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ABSTRACT

This paper is dedicated to implementing and presenting numerical algorithms for solving some linear and non-
linear even-order two-point boundary value problems. For this purpose, we establish new explicit formulas for
the high-order derivatives of certain two classes of Jacobi polynomials in terms of their corresponding Jacobi
polynomials. These two classes generalize the two celebrated non-symmetric classes of polynomials, namely,
Chebyshev polynomials of third- and fourth-kinds. The idea of the derivation of such formulas is essentially based
on making use of the power series representations and inversion formulas of these classes of polynomials. The
derived formulas serve in converting the even-order linear differential equations with their boundary conditions
into linear systems that can be efficiently solved. Furthermore, and based on the first-order derivatives formula
of certain Jacobi polynomials, the operational matrix of derivatives is extracted and employed to present another
algorithm to treat both linear and nonlinear two-point boundary value problems based on the application of the
collocation method. Convergence analysis of the proposed expansions is investigated. Some numerical examples
are included to demonstrate the validity and applicability of the proposed algorithms.

KEYWORDS
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1 Introduction

It is well-known that the Chebyshev polynomials play vital roles in the scope of mathematical
analysis and its applications. The first- and second-kinds are special symmetric polynomials of
the Jacobi polynomials, so they are ultraspherical polynomials. These two kinds of Chebyshev
polynomials are the most popular kinds, and they are employed extensively in numerical analysis,
see for example [1–4]. There are other four kinds of Chebyshev polynomials. Third- and fourth-
kinds are also special kinds of Jacobi polynomials, but they differ from the first- and second-kinds
since they are not ultraspherical polynomials. In fact, they are non-symmetric Jacobi polynomials
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with certain parameters. There are considerable publications devoted to investigating these kinds
of polynomials from both theoretical and practical points of view. For some articles in this
direction, one can be referred to [5–7]. Fifth- and sixth-kinds of Chebyshev polynomials are not
special cases of the Jacobi polynomials. These polynomials were first established by Jamei in
his Ph.D. dissertation [8]. Recently, these kinds of polynomials have been employed for treating
numerically some types of differential equations, see [9–11].

Spectral methods are essential in numerical analysis. These methods have been utilized fruit-
fully for obtaining numerical solutions of various kinds of differential and integral equations.
The philosophy in the application of spectral methods is based on writing the desired numer-
ical solution in terms of certain “basis functions,” which may be expressed as combinations
of various orthogonal polynomials. There are three celebrated spectral methods; they are tau,
collocation, and Galerkin methods. Galerkin method is based on choosing suitable combinations
of orthogonal polynomials satisfying the underlying boundary/initial conditions [12]. Tau method
is more flexible than the Galerkin method due to the freedom in choosing the basis functions.
Collocation method is the most popular method because of its capability to treat all kinds of
differential equations. There are considerable contributions employ this method in different types
of differential equations [13–15]. For a survey on spectral methods and their applications, one can
consult [16–21].

The problems of establishing derivatives and integrals formulas of different orthogonal poly-
nomials in terms of their original polynomials are of great interest. These formulas play important
parts in obtaining spectral solutions of various differential equations. For example, the authors
in [5,6] derived explicit formulas of the high-order derivatives and repeated integrals of Chebyshev
polynomials of third- and fourth-kinds, and after that, they utilized the derived formulas for
obtaining spectral solutions of some boundary value problems (BVPs).

Boundary value problems have important roles due to their appearance in almost all branches
related to applied sciences such as engineering, fluid mechanics, and optimization theory (see, [22]).
Some examples concerning applications of BVPs are given with details in [22]. Moreover, the
author showed that, at some times, it is more appropriate to transform high-order BVPs into
systems of differential equations. Many real-life phenomena can be described by high-order BVPs.

Regarding the even-order BVPs, they arise in numerous problems. The free vibrations analysis
of beam structures is governed by a fourth-order ordinary differential equation [23]. The vibration
behavior of a ring structures is governed by a sixth-order ordinary differential equation [24].
Eighth-order BVPs arise in torsional vibration of uniform beams [25]. In addition, 10th- and
12th-orders appear in applications. When a uniform magnetic field is applied across the fluid
in the same direction as gravity. Ordinary convection and overstability yield a 10th-order and
a 12th-order BVPs, respectively [26]. For applications regarding the high-order BVPs appear in
hydrodynamic and hydromagnetic stability, fluid dynamics, astronomy, beam and long wave theory
[27,28]. For some other applications of these kinds of problems, one can be referred to [29–31].

Several studies were performed for the numerical solutions of these types of equations. Some
of the algorithms treat these kinds are the perturbation and homotopy perturbation methods
in [32], differential transform methods in [26] and spectral methods in [15,33–37].

The main objectives of this article can be summarized in the following items:

• Deriving high-order derivatives formulas of certain classes of polynomials that generalize
Chebyshev polynomials of the third- and fourth-kinds.
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• Implementing and analyzing an algorithm for the numerical solutions of even-order linear
BVPs based on the application of the spectral Galerkin method.

• Introducing a collocation algorithm for treating both linear and nonlinear BVPs.

The current paper is organized as follows. In Section 2, we give some relevant properties of
Jacobi polynomials. In Section 3, we derive in detail two new formulas which give explicitly the
high-order derivatives of Jacobi polynomials whose parameters difference is one. In Section 4, we
present a spectral Galerkin algorithm for solving some high even-order linear BVPs with constant
coefficients. Section 5 is devoted to presenting another algorithm for treating linear and nonlinear
BVPs based on the application of a suitable collocation algorithm. Section 6 is interested in
solving the connection problem between certain Jacobi polynomials and the Legendre polynomials.
In Section 7, we investigate the convergence and error analysis of the proposed expansion in
Section 5. In Section 8, we present some numerical examples including comparisons with some
other methods to ascertain the accuracy and efficiency of the proposed algorithms presented in
Sections 4 and 5. Finally, some conclusions are reported in Section 9.

2 Some Fundamental Properties of Jacobi Polynomials

The classical Jacobi polynomials P(α,β)m (x) (m= 0, 1, 2, . . .), is a polynomial of degree m which
can be defined in hypergeometric form as

P(α,β)m (x)= �(m+α+ 1)
m!�(α+ 1) 2F1

(
−m,m+ θ ;α+ 1

∣∣∣∣1−x
2

)

= �(m+β + 1)
m!�(β+ 1) 2F1

(
−m,m+ θ ;β + 1

∣∣∣∣1+x
2

)
,

where

θ = α+β + 1.

It is easy to see the following special values

P(α,β)m (−x)= (−1)mP(β,α)m (x),

P(α,β)m (1)= �(m+α+ 1)
m!�(α+ 1)

, P(α,β)m (−1)= (−1)m�(m+β + 1)
m!�(β+ 1)

. (1)

It is desirable to define the normalized orthogonal Jacobi polynomials as [38]

J(α,β)m (x)= m!�(α+ 1)
�(m+α+ 1)

P(α,β)m (x), (2)

which gives J(α,β)m (1)= 1 (m= 0, 1, 2, . . .). We have the following six special cases of the normalized
Jacobi polynomials.

C(α)m (x)= J
(α− 1

2 ,α− 1
2 )

m (x), Tm(x)= J
(− 1

2 ,− 1
2 )

m (x),

Um(x)= (m+ 1)J
( 12 ,

1
2 )

m (x), Vm(x)= J
(− 1

2 ,
1
2 )

m (x),

Wm(x)= (2m+ 1)J
( 12 ,− 1

2 )
m (x), Pm(x)= J(0,0)m (x),
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where C(α)m (x), Tm(x), Um(x), Vm(x), Wm(x) and Pm(x) are the ultraspherical, Chebyshev of the
first-, second-, third- and fourth-kinds, and the Legendre polynomials, respectively.

The polynomials J(α,β)m (x) may be generated using the following recurrence relation:

2(m+ θ)(m+α+ 1)(2m+ θ − 1)J(α,β)m+1 (x)

= (2m+ θ − 1)(2m+ θ)(2m+ θ + 1)xJ(α,β)m (x)

+ (α2−β2)(2m+ θ)J(α,β)m (x)− 2m(m+β)(2m+ θ + 1)J(α,β)m−1 (x), m= 1, 2, . . . , (3)

with the initial values:

J(α,β)0 (x)= 1, J(α,β)1 (x)= 1
2(α+ 1)

[α−β + (θ + 1)x].

The orthogonality relation satisfied by J(α,β)n (x) is given by:∫ 1

−1
(1−x)α(1+x)βJ(α,β)m (x)J(α,β)n (x)dx= hα,βn δmn, (4)

where δmn is the well-known Kronecker delta function, and

hα,βn = 2θn!�(n+β+ 1) [�(α+ 1)]2

(2n+ θ)�(n+ θ)�(n+α+ 1)
.

The special values

DqJ(α,β)m (1)=
q−1∏
k=0

(m− k)(m+ k+ θ)
2(k+α+ 1)

, (5)

DqJ(α,β)m (−1)= (−1)m+q�(α+ 1)�(m+β + 1)
�(β+ 1)�(m+α+ 1)

DqJ(β,α)m (1), (6)

will be of important use later.

It is useful to extend the Jacobi polynomials on a general interval [a,b]. In fact, the shifted
Jacobi polynomials can be defined on [a,b] by

J̃(α,β)i (x)= J(α,β)i

(
2x− a− b
b− a

)
. (7)

Hence, properties and relations concerned with the Jacobi polynomials J(α,β)i (x) can be easily

transformed to give their counterparts for the shifted polynomials J̃(α,β)i (x).

For our upcoming computations, we need the orthogonality relation of J̃(α,α+1)
n (x) on [a,b].

This relation is given explicitly as:∫ b

a
(b−x)α(x− a)α+1J̃(α,α+1)

m (x)J̃(α,α+1)
n (x)dx= h̃αnδmn, (8)
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where h̃αn is given by:

h̃αn =
(b− a)2α+2n! [�(α+ 1)]2

2�(n+ 2α+ 2)
. (9)

3 The qth Derivative of J̃
(α,α+1)
n (x) and J̃

(α+1,α)

n (x)

The main objective of this section is to state and prove two theorems which express the high-

order derivatives of the shifted Jacobi polynomials J̃(α,α+1)
n (x) and J̃(α+1,α)

n (x) in terms of their
original polynomials. The basic idea behind the derivation of the desired formulas is built on
employing the power form representation and the inversion formula of the Jacobi polynomials

J(α,α+1)
n (x). Now, the following three lemmas are essential in this regard.

Lemma 3.1. The explicit power form of the normalized Jacobi polynomials J(α,α+1)
n (x), n≥ 1,

is given by

J(α,α+1)
n (x)=

[ n2 ]∑
k=0

an,kx
n−2k+

[ n2 ]∑
k=0

bn,kx
n−2k−1, (10)

where

an,k =
(−1)kn!�(α+ 1)2n−2k+2α+1�

(
n− k+α+ 3

2

)
√
πk! (n− 2k)!�(n+ 2α+ 2)

, (11)

and

bn,k =
(−1)k+1n!�(α+ 1)2n−2k+2α�

(
n− k+α+ 1

2

)
√
πk! (n− 2k− 1)!�(n+ 2α+ 2)

, (12)

where [z] represents the largest integer less than or equal to z.

Proof. We proceed by induction on n. Assume that relation (10) is valid for (n−1) and (n−2),
and we have to prove the validity of (10) itself. Starting with the recurrence relation (3), (for the
case β = α+ 1) in the form

J(α,α+1)
n (x)= (αnx+βn)J(α,α+1)

n−1 (x)+ γnJ(α,α+1)
n−2 (x), (13)

where

αn = 2n+ 2α+ 1
n+ 2α+ 1

, βn= −(2α+ 1)
(n+ 2α+ 1)(2n+ 2α− 1)

,

γn= −(n− 1)(2n+ 2α+ 1)
(n+ 2α+ 1)(2n+ 2α− 1)

,
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then, the application of the induction hypothesis twice yields

J(α,α+1)
n (x)= αn

⎧⎪⎨
⎪⎩

[ n−1
2 ]∑

k=0

an−1,kx
n−2k+

[ n−1
2 ]∑

k=0

bn−1,kx
n−2k−1

⎫⎪⎬
⎪⎭

+βn

⎧⎪⎨
⎪⎩

[ n−1
2 ]∑

k=0

an−1,kx
n−2k−1+

[ n−1
2 ]∑

k=0

bn−1,kx
n−2k−2

⎫⎪⎬
⎪⎭

+ γn

⎧⎨
⎩

[ n2 ]−1∑
k=0

an−2,kx
n−2k−2+

[ n2 ]−1∑
k=0

bn−2,kx
n−2k−3

⎫⎬
⎭ . (14)

Eq. (14) may be written in the form

J(α,α+1)
n (x)=

∑
1

+
∑
2

,

where

∑
1

=
(
βnbn−1, n2−1+γnan−2, n2−1

)
δn+αnan−1,0x

n+
[ n−1

2 ]∑
k=1

{
αnan−1,k+βnbn−1,k−1+γnan−2,k−1

}
xn−2k,

∑
2

=(
αnbn−1,0+βnan−1,0

)
xn−1+

[ n−1
2 ]∑

k=1

{
αnbn−1,k+βnan−1,k+γnbn−2,k−1

}
xn−2k−1,

and δn =
{
1, n even,
0, n odd.

It is not difficult to see that

αnan−1,k+βnbn−1,k−1+ γnan−2,k−1 = an,k, 1≤ k≤
[
n−1
2

]
,

αnbn−1,k+βnan−1,k+ γnbn−2,k−1 = bn,k, 1≤ k≤
[
n−1
2

]
,

αnan−1,0 = an,0, βnbn−1, n2−1+ γnan−2, n2−1 = an, n2 , αnbn−1,0+βnan−1,0 = bn,0,

where an,k, bn,k are given by (11) and (12), respectively. Therefore

∑
1

=
[ n2 ]∑
k=0

an,kx
n−2k,
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and

∑
2

=
[ n2 ]∑
k=0

bn,kx
n−2k−1,

and this completes the proof of formula (10).

Lemma 3.2. For all m ∈Z
+, the following inversion formula holds

xm =
[m2 ]∑
i=0

ci,mJ
(α,α+1)
m−2i (x)+

[
m−1
2

]∑
i=0

di,mJ
(α,α+1)
m−2i−1(x), (15)

where

ci,m =
√
πm! 2−m−2α−1�(m− 2i+ 2α+ 2)

i!�(α+ 1)(m− 2i)!�
(
m− i+α+ 3

2

) ,
and

di,m =
√
πm! 2−m−2α−1�(−2i+m+ 2α+ 1)

i!�(α+ 1)(m− 2i− 1)!�
(
m− i+α+ 3

2

) .
Proof. We proceed by induction on m. For m = 1, the left-hand side equals the right-hand

side. Assume that relation (15) is valid, and we have to show that

xm+1 =

[
m+1
2

]∑
i=0

ci,m+1J
(α,α+1)
m−2i+1(x)+

[m2 ]∑
i=0

di,m+1J
(α,α+1)
m−2i (x). (16)

Multiplying both sides of relation (15) by x, then with the aid of relation (3), (for the case
β = α+ 1), and after some rather manipulation, Eq. (16) can be proved.

Lemma 3.3. For every nonnegative integer m, we have

m∑
j=0

(−1)j�
(
−j+ n+α+ 1

2

)
j! (m− j)!�

(
−j+ n− q−m+α + 3

2

) =
(q+m− 1)!�

(
n−m+α+ 1

2

)
(q− 1)!m!�

(
n− q−m+α+ 3

2

) . (17)

Proof. If we set

Sn,q,m =
m∑
j=0

(−1)j�
(
−j+ n+α+ 1

2

)
j! (m− j)!�

(
−j+ n− q−m+α+ 3

2

) ,
then, with the aid of Zeilberger’s algorithm [39], Sn,q,m satisfies the following first-order recurrence
relation:

(q+m)(2n− 2q− 2m+ 2α+ 1)Sn,q,m− (m+ 1)(2n− 2m+ 2α− 1)Sn,q,m+1 = 0, (18)
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with the initial value

Sn,q,0 =
�(n+α+ 1

2 )

�(n− q+α+ 3
2 )
.

The exact solution for this recurrence relation is

Sn,q,m=
(q+m− 1)!�

(
n−m+α+ 1

2

)
(q− 1)!m!�

(
n− q−m+α+ 3

2

) .
This proves Lemma 3.3.

Now, we are in a position to state and prove the desired derivatives formula.

Theorem 3.1. The derivatives of the normalized shifted Jacobi polynomials J̃(α,α+1)
n (x) of any

degree and for any order in terms of J̃(α,α+1)
n (x) are given explicitly by

DqJ̃(α,α+1)
n (x)=

[
n−q
2

]∑
m=0

Ãn,m,qJ̃
(α,α+1)
n−2m−q(x)+

[
n−q−1

2

]∑
m=0

B̃n,m,qJ̃
(α,α+1)
n−2m−q−1(x), (19)

where

Ãn,m,q=
22qn! (q+m− 1)!�

(
n−m+α+ 3

2

)
�(n− q− 2m+ 2α+ 2)

(b− a)qm! (q− 1)! (n− q− 2m)!�
(
n− q−m+α+ 3

2

)
�(n+ 2α+ 2)

, (20)

and

B̃n,m,q=
22qn! (q+m)!�

(
n−m+α+ 1

2

)
�(n− q− 2m+ 2α+ 1)

(b− a)qm! (q− 1)! (n− q− 2m− 1)!�
(
n− q−m+α+ 3

2

)
�(n+ 2α+ 2)

. (21)

Proof. We prove the theorem for [a,b]≡ [−1, 1], that is, we prove the following formula:

DqJ(α,α+1)
n (x)=

[
n−q
2

]∑
m=0

An,m,qJ
(α,α+1)
n−2m−q(x)+

[
n−q−1

2

]∑
m=0

Bn,m,qJ
(α,α+1)
n−2m−q−1(x), (22)

where

An,m,q=
2qn! (q+m− 1)!�

(
n−m+α+ 3

2

)
�(n− q− 2m+ 2α+ 2)

m! (q− 1)! (n− q− 2m)!�
(
n− q−m+α+ 3

2

)
�(n+ 2α+ 2)

, (23)

and

Bn,m,q=
2qn! (q+m)!�

(
n−m+α+ 1

2

)
�(n− q− 2m+ 2α+ 1)

m! (q− 1)! (n− q− 2m− 1)!�
(
n− q−m+α+ 3

2

)
�(n+ 2α+ 2)

. (24)
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If we differentiate Eq. (10) q-times with respect to x, and noting the identity

Dqxi = (i− q+ 1)qxi−q,

then, we get

DqJ(α,α+1)
n (x)=

[
n−q
2

]∑
k=0

en,k,qx
n−2k−q+

[
n−q−1

2

]∑
k=0

fn,k,qx
n−2k−q−1, (25)

where

en,k,q=
(−1)kn!�(α+ 1)2n−2k+2α+1�

(
n− k+α+ 3

2

)
√
πk!�(n+ 2α+ 2)(n− 2k− q)!

, (26)

fn,k,q=
(−1)k+1n!�(α+ 1)2n−2k+2α�

(
n− k+α+ 1

2

)
√
πk!�(n+ 2α+ 2)(n− 2k− q− 1)!

. (27)

Making use of relation (15), enables one to write

DqJ(α,α+1)
n (x)=

∑
1

+
∑
2

,

where

∑
1

=

[
n−q
2

]∑
k=0

en,k,q

[
n−q
2

]
−k∑

i=0

ci,n−2k−qJ
(α,α+1)
n−q−2k−2i(x)+

[
n−q−1

2

]∑
k=0

fn,k,q

[
n−q
2

]
−k−1∑

i=0

di,n−2k−q−1J
(α,α+1)
n−q−2k−2i−2(x),

and

∑
2

=

[
n−q
2

]∑
k=0

en,k,q

[
n−q−1

2

]
−k∑

i=0

di,n−2k−qJ
(α,α+1)
n−q−2k−2i−1(x)+

[
n−q−1

2

]∑
k=0

fn,k,q

[
n−q−1

2

]
−k∑

i=0

ci,n−2k−q−1J
(α,α+1)
n−q−2k−2i−1(x).

Expanding
∑
1

and
∑
2

and collecting similar terms, then after some rather manipulation,

we get

DqJ(α,α+1)
n (x)=

[
n−q
2

]∑
m=0

An,m,qJ
(α,α+1)
n−2m−q(x)+

[
n−q−1

2

]∑
m=0

Bn,m,qJ
(α,α+1)
n−2m−q−1(x),

where

An,m,q=
m∑
j=0

{
en,j,qcm−j,n−q−2j+ fn,j,qdm−j−1,n−q−2j−1

}
, (28)
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and

Bn,m,q=
m∑
j=0

{
en,j,qdm−j,n−q−2j+ fn,j,qcm−j,n−q−2j−1

}
. (29)

Now, it is not difficult to show that

en,j,qcm−j,n−q−2j+ fn,j,qdm−j−1,n−q−2j−1

=
(−1)j2q−1n! (2n− 2m+ 2α+ 1)�

(
n− j+α+ 1

2

)
�(n− q− 2m+ 2α+ 2)

j! (m− j)! (n− q− 2m)!�(n+ 2α+ 2)�
(
n− j− q−m+α+ 3

2

) ,

and

en,j,qdm−j,n−q−2j+ fn,j,qcm−j,n−q−2j−1

=
(−1)j2qn! (q+m)�

(
n− j+α+ 1

2

)
�(n− q− 2m+ 2α+ 1)

j! (m− j)!�(n+ 2α+ 2)(n− q− 2m− 1)!�
(
n− j− q−m+α+ 3

2

) .
Finally, making use of Lemma 3.3, An,m,q and Bn,m,q take the forms

An,m,q=
2qn! (q+m− 1)!�

(
n−m+α+ 3

2

)
�(n− q− 2m+ 2α+ 2)

m! (q− 1)! (n− q− 2m)!�
(
n− q−m+α+ 3

2

)
�(n+ 2α+ 2)

,

and

Bn,m,q=
2qn! (q+m)!�

(
n−m+α+ 1

2

)
�(n− q− 2m+ 2α+ 1)

m! (q− 1)! (n− q− 2m− 1)!�
(
n− q−m+α+ 3

2

)
�(n+ 2α+ 2)

.

Replacing x in (22) by
(
2x− a− b
b− a

)
, formula (19) can be obtained. This completes the proof

of Theorem 3.1.

Remark 3.1. It is to be noted here that relation (19) may be written in the alternative form

DqJ̃(α,α+1)
n (x)=

n−q∑
i=0

Ẽn,i,qJ̃
(α,α+1)
i (x), (30)
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where

Ẽn,i,q= 22qn!�(i+ 2α+ 2)
(b− a)qi! (q− 1)!�(n+ 2α+ 2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n− i+ q− 2

2

)
! �

(
n+ i+ q+ 2α+ 3

2

)
(
n− i− q

2

)
!�

(
n+ i− q+ 2α+ 3

2

) , (n+ i+ q) even,

(
n− i+ q− 1

2

)
! �

(
n+ i+ q+ 2α+ 2

2

)
(
n− i− q− 1

2

)
! �

(
n+ i− q+ 2α+ 4

2

) , (n+ i+ q) odd.

(31)

Remark 3.2. As a direct consequence of relation (30), the qth derivative of J̃(α+1,α)
n (x) can be

easily deduced. This result is given in the following theorem.

Theorem 3.2. The derivatives of the normalized Jacobi polynomials J̃(α+1,α)
n (x) of any degree

and for any order in terms of J̃(α+1,α)
n (x) are given explicitly by

DqJ̃(α+1,α)
n (x)=

[
n−q
2

]∑
m=0

F̃n,m,q J̃
(α+1,α)
n−2m−q(x)+

[
n−q−1

2

]∑
m=0

G̃n,m,q J̃
(α+1,α)
n−2m−q−1(x), (32)

where F̃n,m,q and G̃n,m,q are given as:

F̃n,m,q= n− 2m− q+α+ 1
n+α+ 1

Ãn,m,q, G̃n,m,q= −(n− 2m− q+α)
n+α+ 1

B̃n,m,q,

and Ãn,m,q and B̃n,m,q are given, respectively, in (20) and (21), or alternatively in the form

DqJ̃(α+1,α)
n (x)=

n−q∑
i=0

H̃n,i,qJ̃
(α+1,α)
i (x), (33)

where

H̃n,i,q= (−1)n+i+q(i+α+ 1)
n+α+ 1

Ẽn,i,q,

and Ẽn,i,q is given by (31).

As two direct consequences of Theorems 3.1 and 3.2, the formulas for the high-order
derivatives of Chebyshev polynomials of third- and fourth-kinds in terms of their corresponding
Chebyshev polynomials can be deduced. These results are given in the following two corollaries.
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Corollary 3.1. The derivatives of Chebyshev polynomials of third-kind Vn(x) on [−1, 1] of
any degree and for any order in terms of their original polynomials are given by the following
explicit formula:

DqVn(x)=

[
n−q
2

]∑
m=0

2q(n−m)! (m+ q− 1)!
m! (q− 1)! (n−m− q)!

Vn−2m−q(x)+

[
n−q−1

2

]∑
m=0

2q(n−m− 1)! (m+ q)!
m! (q− 1)! (n−m− q)!

Vn−2m−q−1(x).

(34)

Corollary 3.2. The derivatives of Chebyshev polynomials of fourth-kind Wn(x) on [−1, 1] of
any degree and for any order in terms of their original formulas are given by

DqWn(x)=

[
n−q
2

]∑
m=0

2q(n−m)! (m+ q− 1)!
m! (q− 1)! (n−m− q)!

Wn−2m−q(x)−

[
n−q−1

2

]∑
m=0

2q(n−m− 1)! (m+ q)!
m! (q− 1)! (n−m− q)!

Wn−2m−q−1(x).

(35)

Remark 3.3. The results of Corollaries 3.1 and 3.2 are in complete agreement with those
obtained in [6].

Remark 3.4. From now on, we will employ only the polynomials J(α,α+1)
n and their shifted

ones J̃(α,α+1)
n which will be denoted, respectively, by J(α)n and J̃(α)n . All corresponding results using

the polynomials J(α+1,α)
n and their shifted ones J̃(α+1,α)

n (x) can be obtained similarly.

4 The Solution of High Even-Order Differential Equations Using J̃
(α)

n (x)

This section is confined to analyzing in detail a spectral Galerkin algorithm for treating

numerically even-order BVPs. We will employ the shifted Jacobi polynomials J̃(α)n (x).

Now, consider the following even-order BVPs:

(−1)nD2nu(x)+
2n−1∑
i=1

ξiηiDiu(x)+ η0u(x)= g(x), x ∈ (a,b), n� 1, (36)

governed by the boundary conditions:

Dju(a)=Dju(b)= 0, j= 0, 1, . . . ,n− 1, (37)

where D≡ d
dx

, and {ηi, i= 0, 1, . . . , 2n− 1} are constant coefficients and ξi is defined as

ξi =
{
(−1)

i
2 , i even,

(−1)
i+1
2 , i odd.
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The philosophy of applying the Galerkin method to solve (36)–(37) is based on choosing
basis functions satisfying the boundary conditions (37), and after that, enforcing the residual of
Eq. (36) to be orthogonal to these functions. Now, if we set

J̃N = span{J̃(α)0 (x), J̃(α)1 (x), J̃(α)2 (x), . . . , J̃(α)N (x)},
SN = {p(x) ∈ J̃N : Djp(a)=Djp(b)= 0, j= 0, 1, . . . ,n− 1},
then, to apply the shifted Jacobi–Galerkin method for solving (36)–(37), we have to find unN ∈ SN
such that

(
(−1)nD2nunN(x),p(x)

)
w
+

2n−1∑
i=1

ξiηi
(
DiunN(x),p(x)

)
w+η0

(
unN(x),p(x)

)
w=(g(x),p(x))w , ∀p(x)∈SN ,

(38)

where w(x)= (b−x)α(x− a)α+1, and (u(x),p(x))w =
b∫
a

w(x)u(x)p(x)dx is the scalar inner product

in the weighted space L2
w(a,b).

4.1 The Choice of Basis Functions
In this section, we describe how to choose suitable basis functions satisfying the boundary

conditions (37) to be able to apply the Galerkin method to (36)–(37). The idea for choosing com-
pact combinations satisfying the underlying boundary conditions was first introduced in [40,41].
In these two papers, the author selected suitable basis functions satisfying the standard second-
and fourth-order BVPs which are considered as special cases of (36). The basis functions were
expressed in terms of Chebyshev polynomials of the first-kind and Legendre polynomials. The
authors in [42] generalized the proposed algorithms in [40,41]. They suggested compact combina-
tions of ultraspherical polynomials that generalize the Chebyshev of the first-kind and Legendre
combinations to solve the even-order BVPs in one- and two-dimensions. The authors in [43] solved
the same types of BVPs but by using certain kinds of non-symmetric Jacobi polynomials which
are called Chebyshev polynomials of the third- and fourth-kinds. In this section, we are going to
generalize the basis functions that derived in [43].

First, consider the case [a,b]≡ [−1, 1], and set

φk(x)= J(α)k (x)+
2n∑
m=1

zm,kJ
(α)

k+m(x) k= 0, 1, 2, . . . ,N− 2n, (39)

where the coefficients {zm,k} are chosen such that every member of {φk(x)} verifies the following
homogeneous boundary conditions:

Dqφk(−1)=Dqφk(1)= 0, q= 0, 1, . . . ,n− 1. (40)
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It is not difficult to see that the boundary conditions (40) along with (39) after making use
of identities (5) and (6), (for the case β = α+1), lead to the following system of equations in the
unknowns {zm,k}:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n∑
m=1

zm,k =−1,

2n∑
m=1

(−1)m(k+α+ 2)m(k+m+α+ 1)2n−mzm,k =−(k+α+ 1)2n,

2n∑
m=1

zm,k

q−1∏
s=0

(k+m− s)(k+m+ s+ 2α+ 2)=−
q−1∏
s=0

(k− s)(k+ s+ 2α+ 2),

2n∑
m=1

(−1)mzm,k(k+m+α+ 1)2n−m(k+α+ 2)m

q−1∏
s=0

(k+m− s)(k+m+ s+ 2α+ 2)

=−(k+α+ 1)2n

q−1∏
s=0

(k− s)(k+ s+ 2α+ 2),

(41)

where k= 0, 1, . . . ,N− 2n, and q= 1, 2, . . . ,n− 1.

The determinant of the above system is different from zero, hence {zm,k} can be uniquely
determined to give

zm,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)
m
2
( n
m
2

) (
k+α+ 3

2

)
m
2(

k+ n+α+ 3
2

)
m
2

, m even,

(−1)
m+1
2
( n
m−1
2

) (
n−

(
m−1
2

))(
k+α+ 3

2

)
m−1
2(

k+ n+α+ 3
2

)
m+1
2

, m odd.

(42)

and hence the basis functions {φk(x)}0≤k≤N−2n take the form:

φk(x)=
n∑

m=0

(−1)m
(n
m

) (
k+α+ 3

2

)
m(

k+ n+α+ 3
2

)
m

J(α)k+2m(x)+
n−1∑
m=0

(−1)m+1(n
m

)
(n−m)

(
k+α+ 3

2

)
m(

k+ n+α+ 3
2

)
m+1

J(α)k+2m+1(x).

(43)

Remark 4.1. If x in (39) is replaced by
2x− a− b
b− a

, then it is easy to see that the basis functions

take the form

φ̃k(x)= J̃(α)k (x)+
2n∑
m=1

zm,kJ̃
(α)

k+m(x) k= 0, 1, 2, . . . ,N− 2n, (44)
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and from (43), we see that they have the following explicit expression

φ̃k(x)=
n∑

m=0

(−1)m
(n
m

)(
k+α+ 3

2

)
m(

k+ n+α+ 3
2

)
m

J̃(α)k+2m(x)+
n−1∑
m=0

(−1)m+1(n
m

)
(n−m)

(
k+α+ 3

2

)
m(

k+ n+α+ 3
2

)
m+1

J̃(α)k+2m+1(x),

(45)

satisfies the following boundary conditions

Dqφ̃k(a)=Dqφ̃k(b)= 0, q= 0, 1, . . . ,n− 1.

Remark 4.2. If we choose the basis functions in terms of the general parameters normalized

Jacobi polynomials J(α,β)k (x), that is

ψk(x)= J(α,β)k (x)+
2n∑
m=1

Hm,kJ
(α,β)
k+m (x) k= 0, 1, 2, . . . ,N− 2n, (46)

then, the resulting linear system to be solved to find the coefficients Hm,k can not be found in
simple forms free of hypergeometric forms except for special choices of their parameters. The
choice β = α+ 1 in this paper enables one to get the simple form of the basis functions in (43).

Now, the basis functions {φ̃k(x)}0≤k≤N−2n are linearly independent, and hence we have

SN = span{φ̃k(x) : k= 0, 1, . . . ,N− 2n}.
Now, denote

gnk = (g(x), φ̃k(x))w, gn = (gn0,gn1, . . . ,gnN−2n)
T ,

unN(x)=
N−2n∑
m=0

bnmφ̃m(x), bn= (bn0,bn1, . . . ,bnN−2n)
T ,

An= (ankj)0≤k,j≤N−2n, R0,n= (r0,nkj )0≤k,j≤N−2n,

Ri,n= (ri,nkj )0≤k,j≤N−2n, 1≤ i≤ 2n− 1.

Then Eq. (38) can be transformed into the following matrix system(
An+

2n−1∑
i=0

ηiRi,n+ η0R0,n

)
bn = gn, (47)

and the entries of the matrices An and Ri,n, (0≤ i≤ 2n− 1), are given explicitly in the follow-
ing theorem.

Theorem 4.1. Let the family of basis functions {φ̃k(x)}0≤k≤N−2n be as taken in (44). Setting

ankj = (−1)n
(
D2nφ̃j(x), φ̃k(x)

)
w
, ri,nkj = ξi

(
Diφ̃j(x), φ̃k(x)

)
w
, 1≤ i≤ 2n−1, r0,nkj = (φ̃j(x), φ̃k(x))w. Then

SN = span{φ̃k(x) : k= 0, 1, . . . ,N− 2n},
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and the nonzero elements of the matrices An, Ri,n (1≤ i≤ 2n− 1) and R0,n are given explicitly by:

ankk =
(b− a)−2n+2α+2[(2k+ 2α+ 3)2n−1]2(k+ 2n)! (2k+ 2n+ 2α+ 2)�(k+α+ 2)[�(α+ 1)]2

(k+α+ 2)n�(k+ n+α+ 1)�(k+ 2n+ 2α+ 2)
, (48)

ankj = (−1)n
2n∑
=0

2n∑
m=0

z,jzm,k τ (j,k, ,m, 2n) , j= k+ p, p≥ 1, (49)

ri,nk,j = ξi
2n∑
=0

2n∑
m=0

z,jzm,k τ (j,k, ,m, i) , j= k+ p, |p| ≤ 2n− i, 1≤ i≤ n, (50)

ri,nk,j = ξi
2n∑
=0

2n∑
m=0

z,jzm,k τ (j,k, ,m, i) , j= k+ p, p≥ 0, n+ 1≤ i≤ 2n− 1, (51)

ri,nk,j = ξi
2n∑
=0

2n∑
m=0

z,jzm,k τ (j,k, ,m, i) , j= k+ p, i− 2n≤ p< 0, n+ 1≤ i≤ 2n− 1, (52)

r0,nk,j =
2n∑
=0

2n∑
m=0

z,jzm,k τ (j,k, ,m, 0) , j= k+ p, |p| ≤ 2n, (53)

where

τ (j,k, ,m, i)=
{
Ẽj+,k+m,i h̃αk+m, if j+ ≥ k+m+ i,
0, otherwise,

(54)

and Ẽn,i,q, h̃αn and zm,k are defined in (31), (9) and (42), respectively.

Proof. The nonzero elements of the matrices An, Ri,n (1≤ i≤ 2n− 1) can be obtained with the
aid of the derivatives formula (19). Substituting q= 2n in relation (30), yields

D2nJ̃(α)k (x)=
k−2n∑
i=0

Ẽk,i,2nJ̃
(α)
i (x), (55)

where Ẽn,i,q is defined in (31). In virtue of the orthogonality relation (8), one can show for j+≥
k+m+ 2n, that(
D2nJ̃(α)j+(x), J̃

(α)

k+m(x)
)
w
= Ẽj+,k+m,2nh̃

α
k+m, (56)

and, accordingly, relation (44) enables one to express the elements ank,j in the form

ankj = (−1)n
2n∑
=0

2n∑
m=0

z,jzm,kẼj+,k+m,2nh̃
α
k+m. (57)
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In particular, it is easy to see that the diagonal elements of An can be simplified to give

ankk =
(b− a)−2n+2α+2[(2k+ 2α+ 3)2n−1]2(k+ 2n)! (2k+ 2n+ 2α+ 2)�(k+α+ 2)[�(α+ 1)]2

(k+α+ 2)n�(k+ n+α+ 1)�(k+ 2n+ 2α+ 2)
.

Regrading the elements of the matrices Ri,n, (1≤ i≤ 2n− 1), we have

ri,nk,j = ξi
(
Diφ̃j(x), φ̃k(x)

)
w
= ξi

2n∑
=0

2n∑
m=0

z,jzm,k(D
iJ̃(α)j+(x), J̃

(α)

k+m(x))w.

Using relation (30) and the orthogonality relation (8), ri,nkj can be computed to give formulas

(50)–(52). Finally, regarding the elements of the matrix R0,n, we have

r0,nk,j =
(
φ̃j(x), φ̃k(x)

)
w
=

2n∑
=0

2n∑
m=0

z,jzm,k(J̃
(α)
j+(x), J̃

(α)

k+m(x))w,

using the orthogonality relation (8), it can be shown that, for j= k+ p, |p| ≤ 2n,

r0,nk,j =
2n∑
=0

2n∑
m=0

z,jzm,kẼj+,k+m,0h̃
α
k+m.

This ends the proof of Theorem 4.1.

The special case corresponding to the choice: ηi = 0, 0 ≤ i ≤ 2n− 1, is of interest. In such
case, the system in (47) reduces to a linear system with nonsingular upper triangular matrix for
all values of n. The following corollary exhibits this result.

Corollary 4.1. For the case corresponds to ηi = 0, 0≤ i≤ 2n− 1, the system in (47) reduces to
Anbn = gn, where An is an upper triangular matrix, and its solution can be given explicitly as

bnk =
1
ankk

⎛
⎝gnk− N−2n∑

j=k+1

ankjb
n
j

⎞
⎠ , k= 0, 1, . . . ,N− 2n, (58)

where ankk and ankj are given, respectively, by (48) and (49).

Remark 4.3. The following even-order BVP

(−1)nD2nu(x)+
2n−1∑
i=1

ξiηiDiu(x)+ η0u(x)= g(x), x ∈ (a,b), n� 1, (59)

governed by the nonhomogeneous boundary conditions:

Dju(a)= αj, Dju(b)= βj j= 0, 1, . . . ,n− 1, (60)

can be transformed to a modified one governed by homogeneous boundary conditions (see [43]).
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5 A Collocation Algorithm for Treating Nonlinear BVPs

In this section, we implement and present a numerical algorithm based on a collocation
method to solve even-order nonlinear BVPs. The basic idea is based on employing the operational

matrix of derivatives of the shifted Jacobi polynomials J̃(α)n (x). First, the following corollary is
essential in the sequel.

Corollary 5.1. The first derivative of the polynomials J̃(α)n (x) can be written explicitly as

DJ̃(α)n (x)=
n−1∑
i=0

Mn,iJ̃
(α)
i (x), n≥ 1, (61)

where

Mn,i = 2n!�(i+ 2α+ 2)
(b− a)i!�(n+ 2α+ 2)

{
n+ i+ 2α+ 2, (n+ i) odd,
n− i, (n+ i) even.

(62)

Proof. Direct from Eq. (30), setting q= 1.

Now, if we define the following vector

�(x)= [J̃(α)0 (x), J̃(α)1 (x), . . . , J̃(α)N (x)]T , (63)

then, it is easy to see that

d�

dx
=M�, (64)

where M is the operational matrix of derivatives whose entries are defined as:

mij = 2i!�(j+ 2α+ 2)
(b− a)j!�(i+ 2α+ 2)

⎧⎪⎨
⎪⎩
i− j, i> j and (i+ j) even,
i+ j+ 2α+ 2, i> j and (i+ j) odd,
0, otherwise.

Now, consider the following nonlinear even-order BVPs:

u(2n)(x)=G
(
x,u(x),u′(x), . . . ,u(2n−1)(x)

)
, x ∈ (a,b), n≥ 1, (65)

subject to the first-kind of boundary conditions:

u()(a)= u()(b)= 0, 0≤ ≤ n− 1, (66)

or the second-kind of boundary conditions:

u(2)(a)= u(2)(b)= 0, 0≤ ≤ n− 1. (67)

Now, consider an approximate solution of the form

u(x)	 uN(x)=
N∑
i=0

aiJ̃
(α)
i (x). (68)
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This approximate solution can be expressed as

uN(x)=
N∑
k=0

akψk(x)=AT�(x), (69)

where

AT = [a0,a1, . . . ,aN ], (70)

and �(x) is defined in (63).

In virtue of Eq. (64), it is easy to express the th-derivative of uN(x). In fact, we can write

DuN(x)=ATM�(x). (71)

Based on relation (71), the residual of Eq. (65) can be written as

R(x)=ATM2n�(x)−G
(
x,AT�(x),ATM�(x),ATM2�(x), . . . ,ATM2n−1�(x)

)
. (72)

Now, for the sake of obtaining a numerical solution of (65), a collocation method is applied.
More precisely, the residual in (72) is enforced to vanish at suitable collocation points. We choose

them to be the distinct zeros of the polynomial J̃(α)N−2n(x), that is we have

ATM2n�(xi)=G
(
x,AT�(xi),ATM�(xi),ATM2�(xi), . . . ,ATM2n−1�(xi)

)
, i= 0, 1, . . . ,N− 2n.

(73)

Furthermore, the boundary conditions (66) yield the following (2n) equations:

ATM�(−1)= 0, = 0, 1, . . . ,n− 1, (74)

ATM�(1)= 0, = 0, 1, . . . ,n− 1, (75)

while, the boundary conditions (67) yield the following (2n) equations:

ATM2�(−1)= 0, = 0, 1, . . . ,n− 1, (76)

ATM2�(1)= 0, = 0, 1, . . . ,n− 1. (77)

Merging the (N + 1) equations in (73)–(75), or the (N + 1) equations in (73), (76) and (77),
we get a nonlinear system in the expansion coefficients ak which can be solved with the aid of
Newton’s iterative method. Thus an approximate solution uN(x) can be found.

6 Connection Formula between the Polynomials J̃
(α)

n (x) and the Shifted Legendre Polynomials

This section is confined to present the connection formula between the polynomials J̃(α)n (x)
and the shifted Legendre polynomials on [a,b]. This connection formula will be of important
interest in investigating the convergence and error analysis in the subsequent section. To this end,
the following theorem which links between two different parameters Jacobi polynomials is needed.
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Theorem 6.1. For every nonnegative integer n, the following connection formula holds:

J(α,β)n (x)= n!�(α+ 1)
�(γ + 1)�(n+α+β + 1)

×
n∑

k=0

�(n− k+ γ + 1)�(n− k+ γ + δ+ 1)�(2n− k+α+β + 1)
k! (n− k)!�(2n− 2k+ γ + δ+ 1)�(n− k+α+ 1)

× 3F2

(−k,n− k+ γ + 1, 2n− k+α+β + 1
2n− 2k+ γ + δ+ 2,n− k+α+ 1

∣∣∣∣1
)
J(γ ,δ)n−k (x). (78)

Proof. The connection formula between two different parameters classical Jacobi polynomials
is given by [44]

P(α,β)n (x)=
n∑

k=0

Ak,nP
(γ ,δ)
n−k (x), (79)

with

Ak,n=
(2n− 2k+ γ + δ+ 1)�(n− k+ γ + δ+ 1)(n− k+α+ 1)k(n+α+β + 1)n−k

k!�(2n− 2k+ γ + δ+ 2)

× 3F2

(−k,n− k+ γ + 1, 2n− k+α+β + 1
2n− 2k+ γ + δ+ 2,n− k+α+ 1

∣∣∣∣1
)
. (80)

Taking into consideration relation (2), the connection formula (78) can be obtained.

Lemma 6.1. Let m and n be two nonnegative integers. The following reduction formula holds

3F2

(−m,n−m+ 1, 2n−m+ 2α+ 2

2n− 2m+ 2,n−m+α+ 1

∣∣∣∣1
)

= 1√
π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
(
m+1
2

)
(α+ 1)m

2(
n−m+ 3

2

)
m
2

(n−m+α+ 1)m
2

, m even,

−� (m2 + 1
)
(α+ 1)m−1

2(
n−m+ 3

2

)
m−1
2

(n−m+α+ 1)m+1
2

, m odd.

(81)

Proof. If we set

Bm,n,α = 3F2

(−m,n−m+ 1, 2n−m+ 2α+ 2

2n− 2m+ 2,n−m+α+ 1

∣∣∣∣ 1
)
,
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then, with the aid of Zeilberger’s algorithm, it can be shown that the following second-order
recurrence relation is satisfied by Bm,n,α

(m− 1) (−2n+m− 3) (m+ 2α− 1) (2n−m+ 2α+ 3)Bm−2,n,α

+ 2 (−2n+ 2m− 3) (−2n+ 2m− 5) (n−m+α+ 2)Bm−1,n,α (82)

+ 4 (−2n+ 2m− 3) (−2n+ 2m− 5) (n−m+α+ 2) (n−m+α+ 1)Bm,n,α = 0,

with the initial values

B0,n,α = 1, B1,n,α = −1
2(n+α) .

The recurrence relation (82) can be solved exactly to give

Bm,n,α = 1√
π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

(
m+ 1
2

)
(α+ 1)m

2(
n−m+ 3

2

)
m
2

(n−m+α+ 1)m
2

, m even,

−� (m2 + 1
)
(α+ 1)m−1

2(
n−m+ 3

2

)
m−1
2

(n−m+α+ 1)m+1
2

, m odd,

and, therefore, the reduction formula (81) can be followed.

Now, we are going to state and prove an important theorem that concerns the connection

formula between J̃(α)n (x) and the shifted Legendre polynomials P∗
k(x).

Theorem 6.2. The connection formula between the shifted normalized Jacobi polynomials

J̃(α)n (x) and the shifted Legendre polynomials P∗
k(x) can be written explicitly in the form

J̃(α)n (x)=
n∑

k=0

Sk,n,αP
∗
k(x), (83)

where the connection coefficients Sk,n,α are given by

Sk,n,α =
4α(2k+ 1)n!
�(n+ 2α+ 2)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�
(
(n−k2 )+α+ 1

)
�
(
(n+k2 )+α+ 3

2

)
(
n−k
2

)
! �

(
n+k+3

2

) , (n+ k) even,

−�
(
(n−k2 )+α+ 1

2

)
�
(
(n+k2 )+α+ 1

)
(
n−k−1

2

)
! �

(
n+k+2

2

) , (n+ k)odd.

(84)

Proof. To prove the connection formula (83) with coefficients in (84), we prove first the
formula on [−1, 1], that is, we prove the formula

J(α)n (x)=
n∑

k=0

Sk,n,αPk(x). (85)
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The last relation can be written alternatively in the form

J(α)n (x)= 4αn!
�(n+ 2α+ 2)

⎛
⎝� n2�∑
k=0

(2n− 4k+ 1) �(k+α+ 1) �
(
n− k+α+ 3

2

)
k!�

(
n− k+ 3

2

) Pn−2k(x)

−

⌊
n−1
2

⌋∑
k=0

(2n− 4k− 1) �(k+α+ 1) �
(
n− k+α+ 1

2

)
k!�

(
n− k+ 1

2

) Pn−2k−1(x)

⎞
⎟⎟⎠ . (86)

Setting β = α+ 1 and γ = δ = 0 in Eq. (78) yields the following formula

J(α)n (x)= n!�(α+ 1)
�(n+ 2α+ 2)

n∑
k=0

[(n− k)! ]2 � (2n− k+ 2α+ 2)
k! (n− k)! (2n− 2k)! �(n− k+α+ 1)

(87)

×3 F2

(
−k,n− k+ 1, 2n− k+ 2α+ 2

2n− 2k+ 2,n− k+α+ 1

∣∣∣∣ 1
)
Pn−k(x). (88)

If we make use of Lemma 6.1, then the last formula, after some computations can be

transformed into the form in (86), and therefore, relation (85) is proved. Replacing x by
(
2x−a−b
b−a

)
in (85) gives (83). Theorem 6.2 is proved.

7 Study of the Convergence and Error Analysis

In this section, we state and prove some results concerning the convergence analysis of the
proposed expansions in Sections 4 and 5. First, we mention some theoretical prerequisites. The
following lemmas and theorems are needed. Let us agree on the following notation: For two
positive sequences ai,bi, we say that ai � bi if there exists a generic constant c such that ai ≤ cbi.

7.1 Prerequisites

Lemma 7.1. Reference [45] Let Iqk(x) denote the q-times repeated integrals of shifted Legendre
polynomials, that is

Iqk(x)=

q times︷ ︸︸ ︷∫ ∫
. . .

∫
P∗
k(x)

q times︷ ︸︸ ︷
dxdx...dx,

then, Iqk(x) can be expressed in terms of shifted Legendre polynomials by the formula

Iqk(x)=
min(q,k−1)∑

m=0

Gm,k,qP
∗
k−2j+q(x)+πq−1(x),
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where πq−1(x) is a polynomial of degree at most (q − 1), and the coefficients Gm,k,q are given
explicitly by

Gm,k,q=
(−1)m(b− a)q

(
q
m

)(
k− 2m+ q+ 1

2

)
22q

(
k−m+ 1

2

)
q+1

.

Lemma 7.2. Let Iqk(x) be defined as in the above lemma. The following estimate holds∣∣Iqk(x)∣∣� (k+ n)−q.

Proof. The lemma can be proved with the aid of the repeated integrals formula in Lemma
7.1 and noting the well-known inequality: |P∗

j (x)| ≤ 1, ∀ j ≥ 0.

Lemma 7.3. The connection coefficients in the connection problem (83), which expressed
explicitly in (84) satisfy the following estimate

|Sk,n,α|� 1. (89)

Proof. The result can be easily followed from the explicit formula of the connection coeffi-
cients in (84).

Lemma 7.4. For all x ∈ [a,b], the following estimate is valid∣∣∣J̃(α)n (x)
∣∣∣≤ 2n+α+ 1

α+ 1
. (90)

Proof. From the connection formula (83), and noting that
∣∣P∗

k(x)
∣∣≤ 1, ∀ k≥ 0, we get

∣∣∣J̃(α)n (x)
∣∣∣≤ n∑

k=0

∣∣Sk,n,α∣∣ . (91)

We will prove (89). We consider the proof if n is even. The case if n is odd can be treated
similarly. From (90), we can write

∣∣∣J̃(α)2n (x)
∣∣∣≤ ηn,α

⎛
⎝ n∑
k=0

(4n− 4k+ 1) �(k+α+ 1)�
(
2n− k+α+ 3

2

)
k!�

(
2n− k+ 3

2

)

+
n−1∑
k=0

(4n− 4k− 1) �(k+α+ 1) �
(
2n− k+α+ 1

2

)
k!�

(
2n− k+ 1

2

)
⎞
⎠ , (92)

with

ηn,α = 4α(2n)!
�(2n+ 2α+ 2)

.
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With the aid of Zeilberger’s algorithm, it is not difficult to show that

ηn,α

n∑
k=0

(4n− 4k+ 1)�(k+α+ 1)�
(
2n− k+α+ 3

2

)
k!�

(
2n− k+ 3

2

) = n+α+ 1
α+ 1

,

and

ηn,α

n−1∑
k=0

(4n− 4k− 1)�(k+α+ 1)�
(
2n− k+α+ 1

2

)
k!�

(
2n− k+ 1

2

) = n
α+ 1

,

and accordingly, we get∣∣∣J̃(α)2n (x)
∣∣∣≤ 2n+α+ 1

α+ 1
.

The proof is now complete.

7.2 Convergence Analysis
Now, we are ready to state and prove some lemmas and theorems concerning the convergence

of the truncated approximate solutions and the estimate for the truncation error of the proposed
expansions in Sections 4 and 5. We first prove our results for the proposed expansion in Section 5.
Assume that the exact and approximate expansions are respectively as follows:

u(x)=
∞∑
n=0

anJ̃(α)n (x), (93)

and

uN(x)=
N∑
n=0

anJ̃(α)n (x). (94)

From now on, and for more convenience, let us agree on the following notations:

J̃(α)n (x)≡ J̃(α)n , P∗
k(x)≡P∗

k, (b−x)α(x− a)α+1 ≡wα, u(x)≡ u,
∫ b

a
f (x)dx≡

∫
I
f .

Theorem 7.1. If the exact solution in (92) is Cq-function, for some q> 3, |u(i)| ≤ Li, 1≤ i ≤ q
and for 2α+ 4< q, then the following statements are correct:

(1) The expansion coefficients an satisfy the following estimate:

|an|� n2α+2−q.

(2) The series in (92) converges uniformly.

Proof. Due to (8), the expansion coefficients an are given by

an= 1

h̃αn

∫
I
wαuJ̃(α)n .
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It is clear from relation (9) that h̃αn =O(n−2α−1), and consequently

|an|� n2α+1
∣∣∣∣
∫
I
wαuJ̃(α)n

∣∣∣∣ .
Thanks to the connection formula (83) that links J̃(α)n with the shifted Legendre polynomials,

we have

|an|� n2α+1
n∑

k=0

∣∣Sk,n∣∣
∣∣∣∣
∫
I
wαuP∗

k

∣∣∣∣ ,
and in virtue of Lemma 7.3, the last inequality gives

|an|� n2α+1
n∑

k=0

∣∣∣∣
∫
I
wαuP∗

k

∣∣∣∣ .
Now, if we apply integration by parts q-times and along with the following result obtained

by Leibniz’s Theorem

(uwα)(q) =
q∑
r=0

(
q
r

)
u(r)

(
wα

)(q−r) ,
the following estimate can be obtained

|an|� n2α+1
n∑

k=0

q∑
r=0

(
q
r

)∣∣∣u(r) (wα)(q−r) Iqk(x)∣∣∣ .
Now, the direct application of Lemma 7.2, and after performing some manipulations, yield

|an|� n2α+2−q
q∑
r=0

(
q
r

)∣∣∣u(r) (wα)(q−r)∣∣∣ .
By the hypothesis of the theorem, precisely, the boundedness of the derivatives u(r), we get

|an|� n2α+2−q,

which completes the proof of the first-part of the theorem.

For the second part, we have

|u|�
∞∑
n=0

∣∣∣anJ̃(α)n

∣∣∣ ,
and with the aid of the first result of this theorem along with Lemma 7.4, we get

|u|�
∞∑
n=0

n2α+3−q.
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Taking into consideration the condition: q> 2α+4, and applying the integral test, the desired
series converges uniformly, and this completes the proof of the second-part of the theorem.

Theorem 7.2. Under the hypotheses of Theorem 7.1, the following truncation error estimate
is valid:

|u− uN |�N2α+4−q.

Proof. Using relations (92) and (93), it is clear that

|u− uN | =
∣∣∣∣∣∣

∞∑
n=N+1

anJ̃(α)n (x)

∣∣∣∣∣∣ .
Now, by the result of Theorem 7.1 along with Lemma 7.4 yield the following inequality:

|u− uN |�
∞∑

n=N+1

n2α+3−q.

Now, based on the asymptotic behaviour of the Riemann–Hurwitz function, we have

∞∑
n=N+1

n2α+3−q=O(N2α+4−q),

which completes the proof of the theorem.

Remark 7.1. The main idea to investigate the convergence and error analysis of the expansion
that used in Section 4 is built on transforming the basis functions (45) into another suitable form,
and after that perform similar procedures to those followed in Subsections 7.1 and 7.2. More
precisely, the following theorem is the key for such study. It can be proved through induction.

Theorem 7.3. Let φ̃k(x) be the basis functions in (45). The following identity holds for every
positive integer n

φ̃k(x)=
4n
(
k+α+ 3

2

)
n

(b− a)2n(α+ 1)n
((b−x)(x− a))n J̃(α+n,α+n+1)

k (x). (95)

8 Numerical Results

In this section, we give some numerical results obtained by using our two proposed algo-
rithms, namely, shifted Jacobi Galerkin method (SJGM) and the shifted Jacobi collocation method
(SJCM) which presented, respectively, in Sections 4 and 5. Furthermore, some comparisons
between our two proposed algorithms with some other methods exist in the literature are presented
hoping to show the efficiency and accuracy of our proposed methods. In this section, the symbol
N refers to the number of retained modes. In addition, u(x) is the exact solution and uN(x) is the
corresponding approximate solution and the error is denoted by E where E =max

[a,b]
|u(x)− uN(x)|.

Example 1. Consider the sixth-order linear boundary value problem [46,47]

u(6)(x)= (1+ c)u(4)(x)− cu(2)(x)+ cx, 0≤ x≤ 1, (96)



CMES, 2021, vol.126, no.3 981

subject to the boundary conditions

u(0)= 1, u(1)= 7
6
+ sinh(1),

u(1)(0)= 1, u(1)(1)= 1+ cosh(1),

u(2)(0)= 0, u(2)(1)= 1+ sinh(1).

The exact solution for this problem is: u(x)= 1+ x3

6
+ sinh(x).

Tab. 1 lists the maximum absolute errors E for various choices of N, c, and α. In Tabs. 2
and 3, comparisons between our proposed SJGM and the two methods developed in [46,47]
are displayed. In addition, in Fig. 1, we depict the Log-error plot of Example 1 for the case
corresponds to various values of N and α.

Table 1: Maximum absolute error of E for Example 1

N c α

1
1
2

0 −1
2

6 1 1.27364× 10−6 1.38618× 10−6 1.52625× 10−6 1.70475× 10−6

10 1.23242× 10−6 1.34136× 10−6 1.47822× 10−6 1.65484× 10−6

100 1.05949× 10−6 1.14401× 10−6 1.25298× 10−6 1.40003× 10−6

1000 9.30109× 10−7 9.85798× 10−7 1.05451× 10−6 1.14242× 10−6

8 1 3.49629× 10−9 2.92617× 10−9 2.15924× 10−9 1.22615× 10−9

10 3.26158× 10−9 2.75017× 10−9 2.05926× 10−9 1.21250× 10−9

100 2.22424× 10−9 1.95768× 10−9 1.59470× 10−9 1.12950× 10−9

1000 1.37507× 10−9 1.26210× 10−9 1.12169× 10−9 9.50030× 10−10

10 1 4.72627× 10−12 3.48716× 10−12 2.24470× 10−12 1.10600× 10−12

10 4.41824× 10−12 3.27205× 10−12 2.11853× 10−12 1.05488× 10−12

100 2.90767× 10−12 2.22056× 10−12 1.50813× 10−12 8.22897× 10−13

1000 1.33960× 10−12 1.09662× 10−12 8.49654× 10−13 6.02018× 10−13

12 1 4.32987× 10−15 2.94209× 10−15 1.88738× 10−15 9.43690× 10−16

10 3.88578× 10−15 2.94209× 10−15 1.88738× 10−15 1.11022× 10−15

100 2.99760× 10−15 2.16493× 10−15 1.49880× 10−15 1.05471× 10−15

1000 1.38778× 10−15 1.27676× 10−15 9.71445× 10−16 6.66134× 10−16

13 1 8.88178× 10−16 6.66134× 10−16 6.66134× 10−16 8.88178× 10−16

10 8.04912× 10−16 6.66134× 10−16 6.66134× 10−16 8.88178× 10−16

100 6.66134× 10−16 4.44089× 10−16 8.88178× 10−16 6.66134× 10−16

1000 6.66134× 10−16 7.77156× 10−16 6.66134× 10−16 6.66134× 10−16

14 1 6.33174× 10−16 6.66134× 10−16 6.10623× 10−16 5.55112× 10−16

10 5.55112× 10−16 6.66134× 10−16 6.66134× 10−16 6.10623× 10−16

100 6.66134× 10−16 6.10623× 10−16 9.99201× 10−16 7.77156× 10−16

1000 6.66134× 10−16 7.21645× 10−16 6.66134× 10−16 8.88178× 10−16
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Table 2: Errors at xi for N = 12 and c= 10 for Example 1

xi DTM [47] LWCM [46] SJGM

α = 1 α = 1
2

α = 0

0.0 0.0000000 0.0000000 2.22045× 10−16 2.22045× 10−16 2.22045× 10−16

0.1 2.9× 10−5 4.8× 10−15 8.88178× 10−16 4.44089× 10−16 0.0000000
0.2 1.6× 10−4 4.2× 10−15 2.22045× 10−15 1.33227× 10−15 4.44089× 10−16

0.3 3.6× 10−4 1.6× 10−14 3.33067× 10−15 1.99840× 10−15 8.88178× 10−16

0.4 5.3× 10−4 3.8× 10−14 3.33067× 10−15 2.22045× 10−15 1.33227× 10−15

0.5 6.0× 10−4 4.3× 10−14 3.10862× 10−15 1.99840× 10−15 1.33227× 10−15

0.6 5.3× 10−4 4.0× 10−14 1.99840× 10−15 1.33227× 10−15 6.66134× 10−16

0.7 3.5× 10−4 2.1× 10−14 8.88178× 10−16 6.66134× 10−16 2.22045× 10−16

0.8 1.5× 10−4 8.7× 10−15 4.44089× 10−16 4.44089× 10−16 2.22045× 10−16

0.9 2.7× 10−5 8.9× 10−16 0.0000000 0.0000000 0.0000000
1.0 0.0000000 4.4× 10−16 0.0000000 0.0000000 0.0000000

Table 3: Errors at xi for N = 12 and c= 1000 for Example 1

xi DTM [47] LWCM [46] SJGM

α = 1 α = 1
2

α = 0

0.0 0.0000000 2.2× 10−16 2.22045× 10−16 2.22045× 10−16 2.22045× 10−16

0.1 5.9× 10−5 7.8× 10−15 0.0000000 4.44089× 10−16 0.0000000
0.2 4.0× 10−4 4.1× 10−14 8.88178× 10−16 4.44089× 10−16 4.44089× 10−16

0.3 1.1× 10−3 8.6× 10−14 1.11022× 10−15 6.66134× 10−16 4.44089× 10−16

0.4 1.9× 10−3 1.0× 10−13 8.88178× 10−16 6.66134× 10−16 2.22045× 10−16

0.5 2.6× 10−3 9.0× 10−14 8.88178× 10−16 4.44089× 10−16 4.44089× 10−16

0.6 2.8× 10−3 6.2× 10−14 6.66134× 10−16 4.44089× 10−16 4.44089× 10−16

0.7 2.2× 10−3 4.0× 10−14 0.0000000 2.22450× 10−16 2.22045× 10−16

0.8 1.1× 10−3 2.0× 10−14 0.0000000 0.0000000 0.0000000
0.9 2.5× 10−4 4.4× 10−15 0.0000000 0.0000000 0.0000000
1.0 7.1× 10−10 9.9× 10−16 0.0000000 0.0000000 0.0000000

6 8 10 12 14
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g 1
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Figure 1: Log-error of Example 1 for c= 1
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Remark 8.1. The results in Tab. 1 show that the case corresponding to third-kind Chebyshev

polynomials
(
α=−1

2

)
does not always give the best results.

Example 2. Consider the eighth-order linear boundary value problem [48]

u(8)(x)= u(x)− 8ex, 0< x< 1, (97)

subject to the boundary conditions

u(0)= 1, u(4)(0)=−3,

u(1)(0)= 0, u(5)(0)=−4,

u(2)(0)=−1, u(1)(1)=−e,

u(3)(0)=−2, u(2)(1)=−2e.

The exact solution for this problem is: u(x)= (1−x)ex.

Tab. 4 presents the maximum absolute error E for some choices of α and N, while Tab. 5
lists a comparison between our proposed algorithm with the absolute errors obtained by the
method proposed in [48]. In Fig. 2, we depict the absolute error plot of Example 2 for the case
corresponds to N = 14 and various values α.

Table 4: Maximum absolute error of E for Example 2

N α

1
1
2

0 −1
2

8 5.64357× 10−8 6.16503× 10−8 6.78941× 10−8 7.54824× 10−8

10 1.49418× 10−10 1.24369× 10−10 9.07063× 10−11 4.67564× 10−11

12 1.91847× 10−13 1.39686× 10−13 8.81517× 10−14 4.09884× 10−14

13 6.65542× 10−15 4.32987× 10−15 2.37578× 10−15 1.00618× 10−15

14 3.32085× 10−16 3.75697× 10−16 3.99171× 10−16 4.11134× 10−16

Table 5: Errors at xi for N = 14 for Example 2

xi [48] SJGM

α= 1 α = 1
2

α = 0 α =−1
2

0.25 2.1630× 10−9 1.11022× 10−16 1.11022× 10−16 0.0000000 1.11022× 10−16

0.50 1.1571× 10−7 2.22045× 10−16 1.11022× 10−16 0.0000000 1.11022× 10−16

0.75 1.0479× 10−6 1.11022× 10−16 1.11022× 10−16 0.0000000 1.11022× 10−16

1.00 4.2188× 10−6 1.11022× 10−16 1.11022× 10−16 1.11022× 10−16 1.11022× 10−16
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x

Error
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Figure 2: Absolute error plot of Example 2

Example 3. Consider the eighth-order nonlinear boundary value problem [49,50]

u(8)(x)= 7!
(
e−8u(x)− 2

(x+ 1)8

)
, 0� x� e

1
2 − 1, (98)

subject to the boundary conditions

u(0)= 0, u(e
1
2 − 1)= 1

2 ,

u(1)(0)= 1, u(1)(e
1
2 − 1)= e−

1
2 ,

u(2)(0)=−1, u(2)(e
1
2 − 1)=−e−1,

u(3)(0)= 2, u(3)(e
1
2 − 1)= 2e−

2
3 .

The exact solution for this problem is: u(x)= ln(x+ 1).

Tab. 6 lists the maximum absolute error E for various values of N and α. For the sake
of comparison with other methods, we compare the best errors obtained from the application
of our algorithm with those obtained by the two methods developed in [49,50]. Tab. 7 displays
these results.

Example 4. Consider the twelfth-order nonlinear boundary value problem [51,52]

u(12)(x)= 1
2
e−xu2(x), 0< x< 1, (99)

subject to the boundary conditions:

u(0)= u(2)(0)= u(4)(0)= u(6)(0)= u(8)(0)= u(10)(0)= 2,

u(1)= u(2)(1)= u(4)(1)= u(6)(1)= u(8)(1)= u(10)(1)= 2e.

The exact solution for this problem is: u(x)= 2ex.

Tab. 8 presents the maximum absolute error E for some choices of α and N, while Tab. 9
lists a comparison between our proposed algorithm for N = 21 for various values of α with the
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best errors obtained by the methods developed in [51,52]. In Fig. 3, we depict the absolute error
plot of Example 4 for the case corresponds to N = 21 and various values α.

Table 6: Maximum absolute error of E for Example 3

N α

1.6 0.2 −0.4 −0.49 −1
2

−0.9

30 5.64111× 10−11 1.49804× 10−11 2.20716× 10−11 2.67471× 10−11 1.14829× 10−12 1.42562× 10−11

31 4.15540× 10−11 1.25858× 10−11 6.31466× 10−11 9.72255× 10−12 4.10239× 10−11 4.83397× 10−12

32 5.35772× 10−12 4.52727× 10−12 2.33589× 10−11 1.14842× 10−11 6.20679× 10−11 4.01901× 10−12

33 2.62768× 10−12 5.75993× 10−12 5.86733× 10−11 1.23299× 10−10 4.95904× 10−11 1.50749× 10−11

34 4.29706× 10−12 3.22425× 10−11 1.90250× 10−11 6.24278× 10−12 1.33640× 10−10 2.38417× 10−11

35 2.54602× 10−11 4.73481× 10−11 9.22289× 10−11 4.28684× 10−11 1.00023× 10−11 4.77054× 10−11

36 6.42116× 10−11 6.12476× 10−11 3.55575× 10−12 3.76643× 10−12 1.05378× 10−11 3.87402× 10−11

37 2.51950× 10−11 1.03488× 10−11 2.09706× 10−11 7.27149× 10−11 8.26594× 10−12 1.95735× 10−11

38 1.22534× 10−11 6.01846× 10−11 9.12559× 10−12 4.84397× 10−11 4.12546× 10−11 3.44936× 10−11

39 4.34729× 10−11 6.37264× 10−11 6.16363× 10−12 4.59328× 10−11 1.15972× 10−10 7.30332× 10−12

40 5.60193× 10−14 6.65967× 10−12 1.57870× 10−12 7.54452× 10−13 7.97257× 10−12 6.43374× 10−14

Table 7: Best errors for N = 40 for Example 3

[50] [49] SJCM

α = 1.6 α=−0.9

8.508563× 10−5 1.2303× 10−11 5.60193× 10−14 6.43374× 10−14

Table 8: Maximum absolute error of E for Example 4

N α

1
1
2

0 −1
2

−0.95

12 1.81450× 10−6 1.82935× 10−6 1.84405× 10−6 1.85842× 10−6 1.87084× 10−6

14 8.34703× 10−8 8.55690× 10−8 8.77753× 10−8 9.00925× 10−8 9.22744× 10−8

16 1.38523× 10−9 1.43883× 10−9 1.49654× 10−9 1.55879× 10−9 1.61911× 10−9

18 1.09490× 10−11 1.14721× 10−11 1.20411× 10−11 1.26615× 10−11 1.32695× 10−11

20 4.76114× 10−14 5.27358× 10−14 5.27848× 10−14 5.44036× 10−14 6.35131× 10−14

21 2.31632× 10−15 9.02318× 10−15 3.19305× 10−15 1.69759× 10−14 2.58272× 10−14

Table 9: Best errors for Example 4

[51] [52] SJCM

α= 1 α = 0 α=−1
2

α=−0.95

6.613766× 10−4 6.613766× 10−4 2.31632× 10−15 3.19305× 10−15 1.69759× 10−14 2.58272× 10−14



986 CMES, 2021, vol.126, no.3

x

Error

0.0 0.2 0.4 0.6 0.8 1.0

0

1.5×10-14

1.×10-14

5.×10-15

α = 0.5

α = –0.5

α = 0

Figure 3: Absolute error plot of Example 4

9 Conclusions

Some direct algorithms for treating both linear and nonlinear BVPs were analyzed and pre-
sented. The proposed solutions are spectral. Two different approaches were presented for solving
such problems. In the linear case, a Galerkin approach is followed. The basis functions are
expressed in terms of certain Jacobi polynomials which generalize the well-known Chebyshev
polynomials of the third- and fourth-kinds. Another collocation approach is followed for the
treatment of both linear and nonlinear BVPs. A new operational matrix of derivatives of certain
shifted Jacobi polynomials was constructed for this purpose. The presented numerical results show
that the expansion of the third-kind of Chebyshev is not always the best in approximation.
Moreover, the numerical results show that our algorithms are applicable and of high accuracy.
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