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ABSTRACT

Optimization of in vitro adventitious root induction contributes to the development of a large-scale production
system of hybrid clone seedlings of larch (Larix spp.). We used orthogonal testing to investigate the factors that
affect the rooting of hybrid larch shoots–activated carbon, vitamin B1, sucrose, glycine, glutamic acid (Glu),
cysteine, pH, and induction time in the dark and indole-3-butyric acid (IBA). Variance analysis showed that
the effects of sucrose concentration on rooting rate, survival rate, and average root number, pH on the average
number of roots; and Glu on survival rate were all significant (p < 0.05) when compared to the mock treatments.
Among all of the 45 treatments, the highest rooting rate was 90%, the highest survival rate was 100%, and the
highest average root number was 11.8. The theoretically optimal procedure of in vitro root induction of hybrid
larch shoots is shoot induction on L9 modified medium (pH 6.7) containing 2 mg.L–1 naphthalene acetic acid,
0.25 mg.L–1 IBA, 1/3 macroelements, 7.5 g.L–1 sucrose, and 5 mg.L–1 Glu for 8 days, and then root induction
on L9 modified medium without auxin.

KEYWORDS

Hybrid larch; adventitious root; orthogonal test; variance analysis

1 Introduction

Vegetative propagation is extensively used in breeding and the commercial propagation of forest trees
[1]. Compared with the conventional vegetative propagation methods such as cutting and grafting, tissue
culture has the advantage of large-scale production, providing plantlets whenever needed. In vitro
micropropagation of larch is processed via organogenesis from different species [2,3]. The formation of
adventitious roots is a vital step in establishing in vitro cultures. The rooting of larch is performed using a
two-step procedure [4]. The first step is the induction phase, in which shoots are cultured on medium
supplemented with auxin, and the second step is the root development phase, in which shoots are
cultured on hormone-free medium. This two-step rooting method is suitable for the rooting of larch [5,6].

Heterosis (hybrid vigor) is a well-known phenomenon whereby hybrid offspring of diverse varieties of a
species or crosses between species exhibit greater vigor than both parents [7]. The hybrid larch which
combines the superior characteristics of its parents has clear heterosis in biomass, stress resistance, and
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speed of development [8]. Vegetative propagation is an important means of fixing the genotype of hybrids
that effectively provides homogenous phenotypes of plants. With fast juvenile growth, adaptability to various
environmental conditions, and exceptional wood properties, larch is one of the most important coniferous
tree species in China [9]. An efficient micropropagation system allows genetic fixation and exploitation of
heterosis in hybrid larch.

Organogenesis is strongly influenced by genotype, and a capacity for adventitious root generation is
genotype-dependent [10–12]. The optimal conditions for morphogenesis need to be determined for each
plant species and even for different genotypes of the same species. Besides auxins, vitamins, amino-acids,
sucrose, pH, activated carbon (AC), and induction time in the dark affect rooting [13–18]. In this study,
we explored the factors that affect the in vitro rooting of hybrid larch shoots, and the rooting conditions
of tissue culture were optimized using an orthogonal experimental design to provide technical support for
the construction of an efficient and stable tissue culture regeneration system for hybrid larch and the
large-scale production of hybrid larch seedlings.

2 Materials and Methods

2.1 Plant Materials and Indoor Cultivation
Liaofeng1, a selected elite clone with fast growth and strong rooting ability, was bred from the hybrids

Larix kaempferi × L. olgensis at the Chinese Academy of Forestry. Cut seedlings of this clone were collected
from the Da GuJia National Larch Breeding Centre, Liaoning Province, China (long. 124°47’, lat. 42°22’N).
A two-year old clone of hybrid larch was cultured in a climate chamber as the stock plant. This chamber was
equipped with an LED lamp as the light source; the photoperiod of each day was 16 h, the illumination
intensity was 2000–3000 lx, the temperature was 23°C, and the humidity was 50%.

2.2 Sterilization of Explants and Initial Cultures
Shoots of ~ 5 cm in length were cut from the stock hybrid larch, and the leaves within 2 cm of the base of

each shoot were cut off. After being shaken and soaked for 20 min in washing solution, they were washed in
water for 30 min. Sodium hypochlorite (15% v/v) was used as the sterilizing agent. Under aseptic conditions
on a super-clean platform, after treatment with sterilizing agent for 10 min the shoots were washed 3 times in
aseptic water, then inoculated on B1 medium for initial culture for 4 weeks [2]. The medium was made up
with ultrapure water. HCl and NaOH were used to adjust the pH. The reagents were from Sangon Biotech
(Shanghai) Co., Ltd. LED lamps were used as the light source, the photoperiod was 16 h, the illumination
intensity 2000–3000 lx, and the temperature 23°C.

2.3 Orthogonal Tests of Rooting
After four weeks of cultivation on B1, shoots were subcultured for root induction on L9 medium of one

third strength supplemented with 2 mg.L–1 naphthalene acetic acid (NAA) [2], and then in the same medium
without auxin for root development. L18 (3

7) orthogonal testing was conducted using AC (0.2, 0.5, and 0.8 g.
L−1), vitamin B1 (VB1; 0.2, 0.4, and 0.6 mg.L−1), sucrose (2.5, 5, 7.5, 10, 12.5, 15, and 25 g.L−1), glycine
(Gly; 5, 25, and 50 mg.L−1), glutamic acid (Glu; 5, 25, and 50 mg.L−1), and cysteine (Cys; 5, 25, and 50 mg.
L−1), at pH 5.2, 5.7, 6.2, 6.7, 7.0, and 7.3 before sterilization of the medium, indole-3-butyric acid (IBA; 0.25,
1.00, and 1.75 mg.L−1), auxin induction periods of 3, 6, 8, 9, 11, and 14 days, and dark culture periods of 2, 4,
and 6 days. Each treatment was inoculated with 20 shoots. LED lamps were the light source, photoperiod was
16 h, illumination intensity 2000–3000 lx, and temperature 23°C.

2.4 Statistical Analysis
The rooting rate, average root number, and survival rate of plantlets were evaluated 8 weeks after root

induction on L9 medium with auxin. A blank column was added to the orthogonal test. The percentage data
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were transformed into arcsine before analysis with ANOVA. Intuitive analysis and ANOVA analysis were
performed using the statistical package IBM SPSS 15.0.

3 Results

3.1 Orthogonal Tests of the Effects of Dark Culture, AC, VB1, sucrose, pH, and Induction Time on

Rooting
The orthogonal test and results are shown in Tab. 1. The rooting rate of 2 treatments (#1 and #6) were the

highest, reaching 60%. Both the rooting rate and the average rooting number of 6 treatments (#8, #9, #10,
#12, #13, and #17) were 0%. The survival rate of 4 combinations (#6, #11, #16, and #18) was 100%. The
lowest survival rate (#17) was 30.0%. The average number of roots of 2 combinations (#5 and #7) was >4
(4.2 and 4.1, respectively).

3.2 Intuitive Analysis of the Effects of Dark Culture, AC, VB1, sucrose, pH, and Induction Time on

Rooting
Range analysis of the orthogonal test is shown in Tab. 2. sucrose had the greatest effect on rooting rate

(range 33.30) and survival rate (range 25.00). In the three sucrose concentrations of 5, 15, and 25 g.L−1, the k
values of rooting rate and survival rate decreased with increasing concentration. The k values of rooting rate
and survival rate with 5 g.L−1 sucrose were the highest (36.67 and 90.00, respectively). The rooting rate
ranges of VB1 and induction time, and the survival rate range of AC were the lowest, at 8.33. pH had the
greatest effect on the average rooting number (range 2.07). With increasing pH (5.2, 5.7, and 6.2), the k

Table 1: The experimental design based on L18(3
7) orthogonal array and effects of dark culture, AC, VB1,

sucrose, pH and induce time on rooting

No. Dark culture/d AC/g.L−1 VB1/mg.L−1 Sucrose/g.L−1 pH Induce time/d Blank column Rooting rate/% Survive rate/% Average root number

1 2 0.2 0.2 5 5.2 3 1 60.0 60.0 3.4

2 2 0.5 0.4 15 5.7 6 2 10.0 90.0 1.5

3 2 0.8 0.6 25 6.2 9 3 10.0 90.0 2.3

4 4 0.2 0.2 15 5.7 9 3 20.0 90.0 2.1

5 4 0.5 0.4 25 6.2 3 1 10.0 70.0 4.2

6 4 0.8 0.6 5 5.2 6 2 60.0 100.0 1.6

7 6 0.2 0.4 5 6.2 6 3 40.0 90.0 4.1

8 6 0.5 0.6 15 5.2 9 1 0.0 80.0 0.0

9 6 0.8 0.2 25 5.7 3 2 0.0 50.0 0.0

10 2 0.2 0.6 25 5.7 6 1 0.0 70.0 0.0

11 2 0.5 0.2 5 6.2 9 2 30.0 100.0 3.3

12 2 0.8 0.4 15 5.2 3 3 0.0 80.0 0.0

13 4 0.2 0.4 25 5.2 9 2 0.0 80.0 0.0

14 4 0.5 0.6 5 5.7 3 3 20.0 90.0 3.2

15 4 0.8 0.2 15 6.2 6 1 10.0 90.0 1.9

16 6 0.2 0.6 15 6.2 3 2 10.0 100.0 1.6

17 6 0.5 0.2 25 5.2 6 3 0.0 30.0 0.0

18 6 0.8 0.4 5 5.7 9 1 10.0 100.0 1.1
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values of the average rooting number showed an upward trend, and the highest k value was 2.9 at pH 6.2. The
average rooting number range of VB1 was the lowest, at 0.37.

3.3 Variance Analysis of the Effects of Dark Culture, Ac, Vb1, sucrose, pH, and Induction Time on

Rooting
Sucrose significantly influenced the rooting rate and survival rate (p < 0.05), while other factors had no

significant effect on rooting. The F-values of the 6 influential factors for rooting rate revealed the following
order: sucrose > dark culture > pH > AC > VB1 > induction time (Tab. 3). The F-values of survival rate were
in the following order: sucrose > pH > VB > induction time > AC > dark culture. pH significantly influenced
the average root number (p < 0.05). The F-values of average root number were in the order: pH > sucrose >
dark culture > AC > induction time > VB1.

Table 2: Intuitive analysis of effects of dark culture, AC, VB1, sucrose, pH and induce time on rooting

Index Value Dark culture AC VB1 Sucrose pH Induce time Blank column

Rooting rate/% k1 18.33 21.67 20.00 36.67 20.00 16.67 15.00

k2 20.00 11.67 11.67 8.33 10.00 20.00 18.33

k3 10.00 15.00 16.67 3.33 18.33 11.67 15.00

R 10.00 10.00 8.33 33.33 10.00 8.33 3.33

Survive rate/% k1 81.67 81.67 70.00 90.00 71.67 75.00 78.33

k2 86.67 76.67 85.00 88.33 81.67 78.33 86.67

k3 75.00 85.00 88.33 65.00 90.00 90.00 78.33

R 11.67 8.30 18.33 25.00 18.33 15.00 8.33

Average root number k1 1.75 1.87 1.78 2.80 0.83 2.07 1.77

k2 2.17 2.03 1.81 1.18 1.31 1.52 1.33

k3 1.13 1.15 1.45 1.08 2.90 1.47 1.95

R 1.03 0.88 0.37 1.70 2.07 0.60 0.62
Note: k, the mean values of ΔT for the factors at each level; R, Range (kmax – kmin).

Table 3: Variance analysis of effects of dark culture, AC, VB1, sucrose, pH and induce time on rooting

Source SSRR SSSR SSARN df FRR FSR FARN PRR PSR PARN
Dark culture 365.61 86.50 3.24 2 0.97 0.31 1.51 0.441 0.750 0.307

AC 133.15 171.46 2.64 2 0.35 0.61 1.23 0.719 0.582 0.368

VB1 99.53 572.01 0.49 2 0.26 2.02 0.23 0.778 0.228 0.803

Sucrose 2999.33 1712.36 10.92 2 7.95 6.05 5.08 0.028* 0.046* 0.062

pH 293.49 633.87 14.02 2 0.78 2.24 6.53 0.508 0.202 0.040*

Induce time 76.79 477.79 1.33 2 0.20 1.69 0.62 0.822 0.276 0.575

Blank column(error) 943.21 708.18 5.37 5
Note: SS, df, F and P mean sum of squares, degree of freedom, F-value and p-value respectively. The subscripts RR, SR and ARN mean rooting rate,
survive rate and average root number respectively. *Indicates significant difference (0.01 < p < 0.05).
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3.4 Orthogonal Test of the Effects of Glu, Cys, Gly, sucrose, Induction Period, and pH on Rooting
The influence of Glu, Cys, Gly, sucrose, induction period, and pH on rooting was analyzed using

orthogonal tests. The results of 18 treatments are shown in Tab. 4. The rooting rate of 2 treatments
(#17 and #18) reached 70%, while the rooting rate and average rooting number of 2 treatments (#6 and
#15) were 0%. The survival rate of 3 treatments (#1, #2, and #3) was 100%, and that for 1 combination
(#15) was the lowest, at 10.0%. The average number of roots of 3 treatments (#14, #17, and #18)
exceeded 7 (7.5, 7.9, and 7.1, respectively).

3.5 Intuitive Analysis of the Effects of Glu, Cys, Gly, sucrose, Induction Period, and pH on Rooting
The range analysis of orthogonal test results is shown in Tab. 5. The strongest effect on rooting rate

(range 20.00) and average number of roots (range 2.85) was induction period. In three induction periods
(8, 11, and 14 days), the rooting rate and average root number k values increased first and then
decreased. The rooting rate and average root number k values were both the highest in the induction
period of 11 days (36.67 and 5.13, respectively). Cys and sucrose had the least effect on rooting rate
(range 8.33) and survival rate (range 6.67). Glu had the greatest effect on survival rate (range 41.67). In
the three Glu concentrations of 5, 25, and 50 mg.L−1, the survival rate k values decreased first and then
increased with increasing Glu concentration. The survival rate with 5 g.L−1 Glu was highest (k value
90.00). Gly had the least effect on the average number of roots (range 0.15).

Table 4: The experimental design based on L18(3
7) orthogonal array and effects of Glu, Cys, Gly, sucrose,

induce period and pH on rooting

No. Glu/
mg.L-1

Cys/
mg.L−1

Gly/
mg.L−1

Sucrose/
mg.L−1

Induce
period/d

pH Blank
column

Rooting
rate/%

Survive
rate/%

Average root
number

1 5 5 5 2.5 8 5.7 1 30 100 1.5

2 5 25 25 5 11 6.2 2 60 100 3.1

3 5 50 50 7.5 14 6.7 3 40 100 4.2

4 25 5 5 5 11 6.7 3 30 50 3.8

5 25 25 25 7.5 14 5.7 1 10 50 0.9

6 25 50 50 2.5 8 6.2 2 0 60 0

7 50 5 25 2.5 14 6.2 3 10 70 1.2

8 50 25 50 5 8 6.7 1 10 80 1.4

9 50 50 5 7.5 11 5.7 2 10 60 6.1

10 5 5 50 7.5 11 6.2 1 40 80 3.2

11 5 25 5 2.5 14 6.7 2 10 70 2.1

12 5 50 25 5 8 5.7 3 20 90 6.5

13 25 5 25 7.5 8 6.7 2 50 80 3.5

14 25 25 50 2.5 11 5.7 3 10 40 7.5

15 25 50 5 5 14 6.2 1 0 10 0

16 50 5 50 5 14 5.7 2 30 80 5.3

17 50 25 5 7.5 8 6.2 3 70 80 7.9

18 50 50 25 2.5 11 6.7 1 70 70 7.1
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3.6 Variance Analysis of the Effects of Glu, Cys, Gly, sucrose, Induction Period, and pH on Rooting
Glu significantly influenced survival rate (p < 0.05) (Tab. 6). Other factors had no significant effect on

rooting. Different from the effects of 5, 15, and 25 g.L−1 (Tab. 3), 2.5, 5, and 7.5 g.L−1 sucrose had no
significant effect on rooting. pH of 5.7, 6.2, and 6.7 had a similar rooting effect. The F-values of the
6 influential factors for rooting rate revealed the following order: Glu > induction period > sucrose > Gly
> pH > Cys. The F-values for survival rate were in the following order: Glu > induction period > Gly >
Cys > pH > sucrose, and those for average root number were in the order: induction period > Glu > pH >
sucrose > Cys > Gly.

3.7 Orthogonal Test of the Effects of IBA, sucrose, and pH on Rooting
The orthogonal test and the results of 9 treatments are shown in Tab. 7. The medium of all 9 treatments

contained 5 mg.L−1 Glu. The rooting rate of 2 treatments (#1 and #5) were the highest, reaching 90%, and the
lowest (#6) was 10%. The survival rate of 6 treatments (#1, #2, #4, #5, #7, and #8) was 100% and that of

Table 5: Intuitive analysis of effects of Glu, Cys, Gly, sucrose, induce period and pH on rooting

Index Value Glu Cys Gly Sucrose Induce period pH Blank column

Rooting rate/% k1 33.33 31.67 25.00 21.67 30.00 18.33 26.67

k2 16.67 28.33 36.67 25.00 36.67 30.00 26.67

k3 33.33 23.33 21.67 36.67 16.67 35.00 30.00

R 16.67 8.33 15.00 15.00 20.00 16.67 3.33

Survive rate/% k1 90.00 76.67 61.67 68.33 81.67 70.00 65.00

k2 48.33 70.00 76.67 68.33 66.67 66.67 75.00

k3 73.33 65.00 73.33 75.00 63.33 75.00 71.67

R 41.67 11.67 15.00 6.67 18.33 8.33 10.00

Average root number k1 3.43 3.08 3.57 3.23 3.47 4.63 2.35

k2 2.62 3.82 3.72 3.35 5.13 2.57 3.35

k3 4.83 3.98 3.60 4.30 2.28 3.68 5.18

R 2.22 0.90 0.15 1.07 2.85 2.07 2.83
Note: k, The mean values of ΔT for the factors at each level; R, Range (kmax – kmin).

Table 6: Variance analysis of effects of Glu, Cys, Gly, sucrose, induce period and pH on rooting

Source SSRR SSSR SSARN df FRR FSR FARN PRR PSR PARN
Glu 896.14 3336.37 15.08 2 1.28 6.71 0.68 0.356 0.038* 0.547

Cys 323.24 160.23 2.75 2 0.48 0.32 0.12 0.655 0.738 0.886

Gly 433.81 321.1 0.07 2 0.62 0.65 0 0.575 0.563 0.997

Sucrose 470.02 69.38 4.11 2 0.67 0.14 0.19 0.552 0.873 0.836

Induce period 668.48 484.79 24.6 2 0.96 0.98 1.11 0.445 0.439 0.399

pH 352.03 88.57 12.84 2 0.5 0.18 0.58 0.632 0.842 0.593

Blank column(error) 1750.45 1242.51 55.32 5
Note: SS, df, F and P mean sum of squares, degree of freedom, F-value and p-value respectively. The subscripts RR, SR and ARN mean rooting rate,
survive rate and average root number, respectively. *Indicates significant difference (0.01 < p < 0.05).
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1 combination (#6) was the lowest at 50.0%. The average root number of 1 combination (#1) was > 11 and a
rooted shoot in vitro is shown in Fig. 1. The lowest average number of roots of 2 treatments (#3 and #9) was 2.5.

3.8 Intuitive Analysis of the Effects of IBA, sucrose, and pH on Rooting
The range analysis of the orthogonal test is shown in Tab. 8. Sucrose had the greatest effect on the three

indexes. The ranges of rooting rate, survival rate, and average root number were highest (50.00, 23.33, and
5.07, respectively). The k value of rooting rate in 10 g.L−1 sucrose was highest (70.0%), and that for survival
rate in both 7.5 g.L−1 and 10 g.L−1 reached 100%. The k value of the average rooting number showed a
downward trend with increasing sucrose, and the highest value was 8.4.

Table 7: The experimental design based on L18(3
4) orthogonal array and effects of IBA, sucrose and pH on

rooting

No. IBA/mg.L−1 Sucrose/mg.L−1 pH Blank column Rooting rate/% Survive rate/% Average roots number

1 0.25 7.5 6.7 1 90.0 100.0 11.8

2 0.25 10.0 7.0 2 70.0 100.0 6.4

3 0.25 12.5 7.3 3 30.0 90.0 2.5

4 1.00 7.5 7.0 3 50.0 100.0 6.9

5 1.00 10.0 7.3 1 90.0 100.0 4.7

6 1.00 12.5 6.7 2 10.0 50.0 5

7 1.75 7.5 7.3 2 40.0 100.0 6.5

8 1.75 10.0 6.7 1 50.0 100.0 6.6

9 1.75 12.5 7.0 3 20.0 90.0 2.5

Figure 1: Root formation of hybrid larch in vitro. (a) Root growth of shoots on rooting medium without
auxin for 7 weeks. (b) Rooted plantlets removed from culture vessel
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3.9 Variance Analysis of the Effects of IBA, sucrose, and pH on Rooting
Sucrose significantly influenced the average root number (p < 0.05) (Tab. 9). The F-values of the

3 influential factors on rooting rate revealed the following order: sucrose > IBA > pH; that for survival
rate was in the order: sucrose > IBA > pH; and that of average root number was in the order: sucrose >
pH > IBA. The variance analysis was in agreement with the results of range analysis; sucrose had the
greatest effect on rooting.

4 Discussion

The capacity for adventitious root formation is an important index of the economic value of woody plant
varieties. A high rooting rate and large root number are standards for good rooting capacity [19]. Exogenous
auxins have positive effects on rooting. IBA, NAA, and indole-3-acetic acid have different effects on root
induction [20]. A higher rooting percentage and root number can be induced by NAA combined with IBA
[21]. In this study, when 2.0 mg/L NAA was added to the medium, the IBA concentration did not
significantly influence the root induction index. A higher rooting rate, survival rate, and average root
number was obtained with medium containing 2.0 mg/L NAA and 0.25 mg/L IBA. Adventitious root
formation is affected by light, AC, VB1, and induction time of rooting [13,17–18]. In this experiment, dark

Table 8: Intuitive analysis of effects of IBA, sucrose and pH on rooting

Index Value IBA Sucrose pH Blank column

Rooting rate/% k1 63.33 60.00 50.00 66.67

k2 50.00 70.00 46.67 40.00

k3 36.67 20.00 53.33 43.33

R 26.67 50.00 6.66 26.67

Survive rate/% k1 96.67 100.00 83.33 96.67

k2 83.33 100.00 96.67 83.33

k3 96.67 76.67 96.67 96.67

R 13.33 23.33 13.34 13.34

Average root number k1 6.90 8.40 7.80 6.33

k2 5.53 5.90 5.27 5.97

k3 5.20 3.33 4.57 5.33

R 1.70 5.07 3.23 1.00
Note: k, The mean values of ΔT for the factors at each level; R, Range (kmax – kmin).

Table 9: Variance analysis of effects of IBA, sucrose and pH on rooting

Source SSRR SSSR SSARN df FRR FSR FARN PRR PSR PARN
IBA 341.17 156.82 4.87 2 0.67 1.00 3.17 0.601 0.500 0.240

Sucrose 1793.24 1489.48 38.51 2 3.50 9.50 25.08 0.222 0.095 0.038*

pH 80.16 156.82 17.36 2 0.16 1.00 11.31 0.865 0.500 0.081

Blank column(error) 513.01 156.82 1.54 2
Note: SS, df, F and P mean sum of squares, degree of freedom, F-value and p-value respectively. The subscripts RR, SR and ARN mean rooting rate,
survive rate and average root number respectively. * indicates significant difference (0.01 < p < 0.05).
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culture period, AC, VB1, and induction time had no significant effect on rooting. The optimal induction period
with auxin is 8 days and the root primordium is formed on the eighth day after rooting induction [22,23].

Glutathione (GSH) plays multiple roles in the plant life cycle, including the regulation of root
architecture and the detoxification of reactive oxygen species, heavy metals, and xenobiotics. GSH is
composed of the amino-acids Glu, Cys, and Gly [24]. In our study, Gly and Cys had no significant effect
on rooting capacity, but Glu had a significant effect on the survival rate of rooting shoots. Glu is an
amino-N donor for the synthesis of other amino-acids and occupies a critical position in plant N
metabolism [25]. GSH and Glu significantly alters root architecture [14], and GSH affects root growth by
alterations in auxin homeostasis. Glu is associated with adventitious root initiation as a precursor of
indole-3-acetic acid [26,27]. The addition of Glu had no significant effect on the rooting rate and number
of hybrid shoots, which may be due to the Glu stored in shoots which meet the requirement of
adventitious root formation. In our study, adding 5 mg.L−1 Glu to the culture medium had the best effect
on rooting, and the survival rate of shoots reached 90%.

Sucrose provides the energy for cell growth, regulates osmotic pressure, and is the main carbohydrate
source in tissue culture [15]. Sucrose contributes to the synthesis of cell constituents as a substrate of
metabolites [28,29]. The sucrose concentration affects the growth of newly-generated roots. High
concentrations inhibit the induction of adventitious roots, possibly because the higher osmotic pressure
caused by excessive sucrose is deleterious to root primordium induction [15,28]. In our research, sucrose
concentrations of 5, 15, and 25 g.L−1 had a significant effect on rooting rate and survival rate and each
index showed a downward trend with increasing sucrose concentration. However, the sucrose
concentrations 2.5, 5, and 7.5 g.L−1 did not significantly influence root induction. The concentrations 7.5,
10, and 12.5 g.L−1 had a significant effect on the average root number and 7.5 g.L−1 sucrose produced
the highest average root number. Among the concentrations 2.5, 5, 7.5, 10, 12.5, 15, and 25 g.L−1, 7.5 g.
L−1 sucrose had best effect, with a rooting rate of 60.0%, a survival rate of 100%, and an average root
number of 8.4.

The pH of the medium influences the growth and development of explants by enhancing the activity of
growth regulators and enzymes [30,31]. It is associated with the amount of callus formed [16], changes with
NH4

+ and NO3
− uptake, and affects auxin uptake [32,33]. Cell differentiation and organ regeneration usually

require a suitable pH. In most plants, the medium to induce adventitious rooting is slightly acidic. In our
study, the pH values 5.2, 5.7 and 6.2 had a significant effect on the average root number, while the pH
values among 5.7, 6.2 and 6.7 and among 6.7, 7.0 and 7.2 did not significantly influence root induction.
The rooting effect was best when the pH of the medium was 6.7: the rooting rate was 50.00%, the
average number of roots was 7.80, and the survival rate was 83.33%.
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