of 2 × 106 cells per mL and suspended
in the McCoy’s 5A medium (serum-free). Final
concentrations (4 μg/Ml) of test compounds and positive
control (verapamil) were used. Verapamil was used as a
positive control as it is a chemosensitizer & Ca+2 channel
blocker that inhibits multidrug resistance gene product and
therefore reduces MDR1-mediated drug resistance. At room
temperature, incubation of samples were carried out for
10 minutes prior to use. Then, added 10 µL of rhodamine-
123, (5.20 µM) in samples to employed as an indicator. Cells
were further incubated for 20 minutes and washed (two-
times), and re-suspended in Phosphate buffered solution
(0.5 mL) for examination. With the aid of a flow cytometer
i.e., Partec CyFlow (Germany) we measured the fluorescence
of cell population, using DMSO as the solvent as well as
control. Using this technique, percent FI (Fluorescence
Intensity) was measured for treated parental and MDR-cell
lines in comparison to untreated cells. On the basis of FI
values, fluorescence activity ratio (FAR) was calculated using
the following equations (Rauf et al., 2016b).

FAR ¼ MDRtreated= MDRcontrol

parentaltreated= parentalcontrol

Computational studies
Protein data bank (PDB) was used for the retrieval purposes
of crystalline structure of mice P-gp (coded as: 4Q9L)
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(Sussman et al., 1998). The 3-D structure of P-gp was
subjected to an energy minimization process with the aid of
a program known as Swiss-PDB viewer (version 4.1.0)
(Guex and Peitsch, 1997). For docking studies, Avogardro’s
software & Chem sketch was used for the preparation of
ligands structures (Hanwell et al., 2012). Similarly,
i-GEMDOCK (version 2.1) & Autodock Vina were used for
docking purposes (Trott and Olson, 2010; Hsu et al., 2011).
For optimization of docking method co-crystallized
inhibitor of P-glycoprotein was used (Shityakov and Förster,
2014). Two software namely LIGPLOT plus (version 1.4.5)
and discovery studio visualizer was used subsequently for
docking analysis (Rauf et al., 2015b; Azam et al., 2013).

Results

Characterization of compound 1
Compound 1, was purified as white crystals. Spectral data
employed that the chemical structure of 1 (Fig. 1) has been
identified as 3-oxo-6β-hydroxy-β-amyrin. For confirmation,
single X-ray crystallography was carried out, which
confirmed the structure (Fig. 2).

Effect in EVA-EA (Epstein-Barr-Virus early antigen) activation
induction assay
Tab. 1 presents the results of the EVB-EA activation induction
assay. Our findings reveal that compound 1 caused significant
antitumor promotion activity at various test concentrations
with an IC50 value of 458 µg/mL. However, the standard

compound, curcumin was more potent with IC50 of
340 µg/mL. Viability rate of the Raji cells shown by tested
compound at a concentration of 1000 (mol ratio/32 pmol
TPA) was 60%. Additionally, its effect on MDR mouse
lymphoma cell line was also evaluated, results of which are
displayed in Tab. 3. These results show that compound 1
exhibits a remarkable effect on MDR-mouse lymphoma
cells. Therefore, compound 1 may have a possible
chemopreventive effect.

Reversal of MDR in mouse lymphoma cells effects
3-oxo-6-β-Hydroxy-β-amyrin (1) was also assessed for its
properties on the reversion of multi-drug resistance
mediated by P-gp using rhodamine-123 exclusion study on
MDR human ABCB1 gene-transfected mouse T-lymphoma
cell line. In vitro results revealed that MDR reversing effect
was comparable to verapamil as positive control. The short
time experiment exhibited that isolated compound 1 was
an active MDR-modulator. Verapamil-a chemosensitizer &
Ca2+ channel blocker-acted as a positive control in current
experimentation (Tab. 2).

Petra/Osiris/Molinspiration (POM) Analyses of compound 1
Presented in Figs. 3 and 4 are the results pertaining to
molecular properties predicted for compound 1 such as
TPSA, GPCR (G-protein-coupled receptors), ligand and
ICM (a protein modeling and design method). Results
reveal that compound 1 has limited violation (NV (Number
of Violations) = 1) of five rules of Lipinski. In conclusion,
compound 1 has potential bioactivity as Nuclear Receptor
Ligand and Enzyme Inhibitor (NRL = 0.68 and EI = 0.63
respectively). The bioactivity scores of compound 1 were
found to be in accordance with the standard scores of the
standard drugs (Tab. 3).

Docking analysis
Our results confirm that free energies of the studied
compound are a bit higher than those of Rhodamine123
(Tab. 3). This implies that certain structural features of
3-oxo-6β-hydroxy- β-amyrin may be the reason to its
inhibitory properties on P-glycoprotein from mice.
Moreover the predicated docked orientation of compound;
3-oxo-6β-hydroxy-β-amyrin shown by sticks red color, the
co-crystallized ligand of the receptor is shown by the cyan
color while the standard compound Rhodamine 123 is
shown by green color in the binding site of P-gp (Fig. 4).
Furthermore, as depicted in Fig. 5, docking interactions of
3-oxo-6β-hydroxy-β-amyrin indicate hydrophobic
interactions (total: 08) and no hydrogen bonding. The
hydrophobic bondings reported come from residues
Met68, Leu64, Phe332, Ile336, Gln343, Met945, Tyr949,
and Met982. These hydrophobic contacts of 3-oxo-6β-
hydroxy- β-amyrin are responsible for its binding capacity
to the P-gp receptor.

Discussions

In-silico screening has been proven to be a vital tool for
discovering new inhibitors against receptors. Purposely, we
conducted docking studies to recognize the inhibiting

FIGURE 1. The structure of compound 1 (3-oxo-6β -hydroxy-β-amyrin).

FIGURE 2. X-ray crystallographic image of compound (1).
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TABLE 2

Effect of 3-oxo-6β-hydroxy-β-amyrin on reversal of multidrug resistance in MDR mouse lymphoma cells

Sample (final concentration) μg/mL FSC* SSC* Mean FAR* Peak Ch*

PAR* MEAN – 2224 643 68.15 – 68.5

MDR MEAN – 2326 914 1.64 – 1.54

Verapamil 10 2329 711 21.9 13.35 27.4

3-oxo-6β-hydroxy-β-amyrin 4 2282 769 205 125 237

DMSO 0.2% 2247 759 1.02 0.62 0.931
*PAR = Parental cell line; FSC = Forward scatter analysis; SSC = Side scatter analysis; FAR = Fluorescence ratio for treated/untreated samples; Peak ch =
Fluorescence peak channel.

TABLE 1

Percent Inhibitory Effects on the induction of Epstein-Barr Virus Early Antigen (EBV-EA) by standard compound (curcumin) and
isolated compound 1 (3-oxo-6β-hydroxy-β-amyrin)

Concentration (mol ratio/TPA) % to control (% viability)

Samples 1000 500 100 10 IC50

Compound 1 12.4 ± 0.4(60) 47.3 ± 1.5 75.1 ± 2.2 100 ± 0.6 458

Curcumin 0 ± 0.1(60) 22.8 ± 0.2 81 ± 0.6 100 ± 0.6 340
TPA (32 pmol) = 100%. Negative cont. 0%, Values represent the relative percentage to the positive control, with TPA (32 pmol, 20 ng) representing 100%
induction at four different concentrations in terms of molar ratio/32 pmol TPA. Data are expressed as mean ±S.D (n = 3). IC50 values represent the mole ratio
of compounds, relative to TPA, required to inhibit 50% of the positive control activated with 32 pmol TPA. Values in parentheses are percentage viability of
Raji cells. (In all other experiments, viability was >80%.)

TABLE 3

Molinspiration calculations of Bioactivity Scores (BS) of compound 1. [a] Compound 1 has potential bioactivity as Nuclear receptor
ligand and enzyme inhibitor (NRL = 0.68 and 0.63 respectively)

Molecular properties calculation Optimized structure Bioactivity scores calculation

TPSA 37 GPCR ligand 0.18

MW 440.71 Ion channel modulator –0.09

nON 2 Kinase inhibitor –0.51

nOHNH 1 Nuclear receptor 0.68 [a]

nviolations 1 Protease inhibitor 0.07

Volume 463 Enzyme inhibitor 0.63 [a]

FIGURE 3. Osiris calculations of drug likeness of compound 1. Toxicity Risks ( : not toxic, : slightly toxic, : highly toxic).
Molecular Weight (M.W. < 500 g/mole) is in perfect accordance with Lipinski 5 rules but cLogP > 5.
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potential of 3-oxo-6β-hydroxy- β-amyrin with the P-gp.
Results from docking analysis revealed that 3-oxo-6β-
hydroxy- β-amyrin gives good docking results on both
docking software. As displayed in Figs. 4 and 5, the results
showed that compound 1 isolated from Pistacia integerrima
precisely attached to a region where co-crystallized ligand
for receptor was previously existing. In-silico screening
predicts that lesser the free energy (local energy
minimization) more effective is the docking score and
higher is the activity of compound (Sliwoski et al., 2014).

Cell efflux-pump, including ATP-binding cassette
transporters, may be considered as enzyme having varied

substrate specificity. Inhibition of ATP-binding cassette
transporters may be regarded as a potential opportunity in
order to overcome multidrug resistance (MDR). MDR
cancer cells may be modulated by administering
conventional chemo-therapeutics along with resistance
modifiers. For this purpose, numerous natural bioactive
biomolecules and synthetic metabolites have been
investigated to inhibit the efflux-pump activity (Barath et al.,
2006). In this study, FAR (fluorescence activity ratio) value
was determined to assess the modulating potential of 3-oxo-
6β-hydroxy-β-amyrin on ABCB1 transporter. In flow
cytometry, FSC and SSC value enhanced revealing that
compound 1 increased the granulation of cytoplasm. Results
of FAR value showed that 3-oxo-6β-hydroxy-β-amyrin was
an effective MDR-modulator. As shown in Tab. 2,
compound 1 exhibited significantly modulated the efflux
pump activity (FAR: 125, 4 µg/ml). Similar results were
obtained in study conducted on Pistagremic acid (PA), a
triterpenoid, present in Pistacia integerrima on reversal of
MDR (Rauf et al., 2016c). They concluded that there might
be certain important chemical features of Pistagremic acid
responsible for its inhibitory potential of P-glycoprotein (P-
gp). Likewise, reversal of MDR mediated by P-gp in mouse
Lymphoma Cells due to crude extract and two
(dihydrokaempferol & naringenin) isolated compounds
from Pistacia integerrima has also been experimented by
Rauf et al. (2016b). They demonstrated that crude extract,
dihydrokaempferol & naringenin were promising
modulators of efflux pump activity (FAR = 64.02, 1.58, &
1.79; 4 µg/ml).

The octanol/water partition coefficient, or best known as
cLogP, is calculated by the molecular properties mining and
quality assurance software package Molinspiration and
Osiris (Open Source Independent Review and Interpretation
System Background), respectively, as a sum of fragment
contributions & correction factors (Husain et al., 2016;
Jarrahpour et al., 2010). This procedure can be practically

FIGURE 4. Predicted docked orientation of compound 3-oxo-6β-
hydroxy-β-amyrin shown by sticks red color, the co-crystallized
ligand of the receptor is shown by the cyan color while the
standard compound Rhodamine 123 is shown by green color in
the binding site of P-gp.

FIGURE 5. 2-D (left) and 3-D (right) interaction of 3-oxo-6 β-hydroxy- β-amyrin in the binding site of P-glycoprotein.
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applied to all organic and organometallic based molecules. In
addition, the method published by Ertl et al. (2000) is
employed in the calculation of the total molecular polar
surface area (TPSA). This quantity is simply the sum of
fragment contributions; O- and N- centered polar
fragments. Furthermore, TPSA characterizes intestinal drug
absorption, permeability of Caco-2, bioavailability and
penetration of blood-brain barrier.

The rule of five (Ro5) is based on the physicochemical
profiles (distribution, absorption, excretion and metabolism)
of synthetic drugs, which among other criteria, deals with
target and ligand alignment, bioavailability, etc. (Murugan et
al., 2015). Natural products do not generally follow the Ro5,
due to their intra-molecular hydrogen bonding and easy
metabolizibility (Zhang and Wilkinson, 2007).

Conclusions

In summary, findings from this investigation suggest that bark
of P. integerrima contain 3-oxo-6β-hydroxy-β-amyrin; which
exhibits anticancer activities ranging from cancer
chemoprevention to reversal of multidrug resistance of
cancer cells. The findings may explain the medicinal use of
P. integerrima as an medicinal plant with anticancer effects.
However, more detailed research are needed to establish the
safety and efficacy of the isolated compound.
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