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Abstract:To secure thewireless connection between devices with low computa-
tional power has been a challenging problem due to heterogeneity in operating
devices, device to device communication in Internet of Things (IoTs) and 5G
wireless systems. Physical layer key generation (PLKG) tackles this secrecy
problem by introducing private keys among two connecting devices through
wireless medium. In this paper, relative calibration is used as a method to
enhance channel reciprocity which in turn increases the performance of the
key generation process. Channel reciprocity based key generation is emerged
as better PLKGmethodology to obtain secure wireless connection in IoTs and
5G systems. Circulant deconvolution is proposed as a promising technique
for relative calibration to ensure channel reciprocity in comparison to exist-
ing techniques Total Least Square (TLS) and Structured Total Least Square
(STLS). The proposed deconvolution technique replicates the performance of
the STLSby exploiting the possibility of higher informationreuse and its lesser
computational complexity leads to less processing time in comparison to the
STLS.The presented idea is validatedby observing the relationbetween signal-
to-noise ratio (SNR) and the correlation coefficient of the corresponding
channel measurements between communicating parties.

Keywords: Channel measurements; physical layer key generation; channel
reciprocity; Internet of things; deconvolution

1 Introduction

Next generation of wireless systems specifically 5G, introduces a platform for better exploita-
tion of Internet of Things (IoTs). IoTs do not only require the heterogeneity of the operating
devices [1,2], better energy consumption [3] and secure communication are also the major concerns
in such wireless systems [4–6]. According to some statistical studies such as [7], there will be
more than 30 billion devices wirelessly connected to Internet and also with each other too. This
colossal network of devices will evidently require some efficient wireless security measures. One
of the promising methods for such wireless security is called Physical Layer Key Generation
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(PLKG) [8–10]. The Wire-tap channel model is the first method to prove that secrecy can be
obtained by exploiting physical layer properties [11]. This method overcomes the discrepancies
in initial cryptographic methods such as, exponential operations and computationally bounded
security [12]. This approach is then used by the authors in [13,14] to design PLKG technique. One
of the key benefits of PLKG is to use information theoretic-security for creating cryptographic
keys [15,16]. The principle model of PLKG includes two legitimate nodes Alice and Bob which
need to communicate privately and a third node, Eve, who wants to eavesdrop the communication
between Alice and Bob. The legitimate nodes send probe signals to each other in order to learn
the channel properties. The data in these signals is known beforehand to both nodes and the
variation in the data due to channel profile is learned by exchanging such signals. These channel
measurements are used to generate a private key. The intrinsic part of this model is to hide
these measurements from Eve. The working of PLKG model is based on following fundamen-
tal properties i.e., channel reciprocity [17,18], temporal and spatial variation. PLKG assumes a
reciprocal channel between Alice and Bob which makes it highly probable that the private key
generated at both ends will be similar. The temporal channel variation means that the changes in
the channel properties (due to change in ambient temperature, objects in line-of-sight (LOS), noise
and interference etc.) can be exploited to ensure the randomness of the private key. This means
that each newly generated private key, between Alice and Bob, would be random and different [19].
The spatial variation makes sure Eve should be at safe distance from either of Alice or Bob. If
position of Eve is not close to Alice and Bob, it would experience a different channel and the
measurements will be different as well. The required distance is estimated by Jake’s model as λ/2,
where λ is the transmission wavelength. Typically, there is no hard bound for the safe distance
and it can vary from case to case [20].

The architecture of PLKG is divided into different blocks which collectively work to produce
a private key as shown in Fig. 1, a detailed description about this architecture is provided
in [21]. At first, Alice and Bob send pilot signals to each other. These signals are used to
acquire channel state information (CSI) or receive signal strength (RSS) of the channel within
channel measurement block. Pre-processing block deals with enhancing the reciprocity between
Alice and Bob and de-correlating their respective measurement sequences. The processed signal is
then passed to quantization block and converted from signal to binary digits, often the resulting
binary stream is referred to as pre-key. Afterwards, information reconciliation block is used to
reconcile the pre-key among Alice and Bob by using the cascade protocol or the LDPC codes.
Privacy amplification block increases the diversity of the reconciled key and it is carried out by
using hash functions [22,23]. The focus of this work is on the pre-processing block. Previously,
methods like Savitsky Golay filtering along with Walsh, Haar or other similar transform were
used for pre-processing [24]. However, these methods lack in certain aspects. The first drawback
was the overhead computation required to compensate increased redundancy while enhancing
the reciprocity (in the form of de-correlation). Secondly, the recursive nature of reciprocity
enhancement, as each measurement has to be processed individually. Thirdly, it fails to address
hardware differences such as, front-end attenuation, antenna gain mismatch etc. The incapability
of previous reciprocity enhancement model (pre-processing) to cater hardware differences, leads to
the further investigation for improving reciprocity. Assuming that the front-end hardware brings
imperfection [25], we consider the channel between communicating parties as the effective channel
comprising of two parts. First is the true channel which remains same because of being reciprocal.
Whereas second is the filter imperfections which vary along the nature of filters.
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Figure 1: PLKG architecture

According to [26], relative calibration can be used to nullify the effect of filter imperfections.
There are several advantages of using relative calibration, e.g., the calibration is executed by signal
processing measures and takes place entirely in signal space. Moreover, the relative calibration
is easy to be implemented and flexible to be used as it does not require any specific hardware
arrangements, especially for dissimilar front-ends of the communicating stations. This is really
beneficial when dissimilar front ends are used for the communicating stations.

The researchers have implemented relative calibration in terms of channel coefficients which
are obtained in both time and frequency domains. From literature we have discovered that
schemes like Channel Gain Compliment (CGC) [27] with focus on frequency response of channel
coefficients and exploit the randomness between adjacent frequency sub-carriers at each time
instant. The non-reciprocity element in the calibration process is also computed. Furthermore,
the hardware differences can be compensated by complementing this non-reciprocity element in
each frequency sub-carrier. An extension to CGC is devised in [28] which is referred as a novel
transform to mitigate hardware-differences namely, log-domain differential (LDD) transform. The
authors claimed that it is a real-time transform which does not require the learning of channel
imperfections. In this paper, time domain relative calibration is performed using deconvolution
based on Toeplitz and circulant structures.

The contributions of this paper are included as following:

• In order to ensure channel reciprocity, the relative calibration is implemented using state
of art deconvolution techniques including the Total Least Square (TLS) and the Structured
Total Least Square (STLS).

• Circulant deconvolution technique is proposed as an alternative to the existing techniques
and is hypothesized as better performing than the TLS and the STLS.

• The proposed deconvolution technique replicates the performance of the STLS by exploit-
ing the possibility of higher information reuse and its lesser computational complexity leads
to less processing time in comparison to the STLS.
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• The simulation results of the proposed method also validate that secure communication is
possible by adapting the circulant deconvolution within wireless systems having ultra-low
latency including 5G and IoTs systems due to its less computational cost.

The paper is organized as follows. Section 2 discusses the system model in hand. Section 3
describes the method of performing the relative calibration. The deconvolution using circulant
structure has been introduced in Section 4. Section 5 provides the simulation results. Finally, con-
clusions are discussed in Section 6. Vectors and matrices are denoted using boldfaced characters.
In this paper, x̃ and x̂ are the error and the estimated values of x, respectively. The ‘*’ represents
the convolution. Parameters indexed by roman characters A and B are associated with the
communicating nodes Alice and Bob, respectively.

2 System Model

It is assumed that two nodes A and B referring to Alice and Bob, respectively, need to
communicate over a wireless Time Division Duplex (TDD) channel within time duration shorter
than channel coherence time. The system model is shown in Fig. 2 which is comprised of cascaded
linear filters for both the paths A to B and B to A. The linear filters are consisted of tA, tB, rA
and rB as output and input filters respectively, whereas C represents the true channel. The input
and output filters are introduced to model as front-end hardware differences [26] which results in
the non-reciprocity i.e., tA �= tB and rA �= rB. While nA and nB are assumed to be Additive White
Gaussian Noise (AWGN) whereas G and H represent the forward and reverse effective channels
including the imperfections introduced by the front-end filters, respectively. In the system model,
tA, tB, rA and rB are considered time-invariant filters. The reason is that the front-ends vary slower
than the channel as discussed in [26]. The forward and reverse chains of the system in Fig. 2 can
be expressed as convolution of cascaded linear filters

G(t, τ )= tA(τ ) ∗C(t, τ ) ∗ rB(τ ) (1)

H(t, τ )= tB(τ ) ∗C(t, τ ) ∗ rA(τ )

where G(t, τ ) is the forward and H(t, τ ) is the reverse effective channel. The relation between
these cascaded chains has been derived in [26] and expressed as

G(t, τ )=H(t, τ ) ∗P(τ ) (2)

where P(τ ) is the non-reciprocity element and is modeled as the filter imperfections, which of
course is the function of delay only. However, in reality, the filter imperfections are produced by
the finite length filters, which can be modeled as τ . If we assume that only one-time instant is
considered, then the Eq. (2) can be simplified as

g = Hp (3)

Figure 2: System model

where, g represents vector that contains channel coefficients from forward effective channel, H
represents a square matrix of a specific structure covering the channel coefficients of the reverse
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effective channel and p is a vector that represents the calibration metric. p contains the non-
reciprocity part of the channel and that is why it is first learned and then used to rectify erroneous
channel measurements as shown in Fig. 3.

Figure 3: Relative calibration phases. (a) Training phase which uses calibration learning algorithms
to obtain p̂ (b) implementation phase which uses p̂ for compensating the imperfections

3 Relative Calibration through Deconvolution Techniques

To compensate the time-invariant filter imperfection, relative calibration can be performed
using the deconvolution techniques. In this section, the deconvolution is performed using the TLS
and the STLS as discussed in Subsection 3.1 and Subsection 3.2.

3.1 Deconvolution by TLS
Let us assume that the forward and reverse channel coefficients at kth channel measurement

are real, finite-valued and defined as hk �
[
hk1, . . . ,h

k
L′

]T
and gk �

[
gk1, . . . ,g

k
L

]T
where hki ∈ R

L′
,

gkj ∈ R
Li ∈ {

1, . . . ,L′} and j ∈ {1, . . . ,L}. Here L′, L are the filter lengths and to ensure that the

Toeplitz matrix is a square matrix, L′ has to have an odd value. Thus, a relation between L and
L′ can be formulated as L= (L′ + 1)/2. The calibration vector is defined as p� [pl, . . . ,pL]

T ∈R
L.

The matrix H in (3) is a square matrix of the Toeplitz structure [26]. The kth measurement is
represented as Hk .

Hk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

hkL′−L+1 hkL′−L . . . hk1

hkL′−L+2 hkL′−L+1 . . . hk2

...
. . .

...

hkL′ . . . hkL′−L+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

It is assumed that hk and gk are affected only by the estimation errors, where the estimated
calibration vector p can be obtained using singular value decomposition (SVD) method [29].
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3.2 Deconvolution by STLS
For a more realistic approach to address the problem of deconvolution, we assume that both

gk and hk are noisy (denoted with a tilde). This modifies the problem given in Eq. (3) as:

min Ek,pα
T
k αk = βTk βks.t(H̃k+Ek)p= g̃k+βk (5)

Eq. (5) includes αk and βk are the error correction terms for h̃k and g̃k respectively. The error
correction terms are also structured in the case of STLS which is not the case with TLS and it
improves the optimization process. To maintain the symmetry of the equation, αk is transformed
into the Toeplitz matrix as well which is denoted as Ek.

Ek =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

αkL′−L+1 αkL′−L . . . αk1

αkL′−L+2 αkL′−L+1 . . . αk2

...
. . .

...

αkL′ . . . αkL′−L+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

As the noise is Gaussian i.i.d (independent and identically distributed), Eq. (5) can be solved
by using Maximum Likelihood (ML) method [30]. The Gauss–Newton method [31] is chosen for
the ML implementation. In addition, ML optimizes the parameter vector p by minimizing the
vector (αTk αk + βTk βk) in an iterative process. The process of ML is an exhaustive search as it
requires much more time than TLS method which is an oversimplified approach. Although STLS
is a slower process than TLS, the quality of the p from STLS is far better than TLS, which in
turn gives improved calibration. Until now, we have considered a single channel measurement.
The assumption can be extended to multiple channel measurements by concatenating successive
kth measurements of H̃k and g̃krespectively. A comprehensive equation considering all channel
measurements can be given as:

min Ec,pαTα+βTc βc

such that [M̃ +Ec]p= b̃+βc (7)

where M=

⎡
⎢⎢⎢⎣

H1
H2
...
HK

⎤
⎥⎥⎥⎦ , b=

⎡
⎢⎢⎢⎣

g1
g2
...
gK

⎤
⎥⎥⎥⎦

and k = 1, . . . ,K denotes the number of training probes. Ec and M̃ matrices have dimensions
[(L′ − L + 1) × K(L′ − L + 1)]. Again, Ec is a Toeplitz matrix of α which is given by α �[
αT1 , . . . ,α

T
K

]
[26]. Similarly, β �

[
βT1 , . . . ,β

T
K

]
is a single vector that denotes the error correction

terms for concatenated g̃k [26]. Eq. (7) is subjected to the input of the constraint optimization
algorithm and an optimized p̂ is estimated. The matrix or vector with subscript “c” is generated
within the algorithm.

Relative calibration is performed in two step fashion as depicted in Fig. 3. The details of
which are given as following:
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3.2.1 Training Phase
In this phase, Alice and Bob learn the channel imperfections by sending pilot signals to

each other. The channel coefficients from Alice to Bob and Bob to Alice are stored g̃ in and h̃,
respectively, depending upon the coefficients’ nature. Since calibration is performed on Alice side
in our case, g̃ has been sent from Bob to Alice. By doing so, the method of deconvolution can
be applied to estimate p̂ using any of the above-mentioned methods.

3.2.2 Implementation Phase
In this phase, Eq. (3) is then used to obtain estimated forward channel measurements ĝ by

convolving the estimated p̂ with H.

4 Deconvolution Using Circulant Structure

The limitations of TLS and STLS depend mainly on the structure of H which is Toeplitz, as
shown in Eq. (3). However, we can manipulate the performance by using different structure for H.
The circulant matrix can be an effective candidate instead Toeplitz matrix. The circulant matrix
is defined as a modified Toeplitz matrix which is created by rotating each column or row by one
element relative to preceding row or column. In our case, we have rotated a column vector to
generate the circulant matrix. The comparison between the circulant matrix and Toeplitz matrix
is as following:

4.1 Advantages of Circulant over Toeplitz
In the case of Eq. (3), the number of elements in the matrix H is of great importance. We

have to infer the calibration vector p by using channel coefficients from g and H. For calculating
more accurate value of p, the number of channel coefficients should be higher in number. Since
the circulant matrix is created by using only one vector, a large matrix can be created by using
same number of channel coefficients compared to the Toeplitz matrix. Generally, a Toeplitz is
defined by two vectors one for row and one for column, the channel coefficient vector h has to
split in two further in order to fulfill the condition of being a Toeplitz matrix.

Let us assume we have a vector s = [a, b, c, d, e] and this has to be transformed into both
Toeplitz and circulant matrices.

Htoep =

⎡
⎢⎢⎢⎣

c b a

d c b

e d c

⎤
⎥⎥⎥⎦ , Hcirc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a e d c b

b a e d c

c b a e d

d c b a e

e d c b a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

The vectors results in 3× 3 and 5× 5 matrices as shown in Eq. (8). If every element of this
vector is considered as one unit of information then Fig. 4 illustrates how many times an infor-
mation can be re-used in both types. It clearly shows us that maximum information of circulant is
nearly double of what the Toeplitz can achieve (For example displayed in Eq. (8) as the recurring
underlined “c”). This gives an edge to circulant over Toeplitz structure. A redundant matrix can
increase complexity for circulant structure compared to Toeplitz structure. This happens only if
we use SVD for the deconvolution of both, however the results would definitely be better in
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circulant because of the higher information-reuse. Instead, if Toeplitz structure is used in STLS
deconvolution, its complexity also increases because of exhaustive iterations required for MLE
execution. Thus, a comparison between the circulant structure using SVD for deconvolution and
Toeplitz structure using STLS for deconvolution can be considered fair for the same vector s.

Figure 4: Comparison of the Toeplitz and the circulant matrices’ re-use factor

4.2 Deconvolution
Recalling Eq. (3) for the deconvolution through circulant, the forward and reverse channel

coefficients can now be given as gk �
[
gk1, . . . ,g

k
L

]T ∈ R
L and hk �

[
hk1, . . . ,h

k
L

]T ∈ R
L whereas the

calibration vector is defined as p� [p1, . . . ,pL]
T ∈ R

L. Note that contrary to Toeplitz, all vectors
here are equal in length. This provides the basis for more information re-use. The circulant matrix
created by hk would then be:

Hk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

hk1 hkL . . . hk2

hk2 hk1 . . . hk3

...
. . .

...

hkL . . . hk1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

While using circulant transformation for H in Eq. (3), the calibration vector p can be easily
estimated by using SVD and referred as p̂. This makes it very efficient and less complex to
implement. In simple words, circulant deconvolution can be deemed as a scheme that is as efficient
as STLS and as simple as TLS. It breaks the trade-off need between STLS and TLS.

5 Simulation

The linear model in Fig. 2 is simulated in this section and results are presented for the
validation. The simulation environment used here is devised by characterizing the theoretical
equations and system model in MATLAB. Fig. 5 shows a prototypical model which is used for
simulation purpose. The motivation behind using this is to simplify our original model given the
fact that filter imperfections can also be monitored by using single filter per chain.
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Figure 5: The simplified model for simulation environment

The parameters used for the simulation are shown in Tab. 1. Given the maximum length
of the filter is N = 30, where N = L 0 in the case of Toeplitz (STLS) and N = L in the case
of circulant.

Table 1: The simulation parameters

Parameter Value

Channel coefficients 30
Filter coefficients 30
Implementation probes 500
SNR observed min=−30,max=+30

In general, the filter responses can be complicated but to keep our assumption simple, tA and
tB are modeled as sin(θ) and sin(2θ) respectively, where θ ∈ [0, 2π ]. The channel C is modeled as
Rayleigh distributed fading channel. Contrary to [26], only absolute value of channel coefficients is
utilized. The performance of the system is evaluated by comparing the correlation between H and
g relative to H and ĝ. Each simulation has been run for 100 observations and averaged out for a
steady response. Fig. 6a shows the SNR versus correlation graph which contrasts the correlation
of channel estimates before calibration and after calibration over a wide-range of SNR. Negligible
correlation exists in extremely low SNR regions showing the limitation of relative calibration
schemes. The reason for this limitation is the noise dominance in the channel coefficient values
which does not allow calibration to work properly. However, after a certain SNR, the correlation
between channel coefficients of either station becomes visible and it keeps improving from then on.
This improvement is visualized in Fig. 6b for STLS and circulant deconvolution schemes. Fig. 6b
is a measure of percentage improvement in correlation at any given SNR value.

It can be observed that the circulant performs slightly better in low SNR regions and achieves
maximum at 0 dB. The decrease in percentage for both methods in Fig. 6b attributes to the
improvement of uncalibrated curve in the positive SNR regions, shown in Fig. 6a. Since there
is slight chance for an enhancement, the relative percentage in Fig. 6b decreases and saturates
to a single value. The saturation at 10% shows the maximum possible increment which is clearly
visible in Fig. 6a. We can observe that the correlation is increasing from 0.88 to 0.98 on 30 dB
SNR which translates to 10% increment. Another difference between the two methods is their
execution time in terms of the training phase of calibration. The time of training phase is
imperceivable to the user or the system in general. Less time it takes to determine the calibration,
better would be the system performance. That is why it is an important factor for Physical
Security (PHYSEC) systems. Although the execution time of any method greatly depends upon
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the processing speed of the system and chosen simulation parameters, the comparison between
STLS and circulant deconvolution methods is performed by keeping all those factors constant.
Fig. 7 depicts such a contrast and is a rather logical comparison then an exact relation between
the two methods. As mentioned earlier, an average of 100 observations are taken for each method
and their execution times in seconds are recorded by means of MATLAB’s clock command. It is
evident that the circulant deconvolution utilizes nearly quarter of the time to provide almost same
level of performance as STLS deconvolution, hence it can be regarded as more efficient scheme
in terms of relative calibration.

Figure 6: Comparison of STLS and Circulant (a) SNR vs. correlation coefficient graph which
shows the effect of calibration on the system (b) shows the percentage improvement in the system
performance at different SNR

Figure 7: A comparison of average execution time of deconvolution through STLS and Circu-
lant methods
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6 Conclusion

The deployment of relative calibration has introduced as an enhancement in terms of reci-
procity in the PLKG architecture which has a major influence in securing communication between
nodes. The deconvolution method is proposed in order to implement the relative calibration with
less computational cost in comparison to the state-of-the-art methods. Existing deconvolution
methods like TLS and STLS are implemented and discussed for comparative purpose. STLS being
more efficient than TLS in terms of quality, is used to perform deconvolution however due to
its higher computational cost as a trade-off to quality, the circulant deconvolution is proposed
as an alternate solution. In this context, a comprehensive comparison between the two methods
is also presented, highlighting the reasons and motivation to use circulant deconvolution. It is
to be concluded that the circulant deconvolution replicates the performance of STLS even with
less computational cost. The simulation results of the proposed method also validate that secure
communication is possible by adapting the circulant deconvolution within wireless systems having
ultra-low latency including 5G and IoTs systems due to its less computational cost. The proposed
circulant deconvolution is recommended as a better scheme in comparison to the state-of-the-art
techniques and this is clearly validated by the simulation results. As an immediate succession, the
relative calibration is to be implemented over complete PLKG chain and its effect on the created
keys should be observed in real time scenarios.
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