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Abstract: Inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative colitis, has a not yet

completely defined aetiology and is characterized by a progressive chronic inflammation that involves nitroxidative

stress and dysbiosis. Extraintestinal manifestations can occur and affect several organs, including the liver and bile

ducts, joints, skin, eyes, and less frequently, the heart, brain, and kidneys, increasing the risk of morbidity and

mortality. These repercussions may be associated with the activity or severity of IBD. The present review proposes to

report and analyse the participation of dysbiosis and nitroxidative stress in the genesis of extraintestinal

manifestations, aiming to contribute to a better understanding of the disease and to focus on the development of

individualized preventive and therapeutic strategies.
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Introduction

Inflammatory bowel disease (IBD) is a chronic and recurrent
disease that includes Crohn’s disease (CD) and ulcerative
colitis (UC). The IBD aetiology is not fully elucidated,
however, it is known that there is an intimate interaction
between genetic, immunological, and environmental factors
(diet, smoking, circadian cycle), the intestinal microbiota and
nitroxidative stress (Manichanh et al., 2012; Moura et al.,
2016; Garber and Regueiro, 2019; Feuerstein and Cheifetz, 2014).

Intestinal microbiota comprises more than 150.000
species of commensal microorganisms that inhabit the
gastrointestinal tract and perform beneficial functions to the
host, such as the synthesis of substances important for
energy metabolism, defense against luminal pathogens, and
modulation of the immune response (Qin et al., 2010;
Nishida et al., 2018).

The participation of the microbiota in the modulation of
innate and adaptive immunity of the mucosa is fundamental
to maintain the integrity of the epithelial barrier and occurs
through the interaction between the pathogen-associated
molecular patterns (PAMPs) and the pattern recognition
receptors (PRR), such as Toll-like receptors (TLR), present
in immune cells, as well as by the action of their
metabolites, especially short-chain fatty acids (SCFA), which
act to induce immunological tolerance by stimulating,
mainly, the polarization of regulatory T lymphocytes.

In addition, they secrete or promote the secretion of
antimicrobial factors, such as defensins and immunoglobulin

A (IgA) (Kamada and Núñez, 2013; Hart et al., 2005;
Nishida et al., 2018).

Imbalance in microbial diversity and density, known as
dysbiosis, can alter the interaction between the host-
microbiota-immune system and has been associated with
the appearance of many inflammatory and autoimmune
disorders, including IBD. Some studies have reported that
IBD patients have changes in microbial composition, when
compared to healthy individuals, with a decrease in SCFA
producing commensal bacteria, such as Faecalibacterium
prausnitzii, and an increase in mucolytic, sulfate-producing,
and pathogenic bacteria (Fujimoto et al., 2013; Takahashi
et al., 2016; Nishino et al., 2018; Nishida et al., 2018).

It has been described that the increase in intestinal
permeability and the unregulated immune response causes a
continuous inflammatory process (with neutrophilic
infiltration) and a redox imbalance, generating nitroxidative
stress, production of pro-inflammatory cytokines, and
consequent impairment of the intestinal barrier, characterized
by the destruction of tight junctions and oxidative damage
caused by lipid peroxidation (Fig. 1) (Moura et al., 2015).
This scenario allows pathogenic bacteria and their products,
such as lipopolysaccharide (LPS), not only to enter the sterile
submucosa and activate immune cells through the binding
and recognition of their PAMPs in the respective PRRs but
also favour microbial translocation, via current blood, to
other organs and tissues, characterizing extraintestinal
manifestations (EIM), with an impact on the functional status
of the patients and their quality of life (Fig. 2) (Knutson
et al., 2013; Hussein et al., 2008).

EIM can be identified in 25–40% of patients with IBD.
The variation between remission and activity of symptoms
is linked to morbidity and mortality. The main described
manifestations include those that affect the liver and bile
ducts, the skin, joints, eyes, and blood vessels. The heart,
brain, and kidney are also affected (Annese, 2019; Garber
and Regueiro, 2019). In addition, a common link regarding
the microbial composition/nitroxidative stress of IBD and
some diseases involving extraintestinal organs has been
reported. This review aims to elucidate the participation of
nitroxidative stress and dysbiosis in EIM genesis.

Materials and Methods

A narrative review of the literature was carried out on the
association of inflammation, oxidative and nitrosative stress,
and dysbiosis in the onset of EIM of IBD using the PubMed
database. Systematic reviews, in vivo and in vitro studies (rats
and mice) were included, with a total of 200 papers. Studies
carried out on dogs, rabbits, pigs, or monkeys were not
included in this review. The following keywords were used:
oxidative stress, intestinal microbiota, dysbiosis, ulcerative
colitis, Crohn’s disease, inflammatory bowel disease, liver,
hepatic, joint, skin, eyes, ophthalmological, thromboembolism,
cardiovascular diseases, heart, brain, cerebral, neurologic, renal,
kidney, lipopolysaccharide, endotoxin.

Systematic description
After an extensive review, the results are displayed in the
following topics: hepatobiliary; osteoarticular, dermatological
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and ophthalmological; thromboembolic; cardiovascular;
neurological; and renal manifestations.

Hepatobiliary manifestations
Hepatobiliary manifestations (HM) comprise one of the most
common repercussions in IBD, with a prevalence of 3–50%,
especially in those with UC. In addition, up to 5% of adults
with IBD will develop some liver disease (Mendes et al., 2007;
Restellini et al., 2017; Silva et al., 2019; Venkatesh et al., 2011).
Primary sclerosing cholangitis (PSC) and non-alcoholic fatty
liver disease (NAFLD) are the most common forms and can
occur at any time during the course of intestinal disease or
before its diagnosis (Annese, 2019; Fousekis et al., 2018).

PSC is a progressive chronic cholestatic disease,
characterized by inflammation, stenosis, fibrosis, and
obstruction of the intra- and extrahepatic ducts, which can
progress with complications such as cirrhosis, liver failure, and
portal hypertension, in addition to an increased risk of
cholangiocarcinoma and colorectal cancer (Eaton and
Talwalkar, 2013; Maggs and Chapman, 2008; Tsaitas et al.,
2014). Epidemiological studies demonstrate that 60–80% of
patients with PSC have IBD, especially UC (approximately
75%), and up to 8% of patients with IBD have PSC
(Hirschfield et al., 2013; Mendes et al., 2007; Tsaitas et al., 2014).

NAFLD, in turn, characterized by excess fat deposited in the
liver, is responsible for up to 40% of the hepatic repercussions of

FIGURE 1. Interaction between dysbiosis, nitroxidative stress and inflammation in inflammatory bowel disease.
Legend: Representation of the interaction between dysbiosis, nitroxidative stress and inflammation involved in the pathophysiology of
inflammatory bowel disease (IBD). The activation of xanthine oxidase (XO), NADPH (nicotinamide adenine dinucleotide phosphate) oxidase
enzyme complex, and mitochondrial stimuli generate significant amounts of the superoxide radical anion (O2

•-) (1). In the cytosol, this
reactive species, through superoxide dismutase (SOD), is quickly converted into hydrogen peroxide (H2O2) (2), which in turn is decomposed
into H2O and O2, through the activity of catalase (CAT) and glutathione peroxidase (GPx) –formed by oxidation of GSH (glutathione
reduced) to GSSG (glutathione oxidized) (4). GSSG is converted back to GSH by glutathione reductase (GR) (5). The generated redox
imbalance causes a decrease in these antioxidant defences. The presence of transition metals, such as ferrous ion (Fe2+), converts H2O2 into
the hydroxyl radical (HO•) (6) that indiscriminately oxidizes cell membrane proteins and phospholipids (lipid peroxidation), causing
epithelial barrier dysfunction. The lipid peroxidation generates toxic aldehydes, such as malondialdehyde (MDA) and 4-hydroxynonenal
(4-HNE) (7), which are also the result of the action of hypochlorous acid (HOCl) (8) formed from the reaction between H2O2 and chloride
(Cl-), through the activity of myeloperoxidase (MPO), secreted from neutrophil granules (9). All those alterations, associated with dysbiosis
(10), make the environment conducive to bacterial translocation (11), which consists of the entry of bacteria, mostly gram-negative, and their
endotoxins, such as lipopolysaccharide (LPS), in the sterile sub-mucous (12). These microbes interact with immune cells (dendritic cells and
macrophages) (13), through the link between pathogen-associated molecular patterns (PAMPs) and pattern recognition receptors (PRRs),
respectively, and activate T lymphocytes (14), which promote the secretion of proinflammatory cytokines (15) that contribute to the
maintenance of the inflammatory arsenal. These inflammatory cytokines and RONS activate the nuclear factor kappa B (NfκB) (16), which in
turn stimulates, even more, the proinflammatory response. Reactive nitrogen species also participate, where the nitric oxide (•NO) derived from
inducible nitric oxide synthase (iNOS) (17), can react with O2

•- and generate peroxynitrite (ONOO-), which in turn, acts causing deoxyribonucleic
acid (DNA) fragmentation, increasing metabolites such as 8-oxoguanine (8-oxoG) (19). Additionally, nitroxidative stress causes recruitment of
inflammatory cells that generate additional damage and injury into intestinal microenvironment.
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the non-alcoholic subtype in patients with IBD (Magri et al., 2019;
Vernon et al., 2011). The prevalence is higher when compared to
the general population, ranging between 1.5% and 55% (Chao
et al., 2016; Palumbo et al., 2019).

The link between HM and IBD is still not well
understood; however, multiple factors are involved,
including genetic predisposition (HLA-B8, HLA-DRB1*
0301, HLA-DRB3* 0101, HLA-DRB1* 0401, REL, IL2 and
CARD9) and hepatotoxicity induced by the use of drugs
(corticosteroids, aminosalicylates, methotrexate, thiopurine,
and antitumour necrosis factor-alpha) (Chapman et al.,
2010; Eaton and Talwalkar, 2013; Janse et al., 2011; Karlsen
et al., 2010). However, the role of intestinal dysbiosis,
inflammation, and nitroxidative stress also stands out,
resulting from immune-mediated processes (Fousekis et al.,
2018; Navaneethan, 2014; Restellini et al., 2017).

Bacterial translocation, evidenced by the significant
increase in the levels of endotoxins and LPS in the portal
vein in humans and animal models, implies the
participation of the intestinal microbiota in the pathogenesis
of HM (Nakamoto et al., 2019).

Changes in the intestinal microbiota and dysfunction of
the epithelial barrier play a crucial role in PSCs concomitant

with IBD, as evidenced in humans. Intestinal dysbiosis–
generally called dysbiosis– is an inherent characteristic of
IBD, participating in the perpetuation and maintenance of
chronic intestinal inflammation (Fujimoto et al., 2013;
Nishida et al., 2018).

In humans, cohort studies have reported changes
in microbial diversity and composition and have identified
distinct phenotypes among patients with PSC and/or
IBD when compared to healthy controls. It is noteworthy
the significant decrease in the strain Faecalibacterium
prausnitzi, present in both PCS and patients with IBD
(Bajer et al., 2017; Quevrain et al., 2016; Sabino et al., 2016).
This dysbiosis may be associated with an unregulated
mucosal immune response and altered permeability that
directs a local and extraintestinal inflammatory response
through bacterial translocation. It has been suggested that in
the liver, endotoxins, especially LPS, bind to Toll-like
receptor 4 (TLR 4) and activate dendritic cells and
macrophages, which are involved in the secretion of pro-
inflammatory cytokines, such as tumour necrosis factor-
alpha (TNF-α) and reactive oxygen and nitrogen species
(RONS); the expression of adhesion molecules, such as
intercellular adhesion molecule 1 (ICAM-1) and vascular

FIGURE 2. Microbiota translocation in inflammatory bowel disease promotes systematic inflammation and affects several tissues, causing
local production of reactive oxygen and nitrogen species (RONS) and cytokines.
Legend: Bacterial translocation and nitroxidative stress contribute significantly to unregulated and exacerbated inflammatory response. The
interaction between endotoxins, such as LPS, and their pattern recognition receptors, Toll like receptors, in particular TLR 4, in immune cells,
causes secretion of pro-inflammatory cytokines and RONS, which cause harmful damage to all intestinal barriers and allow the spread of these
toxic products through the bloodstream, which can be deposited and activate the immune response in extraintestinal organs. In these organs,
LPS finds its TLR on the surface of innate immunity cells, causing the secretion of molecules with inflammatory profile and RONS, with
consequent recruitment of other cells of the immune system, which intensifies the inflammatory cascade, generating local damage and
contributing to the appearance of diseases. NFκB: nuclear factor kappa B; STAT 3: signal transducers and activators of transcription 3.
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adhesion molecule 1 (VCAM-1); and in the initiation and
progression of the fibrotic process characteristic of PSC
(Reyes-Gordillo et al., 2017).

In an animal model of PSC, dysbiosis was associated with
changes in the enterohepatic circulation of bile acids, damage to
the mucus layer, reduced expression of tight junction proteins,
and increased bacterial translocation (Liao et al., 2019).

Furthermore, a review showed that activation of the
inflammasome nucleotide-binding domain, leucine-rich
containing family, pyrin domain-containing-3 (NLRP3) in
the intestine-liver axis by bacterial products contributed to
the progression of liver damage through secretion of
interleukin (IL)-1β and IL-18 via caspase-1 activity (Liao et
al., 2019), which is related to the amplification of
hepatocellular damage (Zmora et al., 2017).

Intestinal dysbiosis has also been recognized as a
predisposing factor for NAFLD. The binding of bacterial
DNA to TLR9 in Kupffer cells has been reported in animal
studies to stimulate the secretion of IL-1β, which amplifies
steatosis and liver fibrosis, in a MyD88-dependent
mechanism (Miura et al., 2010; Muruve et al., 2008;
Purchiaroni et al., 2013).

The involvement of Klebsiella pneumoniae in NAFLD, a
gram-negative bacterium associated with lung infections, has
also been investigated. Recurrent infections by this resistant
pathogenic bacterium stimulate an influx of pro-
inflammatory cytokines in the colon and ileum, and the
increased colonization of K. pneumoniae induced UC in an
animal model, where it was able to increase the expression
of cyclooxygenase- 2 (COX-2), IL-6, IL-1β and TNF-α and
the levels of nitric oxide (NO•) and reduce tight junction
proteins (Kaur et al., 2018; Lee and Kim, 2011; Zhou et al.,
2009). Additionally, a study in mice demonstrated that these
animals developed liver steatosis after faecal microbiota
transplant containing K. pneumoniae isolated from a patient
with NAFLD. Lastly, a cohort study reported a strong
association between this bacterium and the severity of
NAFLD in 61% of individuals. This result suggested that
dysbiosis causes this condition due to excessive alcohol
production, as this bacterium is associated with ethanol
production in the faeces of patients with NAFLD when
compared to healthy patients, and, consequently, ROS
production and mitochondrial dysfunction (Chen et al.,
2020; Yuan et al., 2019).

In dysbiosis, redox imbalance plays a crucial role in the
damage, apoptosis/necrosis, and formation of toxic
aldehydes (lipid peroxidation) (Leung and Nieto, 2013;
Shearn et al., 2018).

Significant periportal inflammation in the PSC marked
by neutrophilic infiltrate and activation of NADPH oxidase
is related to the generation of elevated levels of lipid
peroxidation products and derivatives, such as
malondialdehyde (MDA), acrolein, and 4-hydroxy-2-
nonenal (4 HNE), which are important markers in the liver
associated with protein and deoxyribonucleic acid (DNA)
damage. Toxic aldehydes can cause post-translational
changes in certain proteins, causing protein carbonylation,
which determines the toxicity and degree of inflammation/
fibrosis in the liver (Osna et al., 2016; Shearn et al., 2018;
Shearn et al., 2019).

In an animal model of PSC, an increase in periportal
oxidative stress depending on the stage of cholestasis was
demonstrated (Shearn et al., 2019). Corroborating these
findings, human studies carried out in patients with PSC
concomitant with IBD showed an increase in periportal
oxidative stress, with the elevated presence of toxic aldehydes,
inflammation (↑ lymphocytes, ↑ Kupffer cells and ↑ MPO),
and unregulated antioxidant response (Shearn et al., 2018).

Additionally, the increase in intestinal permeability
observed in IBD patients allows lymphocytes, activated in
the intestine, to enter the enterohepatic circulation and
cause inflammation in the liver. This promotes the
recruitment of adhesion molecules and chemokines, such as
MAdCAM-1 (mucosal vascular addressin cell adhesion
molecule-1) and CCL25 (C-C motif chemokine ligand 25),
which are chemotactic for other inflammatory cells, such as
macrophages and dendritic cells (Adams and Eksteen, 2006;
Eksteen et al., 2004; Grant et al., 2002).

In NAFLD, increased β-oxidation in peroxisomes and
microsomes generates hydrogen peroxide (H2O2) not
coupled to phosphorylation and cytochromes P4502E1 and
P4504A, respectively (Bellanti et al., 2017; Robertson et al.,
2001). The imminent redox imbalance and the elevation of
lipids, associated with glutathione reductase (GR) depletion,
can lead to the formation of intermediate lipids and cause
stress of the endoplasmic reticulum, which in turn are
related to inflammation and apoptosis (Bellanti et al., 2017;
Higa and Chevet, 2012; Mari et al., 2006; Pagliassotti, 2012).

In humans, it was seen that the accumulation of lipids in
the liver, especially cholesterol, alters the cellular redox status
by prominently activating the oxidative pathways in the
mitochondria, causing a significant increase in the formation
of ROS that surpasses the neutralizing capacity of endogenous
antioxidant defenses, leading to mitochondrial dysfunction
(Muriel, 2009; Serviddio et al., 2011; Sunny et al., 2011).

Moreover, lipid peroxidation products, due to
overproduction of ROS, influence the progression of
NAFLD by complex inflammatory mechanisms, including
inhibition of the peroxisome proliferator-activated receptors
(PPARs) and TLR 7 pathways and activation of nuclear
factor kappa B (NFκB) and activating protein 1 (AP-1)
Green and Wahli (1994). These factors stimulate the
production of pro-inflammatory cytokines, especially TNF-α
and IL-1β, which increase the expression of sterol regulatory
element-binding protein (SREBP), responsible for the
transcription of genes that encode enzymes involved in the
synthesis of lipids and the later appearance of steatosis
(Bellanti et al., 2017; Chen et al., 2008; Kohjima et al., 2007).

Therefore, the involvement of dysbiosis/inflammation/
nitroxidative stress as mediators of hepatobiliary lesions
triggered by IBD seems to be increasingly consistent and
should be considered in clinical practice.

Osteoarticular, dermatological and ophthalmological manifestations
These manifestations occur even before the diagnosis of UC,
correlating or not with disease activity (Olpin et al., 2017).
Genetic susceptibility has been proposed to explain the link
between then and IBD, such as TNF-α and variations in TNF
receptor-associated factor interacting protein 2 (TRAF3IP2)
that occur in erythema nodosum (Ciccacci et al., 2013;
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Orchard et al., 2002; Suh et al., 2019; Timani and Mutasim,
2008). In this context, in some of these diseases, genetic
alterations related to microbiota disruption have been
described, including ankylosing spondylitis and uveitis, which
were identified as the presence of B27 human leukocyte
antigen (HLA-B27) that predisposes individuals to dysbiosis
(Ciccia et al., 2016; Costello et al., 2015; Hermann et al.,
1993; Lin et al., 2014a; Pimentel-Santos et al., 2013; Sheth
et al., 2015; Speca and Dubuquoy, 2017).

However, genetic factors alone are unable to elucidate the
pathophysiological pathways, suggesting the involvement of
environmental factors. It has been proposed that intestinal
lumen antigens can form circulating immune complexes
and could be deposited in these organs, causing an
inflammatory response and RONS production, which are
responsible for the characteristic lesions of the disease (Lin
et al., 2014a; Lin et al., 2014b; Yang et al., 2016).

Osteoarticular manifestations: Spondyloarthropathies
(SpA), including ankylosing spondylitis and peripheral
arthritis, are found in 10–39% of patients with IBD, especially
in patients with CD (Fantini et al., 2009; Gionchetti et al.,
2015; Karreman et al., 2017). Some mechanisms are described
to explain this association. One of these findings suggests that
lymphocytes and macrophages activated in the Payer plate
and in the mesenteric lymph nodes start to express and
stimulate cell and vascular adhesion molecules (α4β7 and
αΕβ7 integrins, cadherin E, vascular adhesion protein 1
[VAP-1], ICAM-1) that promote the adherence of these
immune cells in the synovial endothelium and inside the
joints, releasing cytokines directed to synovial fibroblasts.
These findings were corroborated in samples from the
affected part of the intestine of patients with CD and CU,
where it was demonstrated that the leukocyte populations of
the inflamed intestine were avidly bound to synovial vessels,
evidenced by the expression of adhesion molecules and
ligands (ICAM-1 and P-selectin) (Jacques and Elewaut, 2008;
Salmi and Jalkanen, 2001).

Another link described in some studies suggests that the
mechanisms of IBD-associated SpA involve a hypothesis of
“intestine-synovia-joint axis”, including changes in the
intestinal microbiota and activation of T cells in the
intestine for liquid synovial joint in genetically predisposed
individuals (Arvikar and Fisher, 2011; Fragoulis et al., 2019;
Brakenhoff et al., 2010).

In this context, germ-free and transgenic animals for the
HLA-B27 gene (related to joint disease) did not develop
inflammation or lesions characteristic of colitis and
spondyloarthritis (Gilis et al., 2018; Scher et al., 2016;
Taurog et al., 1994).

Additionally, it has been reported in patients with IBD and
SPA overexpression of E-cadherin, the major component of
adhering junctions, responsible for maintaining intestinal
homeostasis and barrier function, indicating the participation
of microbiota/endotoxins in these conditions (Demetter et al.,
2000; Demetter et al., 2005).

These changes in microbiota and intestinal permeability
allow the translocation of bacteria and endotoxins, such as
LPS, to the synovial fluid and joints, causing local
inflammation (Asquith et al., 2014). Dysbiosis induces the
M1 phenotype in macrophages, which are responsible for

increasing the production of pro-inflammatory cytokines
(Yang et al., 2016). Ciccia et al. indicated in intestinal biopsy
samples from patients with SpA that infiltrating monocytes
were responsible for the increased IL-23 expression, and
overexpression of IL-23 is an important characteristic of
subclinical gut inflammation in SpA. Further, to confirm this
theory of “intestine-synovia-joint axis”, a reduction in the
number of Faecalibacterium praustnizii species, which are
beneficial species for intestinal health and the immune system,
has been described in the faeces of patients with SpA and IBD
(Tito et al., 2017).

Together, these findings (in experimental and human
studies) suggest the involvement of microbiota homeostasis
in the immune response and molecular mimicry in patients
with SpA and IBD.

Osteoporosis is another osteoarticular disease common
in patients with IBD and has been identified in 18–42% of
these, increasing the fracture risk, especially in older patients
(>60 years). However, it is not clear if IBD patients have an
increased risk of reduced bone mineral density (BMD) (van
Hogezand and Hamdy, 2006).

Osteoporosis in IBD is multifactorial, but medications
used in IBD treatment seems to be the main cause of BMD
in these patients. Chronic steroid therapy may decrease
BMD, damage bone tissue structure, increase the risk of
fractures (van Staa et al., 2005), and, by the other side,
decrease intestinal calcium absorption and calcium kidney
reabsorption, leading to an increase in the parathormone
level, responsible for the stimulation of osteoclasts and
increasing bone loss (van Staa, 2006).

The link between osteoporosis/IBD/oxidative stress/
microbiota is not evident. However, in a recent review of
Ratajczak et al. (Ratajczak et al., 2020), the authors did an
association between vitamin C deficiency and risk of
osteoporosis in IBD patients. According to then, as an
antioxidant, vitamin C: (1) Decreases the level of ROS, which
increase bone resorption, throughout the activation of (NF-κB)
which is a crucial mediator of TNF-α and osteoclastogenesis;
(2) Creates a redox state and modulates gut microbiota
increasing Firmicutes and a decreased Bacteroides level. All
dates together suggest an important role of antioxidant status
in bone health to IBD patients. However, the exact mechanism
is unclear and must be studied posteriorly.

Dermatological manifestations: Erythema nodosum and
pyoderma gangrenosum are the most frequent EIM on the
skin of IBD (Greuter and Vavricka, 2019; Vavricka et al.,
2011). Nodosum erythema is the most common symptom,
more present in CD than in UC, especially in women (Farhi
et al., 2008; Vavricka et al., 2011; Vavricka et al., 2015).
Its relationship with IBD is more associated with genetic
factors (Suh et al., 2019; Timani and Mutasim, 2008).

Gangrenous pyoderma, in turn, mainly affects patients
with UC to the detriment of those with CD and can appear
before or after the diagnosis of IBD (Ahn et al., 2018;
Annese, 2019). The pathophysiological link is still unclear,
but an unregulated inflammatory response is proposed,
involving neutrophils and T cells against antigens common
to the organs. Data from immunohistochemistry and
analysis of proteins in necrotic tissue in patients with
gangrenous pyoderma have demonstrated overexpression of
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the TNF-α, NF-κB, and signal transducer and activator of
transcription 3 (STAT3) pathways (Vavricka et al., 2015).

Psoriasis, a chronic inflammatory skin disease, has also
been associated with IBD and is more prevalent in patients
with CD than in those with UC (Fu et al., 2018; Suh et al.,
2019). A recent meta-analysis also showed that psoriasis was
significantly related to IBD (Fu et al., 2018), being more
prevalent in these patients than in the general population.

Despite the genetic link (IL23R and IL12B), it has been
proposed that the intestinal microbiota plays an important
role in this context (Capon et al., 2007; Cho, 2008; Cottone
et al., 2019; Ellinghaus et al., 2012). The decrease in the
genus Faecali bacterium prausnitzii (a beneficial bacterium
for the maintenance of intestinal homeostasis, as already
mentioned in this review), observed in both patients with
CD and psoriasis, demonstrates the relevance of an
interaction between the microbiome and an adequate
immune response (Eppinga et al., 2016).

Ophthalmological manifestations: Ophthalmological
manifestations may be present in 4–12% of patients with
IBD; however, the reported prevalence rate can reach up to
29%, especially in CD. The most common conditions
reported are anterior uveitis and episcleritis, present in 0.3–
10% of patients with IBD (Greuter and Vavricka, 2019;
Harbord et al., 2016; Larsen et al., 2010; Taleban et al., 2016).

The hypothesis of the microbiota-intestine-eye has been
proposed and investigated. In animal models of autoimmune
uveitis, it has been shown that dysbiosis induces the activation
of retinal-specific autoreactive T cells and intraocular
inflammation (Horai and Caspi, 2019; Horai et al., 2015;
Nakamura et al., 2016). In addition, there was an increase in
intestinal permeability and antimicrobial peptide expression
concomitant with the effector T cell response in the initial
stage of uveitis (Janowitz et al., 2019).

In addition, nitroxidative stress, identified through MDA
elevation levels in the aqueous humour and decreased
antioxidant defense (superoxide dismutase [SOD], catalase
[CAT] and glutathione peroxidase [GPx]), has been
confirmed in an endotoxin-induced anterior uveitis model
(Rahman and Biswas, 2004).

Recent cohorts, including individuals with autoimmune
anterior uveitis, identified changes in the composition of the
intestinal microbiota and a faecal metabolic phenotype that
significantly differed when compared to that of healthy
controls (Huang et al., 2018; Chakravarthy et al., 2018).
However, the scarcity of studies in humans that have evaluated
the intestine in eye diseases hinders the effective association.

Despite these molecular findings suggesting the close link
between microbiota, nitroxidative stress, intestinal
inflammation and osteoarticular, dermatological and
ophthalmological manifestations in patients with IBD, these
crosslinks are not yet well understood, and additional
studies, especially in humans, are still needed.

Thromboembolic manifestations
The prothrombotic state is considered a characteristic of
patients with IBD, especially during the symptomatic phase
(Nguyen et al., 2014). The most common manifestations are
deep venous thromboembolism and pulmonary embolism
(van Assche et al., 2013). Chronic inflammation (monocyte

chemoattractant protein-1 [MCP-1], IL-6 and IL-8) activates
hemostasis and causes hypercoagulation and, consequently,
abnormalities in the microvascular tissue characteristic of
endothelial dysfunction (Danese et al., 2007; Esmon, 2005;
Levi et al., 2012; Papa et al., 2008; Roifman et al., 2009;
Zezos et al., 2014).

Several factors cause lesions in the gut microvascular
endothelium, among which the most important described
are the bacterial endotoxins present in the gut lumen, pro-
inflammatory cytokines, and hypoxia (Danese, 2007; Joseph
et al., 2002; Levi et al., 2012; Makrides, 1998; Stadnicki,
2012; Zezos et al., 2014).

Once activated, the vascular endothelium starts to express
a large amount of cell adhesion molecules (ICAM-1, VCAM-1,
and PCAM-1) and adhesins (selectins and integrins) that allow
the recruitment and transmigration of leukocytes through the
vessel, platelet activation, and aggregation (Davis et al., 2003;
Panes and Granger, 1998; Schuermann et al., 1993). This
scenario promotes the coagulation cascade, with an evident
increase in the factors involved in this process (factors V,
VIII, von Willebrand, and fibrinogen), thus enabling the
formation of thrombi. Vascular and tissue damage spread
through a vicious cycle characterized by an increase in the
production of cytokines, especially TNF-α, IL-6 and vascular
endothelial growth factor (VEGF), RONS and chemokines
(Danese, 2007; Hudson et al., 1992; Jorens et al., 1990;
Scaldaferri et al., 2011; Zezos et al., 2014). Increased
expression of VEGF and its receptor was seen in samples
from patients with IBD when compared to healthy
individuals (Scaldaferri et al., 2009).

Furthermore, vascular dysfunction in IBD was associated
with an imbalance in RONS levels. Inflammatory and
immunological stimuli, bacteria and LPS have been shown
to activate inducible nitric oxide synthase (iNOS), which
induces the production of large amounts of •NO–a potent
vasodilator and anti-aggregation agent that causes indirect
harmful effects through the generation of other species, such
as nitroxyl anion (NO−) and peroxynitrite (−OONO), which
is able to cause lipoperoxidation and damage to DNA
molecules (Beckman and Koppenol, 1996; Kolios et al.,
2004). Studies with colonic biopsies of patients with CD and
UC, showed overexpression of iNOS in the inflamed
epithelium and nitrotyrosine, suggesting that this finding is
associated with the formation of −OONO and the nitration
of cellular proteins (Singer et al., 1996; Dijkstra et al., 1998).

In addition, literature reviews show that in the endothelial
cells of the chronically inflamed microvasculature, there is a
decrease in the production of NO•, mainly due to the
selective inhibition of iNOS and the non-selective inhibition
of the constitutive forms of nitric oxide synthase (NOS), and
an increase in superoxide anion radical (O2•-), which was
proportional to the increase in recruitment and leukocyte
adhesion (Binion et al., 1998; Binion et al., 2000; Hatoum
et al., 2003).

The increase in the serum levels of homocysteine (HCy), a
sulfur-containing amino acid resulting from the demethylation
of methionine, is also associated with an elevated risk of venous
thromboembolism by inducing platelet activation in the
endothelium and increasing prothrombotic components
(Zhang et al., 2014). In a dysbiotic environment, the bacteria
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that synthesize methionine contribute to excessive HCy
formation (Kurilshikov et al., 2019).

Intestinal dysbiosis and bacterial translocation have also
been linked to endothelial dysfunction. A review described
that, in the bloodstream, microbial endotoxins present in
the outer membrane of gram-negative bacteria, especially
LPS, bind to TLR4 in immune cells, forming a complex that
binds to the MD-2 protein and CD14. This complex
formation results in the production of pro-inflammatory
cytokines and other mediators involved in endothelial
damage, the procoagulant state, the recruitment and
transformation of macrophages into foam cells, and the
initiation of atherosclerotic plaque (Szeto et al., 2018a; Szeto
et al., 2018b).

Therefore, the activation of the endothelium associated
with chronic bowel inflammation and dysbiosis may be
critically implicated in triggering hypercoagulability and
subsequent onset of thromboembolic events.

Cardiovascular manifestations
Patients with IBD have a high risk of coronary artery disease, in
part, attributed to a greater susceptibility to the occurrence of
thromboembolic events and nutrient malabsorption, especially
selenium (Benstoem et al., 2015; Castro Aguilar-Tablada et al.,
2016; Hansson, 2005; Wu et al., 2017). On the other hand, it
has been suggested that the risk of atherosclerosis and other
cardiovascular diseases is associated with endothelial
dysfunction caused by systemic inflammation, dysbiosis, and
nitroxidative stress (Aniwan et al., 2018; Bigeh et al., 2019;
Horowitz et al., 2007; Wu et al., 2017).

Systemic inflammation in IBD leads to RONS generation
and nitroxidative stress (Wu et al., 2017; Zanoli et al., 2015). A
study in patients with CD observed high levels of pro-
inflammatory molecules such as TNF-α, IL-1, IL-6 and C-
reactive protein (CRP) contribute to endothelial
dysfunction, characterized by vascular smooth muscle cell
hyperplasia and decreased •NO production, resulting in a
reduction in vessel relaxation. This induces the infiltration
of neutrophils into the blood vessels, causing changes in the
smooth muscle cell phenotype, an increase in matrix
metalloproteinase production, and a decrease in elastin and
collagen fibres due to the activation of collagenases and
elastases, thus leading to the formation of rigid fragments
that induce atherosclerotic processes (Schinzari et al., 2008).
Moreover, TNF-α signaling pathways induce the expression
of osteoblast markers (osteocalcin and osteopontin) in
endothelial cells, which leads to an increase in calcification
and reduced vascular elasticity, resulting in arterial
stiffening, coronary artery disease, and heart failure (Floege
and Ketteler, 2004; Wu et al., 2017; Zanoli et al., 2015;
Zieman et al., 2005).

Intestinal dysbiosis, in turn, associated with increased
permeability, allows bacterial translocation. Has been
demonstrated in in vitro assays (Howell et al., 2011; Maziere
et al., 1999) and an animal model (Wiesner et al., 2010) that
high levels of LPS and bacterial products directly induce the
atherosclerotic process through the formation of oxidized
low-density lipoprotein (oxLDL), a key atherosclerotic lesion
component, activation of macrophages and adhesion
molecules and, consequently, the formation of foam cells

and stimulation of pro-inflammatory cytokine expression.
The latter, in association with other cellular mediators such
as VEGF, CRP, and platelets, cause endothelial dysfunction
and eventual atherosclerosis.

A recent cohort study exploring the relationship of
intestinal microbiota with plasma metabolites,
cardiovascular metabolic risk score, and cardiometabolic
phenotypes demonstrated that L-methionine-producing
bacteria were associated with atherosclerosis in obese
individuals. It is suggested that methionine causes this effect
through its direct conversion to HCy, contributing to serum
elevation, which is a known cardiovascular risk factor that
will be addressed later (Kurilshikov et al., 2019).

The presence of bacterial DNA in human plasma has
been addressed in some reviews and associated with
endotoxin levels to trigger systemic inflammation and
increase the instability of atherosclerotic plaques. It binds to
TLR-9, stimulating inflammatory intracellular signaling
pathways such as mitogen-activated protein kinase (MAPK),
NF-κB, PI3-kinase, and Jun N-terminal kinase (El Kebir et
al., 2008; Szeto et al., 2018a).

The intestinal microbiota is also related to the
trimethylamine/N-trimethylamide (TMA/TMAO) pathway
(Hansen et al., 2015; Wang and Zhao, 2018). Proteus
mirabilis is a gram-negative bacterium, a component of the
fecal microbiota, but in a dysbiotic environment, it is found
in higher numbers. These species, from the carbon
extraction of some compounds such as choline,
phosphatidylcholine, glycerol phosphocholine, carnitine,
betaine, and γ-butyrobetaine, produce the metabolite TMA
by TMA lyases (Tang and Hazen, 2014; Wang et al., 2015;
Wang and Zhao, 2018). TMA is oxidized to TMAO in the
liver by flavin monooxygenase and transported to the
systemic circulation (Bennett et al., 2013; Koeth et al., 2013;
Tang and Hazen, 2014; Wang and Zhao, 2018) and activates
smooth muscle cells of the vessels, endothelial MAPK and
the NF-κB pathway, leading to the expression of pro-
inflammatory cytokines and leukocyte adhesion in addition
to inducing transformation of macrophages to foam cells to
activate NOD (nucleotide-binding oligomerization domain),
LRR (leucine-rich repeats) and NLRP3 (nucleotide-binding
domain, leucine-rich-containing family, pyrin domain-
containing-3) (Chen et al., 2017; Seldin et al., 2016; Wang
and Zhao, 2018; Wei et al., 2017). Additionally, TMAO
reduces the expression of the genes CYP7A1 (cytochrome
P450 family 7 subfamily A member 1) and CYP27A1
(cytochrome P450 family 27 subfamily A member 1),
affecting the metabolism of cholesterol and bile salts and the
release of calcium in the platelet endoplasmic reticulum,
facilitating the formation of thrombi (Koeth et al., 2013;
Zhu et al., 2016).

Furthermore, hyperhomocysteinaemia is an independent
cardiovascular risk factor and has been observed in both
patients with UC and CD at concentrations 4–5 times
higher than those in healthy individuals (Drzewoski et al.,
2006; Oussalah et al., 2011; Tyagi et al., 2005; Wu et al., 2017).

High levels of HCy cause nitroxidative stress and
endothelial dysfunction through self-oxidation catalysed by
cationic metals, which results in the formation of O2

•- and,
when reacting with •NO, forms (ONOO-), which reduces
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the bioavailability of •NO (Sen et al., 2010; Tyagi et al., 2005).
Studies in cell culture (Liu et al., 2013; Zhu et al., 2016) and
animals (Sen et al., 2010) have shown that high levels of
HCy induce RONS formation, causing an increase in the
concentrations of H2O2 and MDA and mitochondrial damage
by decreasing the expression of cytochrome c oxidase
III/ATPase 6/8 and heat shock protein 60 and impairing the
antioxidant defence system (GPx, hemeoxygenase and SOD),
thus leading to redox imbalance (Liu et al., 2013; Tyagi et al.,
2005). It also activates the NFκB pathway, adhesion molecules
(ICAM-1, VCAM-1) and MCP-1. These, in turn, interact with
inflammatory cells of the endothelium, leading to the
atherosclerotic process (Silverman et al., 2002; Wang et al., 2002).

Neurological manifestations
Malabsorption, nutritional deficiencies (vitamins B1, B12, D
and E, folic acid and nicotinamide), infections,
thromboembolism, adverse drug effects (metronidazole,
sulfasalazine, steroids, cyclosporine), and immunological
abnormalities are related to changes in the bowel-brain axis
(Casella et al., 2014; Moris, 2014). The pathophysiology of
neurological manifestations of IBD and their prevalence are
not yet fully understood. Neurologic and neuromuscular
complications in IBD (peripheral neuropathies, multiple
sclerosis, cerebrovascular diseases, and others including
psychiatric disorders) have been estimated from 0.25 to
35.7% due to the different forms of diagnosis (Elsehety and
Bertorini, 1997; Gondim et al., 2005; Lossos et al., 1995).

A link has been proposed between chronic intestinal
inflammation and neuropathy onset. The deregulated immune
response involving mainly T cells towards the autoantigens that
crossed the blood-brain barrier (BBB) induces central nervous
system activation of astrocytes and microglia, which stimulates
the production of pro-inflammatory cytokines, RONS,
glutamatergic excitotoxicity, and autoantibody generation
against the myelin sheath, causing axonal injury and neuronal
dysfunction (Casella et al., 2014; Moris, 2014; Singh et al.,
2013). According to Nemati et al. (2019), the development of
neurological disease in IBD may be coincidental (chance
association) or the consequence of the primary disease and this
differentiation is necessary because they may require different
treatments. Furthermore, investigations in this context are not
yet routine in clinical practice.

An intimate link between the microbiota-gut-brain axis
has been proposed. The microbiota influences several brain
activities, including the modulation of neuroimmune
responses and maintenance of the integrity of the epithelial
barrier and the BBB, through the expression of occludin and
claudin, demonstrated in an animal model (Braniste et al.,
2014). Changes in the microbiota and bowel permeability
allow the spread of bacteria, toxins such as LPS, and other
metabolites (TMAO, for example) towards the BBB. This
causes an unregulated immune response, with activation of
the microglia that alters its secretory profile and stimulates
the production of pro-inflammatory chemokines and
cytokines (MCP-1, interferon-gamma [IFN-γ], IL-6, IL-8,
and TNF-α), as well as increases RONS (Block et al., 2007;
Del Rio et al., 2017; Shemer et al., 2015).

Multiple sclerosis (MS), characterized by demyelination
and neuroinflammation, has been closely related to IBD.

Studies indicate that first-degree relatives of patients with MS
are at risk for CD development (risk of 1.4), while IBD
patients have a risk of 1.7 of developing MS (Gupta et al.,
2005; Nielsen et al., 2008; Noseworthy et al., 2000). Changes
in the microbiota in patients with MS have been identified in
this process, such as an increase in antibodies against
intestinal microbial components (Banati et al., 2013).
Furthermore, in cell culture, the activation of mucosal-
associated invariant T cells (MAIT), seen in IBD, also plays a
role in MS, as they can interact with microbial components
and stimulate the innate and adaptive response, including
CD8+ T cells and the production of pro-inflammatory
cytokines, such as IL-17. Moreover, these cells express high
levels of CD161 (cluster of differentiation 161), CCR6
(chemokine receptor 6), and IL-18 (Moreira et al., 2017).

Neurodegenerative diseases, such as Parkinson’s disease
(PD), have also been associated with intestinal dysbiosis and
increased intestinal permeability, seen in IBD Animal studies
have shown that the increase in LPS in UC causes an
overactivation of microglia, TNF-α secretion and iNOS
activation. The identification of α-synuclein (Parkinson’s
disease–PD–marker protein) in the enteric nervous system
and later in the neurons of the central nervous system (CNS)
reinforced the link (de La Serre et al., 2015; Hoban et al.,
2013; Qin et al., 2013; Villaran et al., 2010).

In humans, this relationship has also been confirmed.
According to Villumsen et al. (2019), patients with IBD
have up to 22% risk of developing PD when compared to
healthy individuals.

The reduced integrity of the BBB in model animals and
PD individuals has been reported, and it is possible that
concomitant epithelial barrier dysfunction increases
microbiota communication with CNS cells (Gray and
Woulfe, 2015; Zhao et al., 2007).

On the other hand, studies have shown that patients with
IBD have a 2–3 times higher risk of developing anxiety and
depression than the general population, affecting 30% and
25%, respectively, of these patients, especially in the active
phase (Mikocka-Walus et al., 2016; Walker et al., 2008).

The intimate connection and communication of the
microbiota–gut–brain axis is proposed to explain this
prevalence. The hypothalamic-pituitary-adrenal axis
perceives and responds to the stimulus of stress and
inflammation, leading to a decrease in the effector response
of the vagus nerve and an increase in intestinal permeability.
This favors bacterial translocation that activates the mucosal
immune response, as well as other cells of the innate
immune system in the brain, increasing microglia activity,
pro-inflammatory cytokine levels and nitroxidative stress,
which generate changes in brain functions and damage to
neuroplasticity (Abautret-Daly et al., 2018; Bailey et al.,
2006; Maes et al., 2012; Santos et al., 1999).

In cell culture and animal model assays, dysbiosis
impairs its appropriate interaction with the host and
influences neural activities in brain areas related to stress
and behavior, with changes in brain-derived neurotrophic
factor (BDNF) in the hypothalamus and amygdala, in
addition to the decrease in SCFA-producing bacteria, which,
in turn, are immunomodulatory metabolites. The
participation of the microbiota seems to be related to the
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gamma-aminobutyric acid (GABA), serotonin and dopamine
pathways, which are implicated in depressive and anxiety
disorders (Bernstein, 2017; Foster and McVey Neufeld,
2013; Lyte et al., 2011).

Renal manifestations
The link between IBD and renal manifestations, although less
frequent, has been demonstrated in both CD and UC. The
reported diseases are nephrolithiasis, glomerulonephritis,
and tubule-interstitial nephritis (Ambruzs et al., 2014;
Corica and Romano, 2016).

Nephrolithiasis affects 12–28% of patients with IBD, and
few studies report a 9–18% higher risk than in the general
population. The frequency is higher in CD and patients
submitted to surgical procedures such as colectomy with
ileostomy and intestinal resection (Bianchi et al., 2018;
Gkentzis et al., 2016; McConnell et al., 2002; Parks et al.,
2003). In this context, a small cohort of 83 patients
demonstrated an incidence of 24% IgA glomerulonephritis
and 19% tubule-interstitial nephritis, especially in CD
(Ambruzs et al., 2014).

Some links between renal manifestations and IBD have
been described that seem to have an important role,
including genetics by identifying the HLA-DR1 (human
leukocyte antigen-DR1) and HLA-DR1/DQw5 genes present
in both IgA glomerulonephritis and CD; adverse effects of
drugs such as aminosalicylates and its derivatives, especially
in tubule-interstitial nephritis; and a reduction in anti-
lithogenic factors (citrate and magnesium) in
nephrolithiasis, mainly due to chronic diarrhea (Ambruzs et
al., 2014; Ganji-Arjenaki et al., 2017; Hueppelshaeuser et al.,
2012; Kane, 2006; Oikonomou et al., 2011; Takemura et al.,
2002; Worcester, 2002). However, these factors cannot fully
explain the renal manifestations in patients with IBD.

In relation to nephrolithiasis, intestinal dysbiosis seems to
be involved in the formation of calcium oxalate stones in the
kidneys. It has been observed that individuals with IBD, who
have a smaller population of Oxalobacter formigenes in their
intestinal microbiota, have a high prevalence of
nephrolithiasis (Kumar et al., 2004). O. formigenes is a gram-
negative, anaerobic, commensal bacterium from the
gastrointestinal tract that acts on the regulation of oxalate
homeostasis; it degrades oxalate through the enzymes oxalyl-
coenzyme A decarboxylase and formyl-coenzyme transferase
and interacts with the intestinal mucosa, stimulating the
secretion of endogenous oxalate into the lumen, a transport
mechanism through the epithelium, thus contributing to the
excretion of this compound (Arvans et al., 2017; Liu et al.,
2017; Siener et al., 2013; Siva et al., 2009; Stewart et al., 2004).

It has been observed, especially in patients with CD, that
decolonization of TGI by O. formigenes leads to a reduction
in the intestinal catabolism of oxalate and the subsequent
appearance of hyperoxaluria, the main mechanism involved
in the formation of kidney stones. In addition, an increase in
urinary oxalate was observed in these patients when
compared to healthy controls. It occurs more frequently in
individuals who have undergone ileum resection and colon-
jejunal anastomoses (Hueppelshaeuser et al., 2012; Kane,
2006; Kumar et al., 2004; Oikonomou et al., 2011; Siva et al.,
2009). The causes that lead to the decolonization of this

bacterium have not yet been elucidated. However, it has been
proposed that the possible reasons are precisely associated
with changes in the composition of the intestinal microbiota,
typical of IBD, which is the result of an inflammatory
response exacerbated against these commensals, which results
in a break in immunological tolerance (Kumar et al., 2004).

Nevertheless, other commensal bacteria, such as
Lactobacillus and Bifidobacterium, also secrete enzymes
capable of degrading oxalate in a medium that contains
glucose and lactose (Campieri et al., 2001). The role of
oxalate-degrading bacteria in the treatment of kidney stones
has become of great interest in the scientific community,
aiming at their use as a probiotic. Animal and human
research using O. formigenes or their enzymes have shown
promising results; however, data security is still required
through well-controlled and larger-scale clinical trials. Other
studies investigating the species Lactobacillus and
Bifidobacterium have also shown a reduction in oxalate
excretion, but the results are still controversial. The
importance of additional standardized studies that determine
the direct relationship between the decolonization of these
bacteria and the presence of hyperoxaluria and consequent
kidney stones and their influence as a risk factor for the
identification of possible probiotics in the treatment of this
condition is emphasized. It is said that functional and
molecular approaches are needed to choose the best species
that also have the ability to effectively colonize the intestine
(Abratt and Reid, 2010; Mehta et al., 2016; Sadaf et al., 2017).

Oxalate generates toxic responses that result in the
activation of phospholipase A2, which culminates in the
production of arachidonic acid and various lysophospholipids.
These factors, in turn, lead to mitochondrial dysfunction, an
increase of RONS production, and the induction of changes in
the expression of genes involved in the synthesis of molecules
that inhibit the formation of calcium oxalate stones and in the
activation of caspases, which are involved in apoptotic cell
death (Cao et al., 2000; Cao et al., 2004; Jonassen et al., 2005;
Oikonomou et al., 2011). In addition, the presence of TLRs,
especially TLR4, expressed in renal epithelial cells and the
identification of significant amounts of endotoxins in kidney
stones suggest that this interaction generates activation of
inflammatory pathways (Anders et al., 2004a; Anders et al.,
2004b; McAleer et al., 2003; Oikonomou et al., 2011).

In IgA nephropathy, the intimate relationship of the
microbiota-intestine-kidney axis has been implicated. The
breakdown of the intestinal barrier and the increase in pro-
inflammatory cytokines leads to bacterial translocation,
facilitating the diffusion of microbial endotoxins and DNA
through the bloodstream, which become established in the
renal glomeruli. It was proposed that the deposited immune
complexes react with luminal antigens and that there is a
loss of exclusion and antigenic tolerance, sustained immune
response and deregulation in the production and transport
of IgA. Evidence shows that patients with CD present high
levels of IgG and IgA due to an inflammatory response of
the mucosa to K. pneumoniae (Anders et al., 2004a; Corica
and Romano, 2016; Forshaw et al., 2005; O’Mahony et al.,
1992; Takemura et al., 2002).

Finally, in tubule-interstitial nephritis, a deregulated
immune and inflammatory response, the presence of
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autoantibodies and immunocomplexes against epitopes
common to the intestine and kidney and molecular mimicry
are likely pathophysiological mechanisms (Ambruzs et al.,
2014; Corica and Romano, 2016; Fraser et al., 2001; Mahmud
et al., 2002; Oikonomou et al., 2011; Poulou et al., 2006).

The diseases addressed may progress to renal failure and
end-stage renal disease if the inflammation persists and/or is
not contained. A few epidemiological studies have reported
the incidence of renal failure between 2 and 15.9% in
patients with IBD, and there is an elevated risk for end-
stage renal disease in CD that is five times higher than that
in CU and healthy controls, suggesting that IBD, especially
CD, is an independent risk factor (Park et al., 2018; Primas
et al., 2013). Some mechanisms have been proposed to
explain the increased risk in patients with CD, including
systemic inflammation resulting from the unregulated
immune response in the intestine and the transmural
character that can exacerbate renal damage, as has been
reported with the increase in serum levels of IL-6 and
CRP, in addition to autoimmunity (Cioffi et al., 2015; Fried
et al., 2004). Therefore, it is essential to monitor renal
function in patients with IBD to identify early signs of renal
damage and guide the choice of appropriate and effective
therapy.

Study limitations
There are few prospective studies in humans that assess
the microbiota and nitroxidative stress in EIM of IBD.
In some studies, associated comorbidities, such as
diabetes mellitus and arterial hypertension, were not
mentioned as a possible confounding factor. Thus, in this
review, we propose a crosslink between redox imbalance
and dysbiosis, using mainly in vitro and experimental
reports, as well as physiological and biochemical established
routes.

Prospects and future direction
Evidence suggests that chronic continuous nitroxidative stress
and alteration of the intestinal microbiota may be strongly
associated with the appearance of EIM inherent to patients
with IBD (Fig. 3). Despite the involvement of genetic
factors, it is necessary that other variables act to stimulate
and/or to facilitate the expression of this phenotype, and the
chronic inflammatory environment associated with
increased intestinal permeability becomes decisive in
determining these manifestations of the disease.

However, the studies carried out in humans, herein
described, demonstrate the association and the presence of
dysbiosis in the hepatic (PSC), osteoarticular, and
dermatological manifestations (psoriasis) and as a
contributing factor for the formation of kidney stones. It is
associated with the nitroxidative stress and lipid
peroxidation in triggering NAFLD and endothelial
dysfunction described in the pathophysiology of
thromboembolic events. Nevertheless, according to the
evidence presented, it is possible that an imbalance in the
intestinal microbiota and nitroxidative stress are also
implicated in cardiac, ophthalmological, and neurological
outcomes, including psychological disorders. However, there
are still gaps to explore in regard to the mechanisms and
pathways that culminate in such conditions.

The absence of standardized clinical studies and the
scarcity of large, prospective studies make it impossible to
establish a cause-and-effect link, hindering a clinical
intervention in this dimension. In view of this, well-
designed clinical studies are necessary to further investigate
the influence of nitroxidative stress and dysbiosis, as well as
other factors mentioned in this work, such as the current
pharmacological therapy used to trigger EIM. The
understanding of the intrinsic pathophysiological pathways
is urgently required for the development of effective

FIGURE 3. Interactions between dysbiosis, inflammation and nitroxidative stress and Extraintestinal Manifestation in inflammatory Bowel Disease.
Legend: Green arrows: dysbiosis influence; Yellow arrows: nitroxidative stress influence; BBB: blood-brain barrier; CAT: catalase; CCR6:
chemokine receptor 6; CD161: cluster of differentiations 161- lecithin-like receptor; CD8+ T: CD8+ T lymphocytes; CVD: cardiovascular
disease; HCy: homocysteine; GPx: glutathione peroxidase; GSH: reduced glutathione; ICAM-1: intercellular adhesion molecule 1; IgA:
immunoglobulin A; LPS: lipopolysaccharide; MDA: malondialdehyde; �NO: nitric oxid; RCP: reactive C protein; RONS: reactive oxygen
and nitrogen species; SOD: superoxide dismutase; TMAO: N-trimethylamine-N-oxide; VCAM-1: vascular cell adhesion molecule 1;
4-HNE: 4-hydroxynonenal; iNOS: inducible nitric oxide synthase.
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preventive and therapeutic strategies aimed at manipulating
the intestinal microbiota and controlling inflammation/
nitroxidative stress.

Units: Units of measurement should be used concisely
according to the International System of Units (SI). All
units should be converted to SI units whenever possible.

Statistical Analysis: Appropriate statistical treatment of the
data is essential. When statistical analysis is performed, the
name of the statistical test used, the number for each
analysis, the comparisons of interest, the alpha level and the
actual p-value for each test should be provided.
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