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ABSTRACT

With the rapid development of the Internet, the amount of data recorded on the Internet has increased dramatically.
It is becoming more and more urgent to effectively obtain the specific information we need from the vast ocean
of data. In this study, we propose a novel collaborative filtering algorithm for generating recommendations in
e-commerce. This study has two main innovations. First, we propose a mechanism that embeds temporal behavior
information to find a neighbor set in which each neighbor has a very significant impact on the current user or item.
Second, we propose a novel collaborative filtering algorithm by injecting the neighbor set into probability matrix
factorization. We compared the proposed method with several state-of-the-art alternatives on real datasets. The
experimental results show that our proposed method outperforms the prevailing approaches.
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1 Introduction

With the rapid development of the Internet, the amount of data recorded on the network
has increased dramatically. It is becoming increasingly urgent to be able to effectively obtain the
specific information we need from a vast ocean of data. Although traditional search engines can
meet users’ retrieval requirements, they tend to return results with the same ranking to all users.
Therefore, it is challenging to actively provide personalized services matching the interests of
different users. Therefore, a recommendation system [1,2] is strongly desired. The recommendation
system needs to learn users’ interests and behaviors after collecting and analyzing various data
inputs by users so as to recommend tailored information and services. Because a recommendation
system can effectively solve the information overload problem, it has received wide attention in
academic and industrial fields.
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Among all the recommendation methods, collaborative filtering [3,4] is the most commonly
used algorithm. The core idea of collaborative filtering is to first analyze user interests based on
user behavior records and then find neighbors from among the user group who have similar inter-
ests as the target. Then, by integrating all the evaluations from these neighbors, it finally generates
an interest decision for the target user and thus recommends most related items. As collaborative
filtering has no special requirements for the recommended items, it can handle objects that are
difficult to describe by text, such as music and movies. Therefore, collaborative filtering has been
widely used in recommendation systems. It has achieved significant performance and enabled great
business benefits, especially to e-commerce. For example, according to statistics from VentureBeat,
Amazon’s recommendation system provides them at least 35% of merchandise sales [5].

Although the collaborative filtering recommendation algorithm has many successful appli-
cations, several important issues need to be addressed. One significant issue is that traditional
collaborative filtering often ignores the structural relationship between users or items. In the fol-
lowing, we only use users to represent “users (items).” Effectively making use of the relationships
between users can enrich the information from a single user such that user interests can be
identified more accurately. Based on this concept, many collaborative filtering algorithms have
been developed that fully consider the user relationships for data mining. They have facilitated
many valuable results. The process to obtain the relationships between users and then quantify the
relationships has an important impact on the effectiveness of the collaborative filtering algorithms.
The existing solutions mainly consist of two types: one makes use of the relationships existing
in the explicit social network, and the other calculates the similarity between users through
implicit label information to get the relationship between users. However, in practical applications,
it is difficult to obtain sufficient information regarding social relationships or labels. Moreover,
the above solutions are based on the vague assumption that the interaction between users is
undirected, which is not reasonable in reality. For example, if user A highly appreciates user B,
then the behavior of user B has a great impact on user A. However, the impact user A has on
user B is not significant or even negligible.

In this study, to address the above issues, we propose a nearest neighbor modeling method
based on temporal consumption behavior. Constructing a temporal-based consumption network
helps identify the interactions between users. The contributions can be summarized as follows:

• The proposed modeling strategy only requires the user’s consumption time rather than com-
plicated information such as user labels and social relationships. The calculated influence
is directed. The strategy can more accurately discover the interactions between users and
identify the biggest impact on the current user from the neighbor set.

• Based on the modeling strategy, a recommendation algorithm termed TemporalMF is
developed, which uses the neighbor set for collaborative filtering recommendation based on
probability matrix factorization.

• We do extensive experiments on the Douban recommendation dataset. The experimental
results show that by using social network information and label information, TemporalMF
can predict the users’ actual scores more effectively and hence improve the accuracy of
recommendations compared to traditional recommendation algorithms.

The remaining sections are arranged as follows. Section 2 briefly reviews related works about
collaborative filtering. Section 3 describes the TemporalMF algorithm and its corresponding
recommendation framework. In Section 4, some benchmarking algorithms are introduced for
comparison. The last section concludes the study.
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2 Related Work

2.1 Traditional Collaborative Filtering Algorithms
Collaborative filtering makes use of the behaviors (scores, clicks, etc.) from similar users

to predict the interest of the target user for a particular item. It then makes correspond-
ing recommendations based on the predicted interest. Currently, popular collaboration filtering
recommendation algorithms can mainly be divided into the neighborhood-based type and the
model-based type.

Neighborhood-based collaborative filtering first calculates the similarity between users based
on their historical information and then uses the evaluation of other items by neighbors with
high similarity to the target user to predict the user’s preference for specific items. The prefer-
ence degree of users is considered as the recommendation threshold. At present, neighbor-based
collaborative filtering mainly includes the user-based type and the item-based type. The core of
user-based collaborative filtering algorithms is to find similar users. Item-based algorithms mainly
find similar items.

Different from nearest neighbor-based collaborative filtering, model-based collaborative fil-
tering mainly trains a model through users’ rating data and then uses this model to predict
the unknown variables [6]. At present, model-based collaborative filtering mainly consists of
clustering models [7], probabilistic correlation models [8,9], latent factor models [10–12], and
Bayesian hierarchy models [13,14]. Recently, in response to the requirements of big data process-
ing, Mnih et al. [15] proposed a probabilistic matrix factorization (PMF) algorithm that uses a
low-dimensional approximate matrix decomposition for generating a recommendation. In general,
it assumes that the interest of each user is affected by only a few factors. In PMF, the user
or item is mapped into a low-dimensional feature space, and the rating matrix is reconstructed
through learning the user eigenvector from the user rating information. With the reconstructed
low-dimensional matrix, the user’s rating of the item can be predicted, and corresponding rec-
ommendations can be derived. Owing to the low dimensions of the user and item eigenvectors,
matrix factorization can be solved efficiently by gradient descent. Their experimental results show
that PMF can effectively deal with large data and achieve relatively good accuracy. In order to
reduce the negative effects caused by the parameter settings in PMF, Salakhutdinov et al. [16]
proposed Bayesian probabilistic matrix factorization (BPMF). BPMF uses the Markov chain
Monte Carlo algorithm for parameter estimation, which achieves better performance than PMF.
In [17], the authors theoretically proved that PMF and probabilistic principal component analysis
are consistent. Based on this justification, a non-linear PMF was proposed, which uses a Gaussian
process to non-linearly expand PMF to obtain better performance.

Although traditional collaborative filtering algorithms can achieve satisfying recommendation
performance, they often only take the scoring information into consideration and ignore temporal
information and relationship information that is closely related to recommendations. Effective use
of this information can further improve the accuracy of the recommendation. Therefore, many
recommendation algorithms based on temporal information and relationship information have
been proposed.

2.2 Temporal-Based Recommendation
A temporal-based recommendation takes temporal information into consideration. The

derived model can learn the dynamic changes of data to optimize the recommendation. Koren [18]
proposed TimeSVD++ in which time information is added to the user eigenvector to avoid inter-
est drifting. Their experimental results indicated the advantages of TimeSVD++. Xiong et al. [19]
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used time information as the third dimension and then used tensor decomposition to model
dynamic changes. Chen et al. [20] dynamically assigned users to unused clusters to make further
recommendations based on evolutionary co-clustering. Li et al. [21] argued that the interest of
one user in a specific period will only focus on one or several aspects. Therefore, they proposed
a cross-domain collaborative filtering framework. Experimental results showed that the framework
can not only recommend effectively but also track the user interest drift direction. Ren et al. [22]
argued that in existing recommendation systems, the user’s preference pattern and preference
dynamic effect are both ignored. Therefore, they regularized the preference pattern into a sparse
matrix and then used the corresponding subspace to gradually model personalized and global
preference patterns.

Different from these related works, in this study we use temporal information to construct
the structural relationship between users or items. Based on the structural relationship, the sim-
ilarity is calculated and integrated into the probability matrix decomposition such that a new
recommendation framework is generated.

2.3 Relationship-Based Collaborative Filtering
Traditional collaborative filtering algorithms generally assume that users or items are inde-

pendent. So, they ignore the structural connection between users or items. Recommendation
algorithms based on user or item relationship mining incorporate user or item relationships into
existing collaborative filtering algorithms to enrich the information of a single user and hence
improve the accuracy.

One of the core steps of the collaborative filtering algorithm based on relationship mining
is to obtain the relationships between users. At present, the methods for obtaining user relation-
ships are mainly divided into explicit and implicit types. In [23–25], the authors obtained the
connections between users through explicit social network relationships. They added the users’
social relationship matrix to the original scoring matrix, which greatly improved the effectiveness
of the algorithm. Jamali et al. [26] proposed a random walk model using a user trust relationship
network. It finds similar items by performing random walks on social networks, thereby increasing
the source of predicted scores for the target item and reducing the impact of data sparsity. It is
difficult to obtain enough network relationships in the actual system. Zhou et al. [27] used label
information to obtain the implicit relationship matrix for recommendations.

Considering that the above two types of relationship modeling methods are often affected by
the difficulty of collecting large amounts of related data, in this study we mainly use the time
sequence information of user consumption to mine the implicit relationships and integrate user
or item relationships into the matrix factorization model. Finally, a collaborative filtering rec-
ommendation algorithm (termed as TemporalMF) based on time-sequential behavior is designed
for recommendations.

3 Problem Definition and Probability Matrix Factorization

Suppose we have a recommendation system that contains Nu users denoted as � ={
φ1,φ2, . . . ,φNu

}
and contains Np items denoted as Ψ = {

ϕ1,ϕ2, . . . ,ϕNp

}
. The user-item rating

matrix is denoted as �= [�i,j
]
Nu×Np

, in which each element �i,j represents the rating of the i-th

user for the j-th item. The collaborative filtering algorithm uses the probability matrix factorization
model to learn the eigenvector of the user or item and then predicts the unknown rating based
on this eigenvector.
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Let � ∈ R
K×Nu and � ∈ R

K×Np be the eigen matrices of the user and item, respectively.
According to the above definitions, the conditional probability of the existing rating data is defined
as follows:

p
(
�

∣∣∣�,�,σ 2
�

)
=

Nu∏
i=1

Np∏
j=1

[
N

(
�i,j

∣∣∣g(
�T
i �j

)
,σ 2

�
)]S�i,j

, (1)

where N
(
x

∣∣μ,σ 2 )
represents the normal distribution with u and σ 2. S�i,j is a 0–1 function where

if the i-th user rates the j-th item, it returns 1; otherwise, it returns 0. g (x) is a function to map
x to [0, 1]. In this study, g (x)= 1/(1+ e−x) is adopted.

To avoid overfitting, the eigenvectors of the user and items are both assumed to follow the
Gaussian prior distribution with u= 0.

p
(
�

∣∣σ 2
Θ

) = Nu∏
i=1

N
(
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)
,

p
(
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∣∣σ 2
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�j |0, σ 2

ΞI
)
.

(2)

According to Bayesian inference theory, the posterior probability of � and � can be
formulated as:

p
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)
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×
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j=1

N
(
�j|0,σ 2

ΞI
)
. (3)

Figure 1: Graph of probabilistic matrix factorization
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Fig. 1 shows a graph of probability matrix factorization [17]. According to (3), with the user-
item rating matrix, it is easy to learn the corresponding eigenvector.

4 The Proposed TemporalMF

In this section, we give a detailed introduction of TemporalMF from three aspects. Firstly, we
explain how to use the time sequence information of user consumption to mine the interactions
between users or items so as to determine the neighbor set that has the greatest impact on users or
items. Second, we explain how to successfully integrate this neighbor set into collaborative filtering
based on probability matrix factorization. Lastly, detailed steps and computational complexity of
TemporalMF are listed and analyzed.

4.1 Nearest Neighbor Selection Based on Time Sequence Behavior Modeling
In relationship-based matrix factorization, one of the core steps is to obtain a user or

item relationship. Traditional collaborative filtering ignores the consumption time information.
However, the time sequence information can provide some hidden patterns that can be used for
mining relationships between uses and items. In order to discover these potential relationships, we
first introduce a time sequence-based user consumption network, as shown in Fig. 2.

25

5
18

13

45

11

18

4 (60)U

3(105)U

5 (60)U

2 (98)U

1(30)U

Figure 2: User consumption network

We use G = {�,�,�} to represent the network shown in Fig. 2, where � is the user set;
� represents the edge set; and � represents the edge weight matrix. Digits in “( )” represent the
number of items consumed by users. Within a given time period, if users �i and �j consume the
same item one after the other, then the weight �i,j of the edge �i,j increases by 1. By iterating
all the products, we can update the edge weight matrix �. Therefore, we can define the influence
relationship weight as follows:

�i,j =
�i,j

∨ (
�i,�j

) , (4)

where ∨ (A,B) counts the number of same elements both contained in set A and set B. �i,j can be
interpreted as the influence the i-th user has on the j-th user. For example, if the number of items
that users �1 and �2 consume is 100, then the influence �1 imposes on �2 is �1,2 = 5/100= 0.05.
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On the contrary, the influence �2 imposes on �1 is �2,1 = 25/100= 0.25. Therefore, we observe
that the influence is directional, which is more reasonable than the undirected case.

Similarly, a time sequence-based item consumption network can be easily constructed. A toy
example is shown in Fig. 3. Digits in “( )” now represent the number of users who consume the
item; the weight �i,j now represents the number of users who consume the items i and j one by
one. Therefore, the influence relationship weight can be defined as:

�i,j =
�i,j

∨ (
Ψi,Ψj

) . (5)
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Figure 3: Item consumption network

4.2 Matrix Factorization
After mining the influence relationships between the corresponding users or items and finding

the nearest neighbor set, we apply them to the matrix factorization model. As a result, the
eigenvector of the user or item is affected by its nearest neighbors. In other words, similar users
or items should have similar eigenvectors.

�̃i =
∑

v∈neg(i)
�v,i�v,

�̃j =
∑

t∈neg(j)
�t,j�t,

(6)

where neg (i) represents the neighbor set of i (user or item). �̃i and �̃j represent the approximate
eigenvectors, respectively. Unlike [6,8], our algorithm comprehensively considers the dual factors
of the inner characteristics of users or items and the relationships. The eigenvector of each user
or item not only follows the Gaussian prior distribution with μ = 0 to avoid overfitting but also
needs to be similar to the user or item relationship eigenvector. As we consider the time sequence
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information, the influence relationship is clearer and more in line with the actual situation.
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Similar to (3), with Bayesian inference theory, the posterior probability is deduced as follows:
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The probability map model of this model is shown in Fig. 4.
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Figure 3
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Figure 4: Framework of temporalMF recommendation
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To facilitate the solution, the logarithmic of the posterior probability in (9) can be
formulated as
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(10)

Maximizing this posterior probability is equivalent to minimizing the following
objective function:

L (�,�,�,�,�)= 1
2

Nu∑
i=1

Np∑
j=1

S�i,j
(
�i,j− g

(
�T
i �j

))2+ λ�

2

Nu∑
i=1

�T
i �i+ λ�

2

Np∑
i=1

�T
j �j

+ λ�

2

Nu∑
i=1

⎛⎝�i−
∑

v∈neg(i)
�v,i�v

⎞⎠T ⎛⎝�i−
∑

v∈neg(i)
�v,i�v

⎞⎠

+ λ�

2

Np∑
j=1

⎛⎝�j−
∑

t∈neg(j)
�t,j�t

⎞⎠T ⎛⎝�j −
∑

t∈neg(j)
�t,j�t

⎞⎠ . (11)

In (11), λ� = σ 2
�/σ 2

�, λ� = σ 2
�/σ 2

�, λ� = σ 2
�/σ 2

�, λ� = σ 2
�/σ 2

�. By employing the gradient
descent method, we can obtain the eigenvector of each user or item.
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∂L
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where g′ (x) is the derivative of g(x). In this paper, g′ (x)= e−x/
(
1+ e−x

)2.
4.3 Recommendation Algorithm Steps and Computational Complexity Analysis

The recommendation algorithm is divided into four steps:

Step 1: Data reading: The inputs contain the user’s rating information and rating
time information.

Step 2: Neighbor set construction: According to the inputs, we build the consumption network
of users and the consumption network of items. Then, we construct the nearest neighbor set.

Step 3: Probability matrix factorization: We apply the neighbor set to the probability matrix
factorization model to learn the eigenvectors of users and items.

Step 4: Rating matrix reconstruction: Based on the eigenvectors of users and items, we
reconstruct the rating matrix to obtain corresponding recommendations for users.

In our proposed algorithm, the steps that consume many CPU seconds are from two aspects.
One is the consumption network construction and relationship mining. The other is the recom-
mendation based on the obtained influence relationships. Let us take a user-based network as an
example. Suppose that on average each item is consumed by r̂ users. Sort each rating information
according to the user’s rating time and then determine whether the edge weights involving these
users have increased. According to this process, the complexity of creating a user consumption
network for each item is O

(
r̂2

)
, so the time complexity of establishing a user consumption

network for all users is O
(
Nur̂2

)
. Similarly, assuming that on average the number of items each

user consumes is t̂, then the time complexity of constructing the user consumption network of the
item is O

(
Npt̂2

)
. Therefore, the time complexity of constructing the user consumption network

is O
(
Nur̂2+Npt̂2

)
. After we establish this network, we use the network to mine the influence

relationships. Since each user consumes t̂ items on average, each user has t̂ edges in the network.
Therefore, the time complexity of calculating the influence of each user on other users in turn
and sorting is O

(
Nut̂2

)
. Similarly, in the item-based consumption network, this time complexity

is O
(
Npr̂2

)
. According to the above analysis, the total time complexity of the first aspect is

O
((
Nu+Np

)× (
r̂2+ t̂2

))
.

For the second aspect, according to the analysis in [6], the time complexity of the gradient
computation is O

(
Nut̂K +Nul2K +Npr̂K +Npl2K

)
, where l represents the number of neighbors

that affect users. The establishment of the network only needs to traverse the rating information
in turn, without iteration. Besides, r̂ and t̂ are often relatively small, so the total time complexity
of the model is not high and it can be effectively used for big data processing.

Fig. 4 illustrates the specific process of the algorithm, in which each step is
detailed introduced.
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5 Experimental Results

In this section, we first briefly introduce the datasets used in our experiments and then
describe the evaluation criteria and comparison algorithms. Finally, we give the comparative
experimental results of our proposed model and comparison algorithms.

5.1 Datasets
In order to compare the impact of different information and relationships on the recom-

mendation results, the experimental datasets should contain rating information, label information,
and user social relationships. To this end, we collected such data from the Douban website
as our experimental datasets. Douban is a very popular website for evaluating, discussing, and
recommending movies, books, and music. The site can provide users with ratings, discussions, and
recommendations. It has the largest data of books, music, and movies in China and is one of the
largest online communities in China. On the website, each user can rate books, music, or movies
within the range [1,5]. In addition, Douban also provides a Facebook-like social relationship
service, which allows users to discover their friends via e-mail addresses. In summary, the Douban
data is suitable for our experimental studies.

The dataset we used in this study is listed in Tab. 1, which contains two groups of data.
One group is the user’s rating information on the book, the user’s social relationship, and
tag information. The other group is the user’s rating information on the movie and other
corresponding information.

Table 1: Douban dataset

Information Item type

Books Movies

#Users 23944 9601
#Items 219725 44779
#Tags 74095 50530
Rating records 1642111 1960682
Social relationships 588269 91945

5.2 Evaluation Criteria
We adopt RMSE [28–30] as the evaluation criteria in this study:

RMSE =
√∑C

i=1 (pi− ri)2

C
, (14)

where {p1,p2, . . . ,pC} represents the predictive vector, and {r1, r2, . . . , rC} represents the ground-
truth vector.

5.3 Comparison Algorithms and Parameter Settings
We selected four methods as comparison algorithms. They are PMF, BPTF, SocialMF,

and TagMF. In our experiments, we referred to the original references to set their
corresponding parameters.
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5.4 Experimental Results and Analysis
In this section, we report our experiments from three aspects, namely the performance with

different dimensions of the eigenvector, the computational complexity, and the robustness analysis.

First, we set the dimension of the eigenvector K to 5, 10, and 20, respectively.
Tab. 2 shows the RMSEs of all algorithms with different K. We observe that our pro-
posed algorithm achieves the best performance with each K. We obtained the following
important results.

Table 2: RMSEs of all algorithms with different K

Algorithms K = 5 K = 10 K = 20

Books Movies Books Movies Books Movies

PMF 0.7511 0.7358 0.7465 0.7327 0.7435 0.7311
BPTF 0.7317 0.7279 0.7267 0.7231 0.7242 0.7228
SocialMF 0.7339 0.7309 0.7307 0.7269 0.7289 0.7245
TagMF 0.7298 0.7267 0.7240 0.7235 0.7219 0.7218
TemporalMF 0.7294 0.7251 0.7238 0.7229 0.7217 0.7208

(1) With the increase of K, the accuracy of the algorithm improved slightly. However, it should
be noted that the increase of K will also increase the time complexity of the model to a
certain extent.

(2) Compared with PMF, the performance of BPTF, TagMF, SocialMF, and the proposed
algorithm is significantly improved, which indicates that the relationship between temporal
information and users (items) plays a greater role in improving the accuracy of traditional
collaborative filtering algorithms.

(3) Compared with SocialMF, the performance of BPTF is improved, which is mainly caused
by the sparse social relationships displayed in SocialMF. Compared with TagMF and
TemporalMF, the results of BPTF are slightly worse.

(4) Compared with TagMF and our method, SocialMF performs a little worse, which is mainly
because SocialMF does not consider the relationships between items. In addition, SocialMF
does not consider the direction of the relationship between friends.

(5) Compared with TagMF, the proposed algorithm outperforms substantially, which indicates
that the impact relationship proposed in this article can effectively improve the accuracy
of the algorithm. In addition, because the proposed algorithm only requires simple time
information, from the perspective of information acquisition and applicable scope, the
proposed algorithm also has an advantage.

The experimental results show that the proposed algorithm performs the best compared to
traditional PMFs, which fully illustrates the rationality and effectiveness of the impact relationship
proposed in this paper. Compared to SocialMF, TagMF, and BPTF, although the improvement
is not very significant, in actual recommendation systems, the social network relationships or
tag information required by SocialMF and TagMF are often difficult to obtain or extremely
sparse, whereas the proposed algorithm only requires time information that is very easy to obtain.
Therefore, the proposed algorithm can be widely used in many practical applications.
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Tab. 3 gives the CPU seconds of each iteration for all algorithms under the environment of
Intel Core i3 CPU, 2.67 GHZ, Windows 7 system, 8 GB memory.

Table 3: CPU seconds of each iteration all algorithms consume

Algorithms Books Movies

PMF 1.7 1.9
BPTF 15.2 18.6
SocialMF 2.9 2.7
TagMF 4.2 3.9
TemporalMF 4.4 4.0

We see that the consumed CPU seconds of BPTF are much higher than other algorithms. This
is mainly because BPTF consumes too many CPU seconds for Markov Monte Carlo training, so
the computational complexity of BPTF is high. In addition, Tab. 3 also indicates that the more
relationships there are, the higher is the computational complexity. In general, the CPU seconds
taken by TemporalMF are acceptable. For PMF and BPTF, the CPU seconds on books are less
than that on movies. The rest of the algorithms are the opposite. This is mainly because PMF and
BPTF do not consider neighbor relationships, so their computational complexity is only related to
the amount of rating data in the training set. The rating data for books is scarce compared to the
rating data for movies Tab. 1, so books requires fewer CPU seconds. The rest of the algorithms
take the neighbor relationships into account. Since the books dataset contains more users and
items than the movies dataset, algorithms consume more CPU seconds for books.

In TemporalMF, the parameter λ can measure the degree to which users or items are affected
by their relationship information. The larger the λ, the greater is the effect that the user or item
has on the algorithm relationships. In order to reduce complexity in this experiment, we set λΩ =
λΠ = λ. The values of λ are set to 0.1, 0.5, 1, 5, 10, and 20, respectively. In addition, we set
K to 5. Fig. 5 shows the performance of TemporalMF with different λ on books and movies.
According to the results, we can see that parameter λ has a greater impact on TemporalMF. With
the increase of λ, the performance of TemporalMF improves. This fully illustrates the reliability
of the relationships obtained by the temporal information in this article and the benefit of the
introduction of the relationships to the algorithm. We found when λ increases to 20, its impact
on TemporalMF starts to decline. This is mainly due to the over-fitting of the algorithm caused
by λ being too large, which leads to a decrease in accuracy.

In order to compare the effects of the algorithms under different sparsity conditions, we use
the number of user ratings as a basis for dividing the users in the training set into four groups,
namely [0:10], [10:100], [100, 500], and [500, inf]. Fig. 6 illustrates the proportion of each group
of users in the two sets of data.

After dividing the data accordingly, we use the training set to learn the corresponding model
and then calculate RMSE for the four groups of users on the test set. We observe that:

• In the case of extremely sparse data (the number of scores is less than 10), the improvement
effect of TemporalMF is not obvious, and it is worse than SocialMF and TagMF that
introduce additional information. This is mainly because the sparse data will cause the
network graph created by TemporalMF to be extremely sparse, which affects its accuracy.
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BPTF introduces parameter training methods, so it performs better than TemporalMF.
However, TemporalMF is still better than traditional PMF.

• When user rating data increases, TemporalMF is better than TagMF, SocialMF, and BPTF,
which further proves that the impact relationships introduced in this article can effectively
improve the accuracy of the recommendation system.
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Table 4: RMSEs of all algorithms with different number of user scores (book)

[0, 10) [10, 100) [100, 500) [500, inf)

PMF 0.8411 0.7504 0.7321 0.7777
BPTF 0.8324 0.7402 0.7158 0.7320
SocialMF 0.8301 0.7423 0.7256 0.7541
TagMF 0.8227 0.7354 0.7148 0.7318
TemporalMF 0.8400 0.7258 0.7125 0.7320

It can also be seen from Tabs. 4 and 5 that no matter whether it is TemporalMF or other
algorithms, the RMSE results do not continue to decrease with the increase in the number of
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ratings. When the number of ratings is 500 and higher, the effect of the algorithm begins to
decline. This is mainly because when the number of scores is small, the sparseness of the data
affects the performance of the algorithm. At this time, the model is prone to over-fitting. The
training accuracy is good, but the accuracy on the test samples is poor. As the number of scores
increases, the data gradually becomes denser, thereby alleviating the impact of sparse data, and
the effect of the algorithm gradually becomes better. When the scored training samples pass After
more, the user’s interest will diverge. This will cause the model to fail to learn the user’s feature
preferences, which will affect the accuracy of the model. Therefore, controlling the number of
samples has a certain impact on the prediction effect of the model. It can be seen from Tabs. 4
and 5 that for the dataset of this article, when the number of user samples is (100–500), the
algorithm works best.

Table 5: RMSEs of all algorithms with different number of user scores (movie)

[0, 10) [10, 100) [100, 500) [500, inf)

PMF 0.8588 0.7501 0.7378 0.7458
BPTF 0.8574 0.7408 0.7305 0.7402
SocialMF 0.8361 0.7410 0.7304 0.7403
TagMF 0.8114 0.7408 0.7304 0.7406
TemporalMF 0.8362 0.7407 0.7302 0.7402

6 Conclusions

This study uses temporal information to establish a user (item) consumption network.
Through this network, the user (item) potential interaction relationship and the nearest neighbor
set are found. Then, they are incorporated into a matrix filtering-based collaborative filtering
recommendation algorithm. As a result, the accuracy of score prediction is improved. Since the
consumption time information is easier to obtain compared to social network information and tag
information, the application of collaborative filtering recommendation algorithms based on tempo-
ral behavior is more widely possible. Experiments on Douban recommendation datasets show that
this method has strengths compared with traditional recommendation algorithms. In future work,
we will further study the challenges in this method arising from solving the problem of a sparse
consumption network and the cold start of users and items. In addition, the relationship acqui-
sition method we propose is not limited to the probability matrix decomposition algorithm. We
can also consider applying this technique to other matrix factorization methods. In future work,
we will also study the use of this method to further improve the recommendation predictions.
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