
 
 
Journal of New Media 
DOI:10.32604/jnm.2021.018383 

 

This work is licensed under a Creative Commons Attribution 4.0 International License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original 
work is properly cited. 

 

Article 
 
 

Design of Network Cascade Structure for Image Super-Resolution 
 

Jianwei Zhang, Zhenxing Wang, Yuhui Zheng and Guoqing Zhang* 

Nanjing University of Information Science and Technology, Nanjing, 210044, China 
*Corresponding Author: Guoqing Zhang. Email: xiayang14551@163.com 

Received: 06 March 2021; Accepted: 07 March 2021  

Abstract: Image super resolution is an important field of computer research. The 
current mainstream image super-resolution technology is to use deep learning to 
mine the deeper features of the image, and then use it for image restoration. 
However, most of these models mentioned above only trained the images in a 
specific scale and do not consider the relationships between different scales of 
images. In order to utilize the information of images at different scales, we 
design a cascade network structure and cascaded super-resolution convolutional 
neural networks. This network contains three cascaded FSRCNNs. Due to each 
sub FSRCNN can process a specific scale image, our network can 
simultaneously exploit three scale images, and can also use the information of 
three different scales of images. Experiments on multiple datasets confirmed that 
the proposed network can achieve better performance for image SR. 
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1 Introduction 
     Single image super-resolution (SR) is an important issue in the field of computer vision research. 
Given a low resolution (LR) image, the purpose of single image SR is to recover a high resolution (HR) 
image from its corresponding LR image. Currently, single image SR based methods are generally divided 
into two categories: sparse coding-based methods [1–4] and deep learning-based methods [5–8]. 

Most sparse coding-based methods assume that each pair of patches from LR and HR images have 
similar coding coefficients in the patch space. Therefore, the HR image patches can be reconstructed as a 
linear combination of a few LR image patches. Yang et al. [1–2] learned a pair of dictionaries LD and HD  
for LR and HR image patches respectively. The final reconstructed HR image can be obtained through the 
learned dictionary HD  and coding coefficient a , which encoded by the learned dictionary LD [9–11]. At 
present, existing sparse coding-based methods mainly focus on how to learn better dictionaries [12–13]. For 
example, Zhao et al. [12] designed a transfer robust sparse coding based on graph for image representation 
and Ahmed et al. [13] proposed a new multiple dictionary learning strategy. 

Deep learning-based methods aim to directly learn an end-to-end mapping from LR images to HR 
images [5–8]. Dong et al. [7] first applied convolutional neural network (CNN) for the single image SR, 
and proposed a super-resolution convolutional neural network (SRCNN) and achieved better restoration 
performance. However, SRCNN only learns the mapping from bicubic interpolated LR images (not the 
original LR images) to HR images, the calculation cost of the network will be increased quadratically 
with the size of HR image increase [8]. In addition, SRCNN adopts a 5 × 5 convolution kernel to learn 
nonlinear mapping which obviously limited the learning ability of network in such a setting. To solve the 
above problems, researchers [14–16] proposed lots of approaches such as the large super-resolution 
convolutional neural network (SRCNN-ex), fast super-resolution convolutional neural network 
(FSRCNN), very deep super-resolution network (VDSR), Laplacian pyramid super-resolution network 
(LaPSRN) and enhanced deep super-resolution network (EDSR) to improve the structure of SRCNN. In 
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addition, Christian et al. [17] exploited generative adversarial networks (GAN) [18] to handle out image 
super-resolution problem and proposed super-resolution generative adversarial network (SRGAN). GAN 
is different from convolutional neural network (CNN), and the main difference is that GAN aims to 
generate more realistic HR images that are more consistent with human eye, while the purpose of CNN is 
to faithfully restore the high-frequency information of images. Lots of improved networks based on GAN 
have been proposed in recent years [19–20]. These networks have solved the above problems to some 
extent and achieved better restoration performance. 

However, most of these models mentioned above only trained the images in a specific scale and do 
not consider the relationships between different scales of images. For example, if we set the scale factor is 
4 during the training process, FSRCNN only utilizes the image information, where the image scale is 4, 
and does not use the complementary information resided in different scales. If we can simultaneously use 
the information of different scales of images in the training process, the recovered image qualities will be 
further improved. 

Based on the above concerns, we design a cascaded super-resolution convolutional neural networks 
(CSRCNN), which consists of three cascaded FSRCNNs. Due to each sub FSRCNN can process a 
specific scale image, our network can simultaneously exploit three scale images, and can also use the 
information of three different scales of images in the training process. For each FSRCNN, we set its 
scaling factor is 2, which can double enlarge the size of input image. Since the images with different 
scales are trained together, the learned network can exploit more image information resided in different 
scales. In addition, we use L1 loss function to make the reconstructed image in texture and edge clearer. 
Experiments on multiple datasets show that the proposed our proposed network can achieve better 
performance for image SR. 

2 Related Work 
2.1 Deep Learning for Image Super-Resolution 

The purpose of image super-resolution is to reconstruct high resolution image from a given low 
resolution one. Dong et al. [7] first applied convolutional neural network in the field of image super-
resolution and proposed a super-resolution convolutional neural network (SRCNN) which achieved 
impressive performance for image restoration. At present, deep learning technology is widely used in the 
field of image super-resolution. Various network structures have been developed, such as deep network 
with residual learning [14], Laplace pyramid structure [15], residual block [21], and residual dense 
network [22]. Besides supervised learning and unsupervised learning [23–26], reinforcement learning 
[27–29] are also introduced to solve the problem of image super-resolution in recent years. Specifically, 
the literature [30] has a systematic description of image super resolution. 

2.2 Fast Super-Resolution Convolutional Neural Networks 
Dong et al. [8] proposed a fast super-resolution convolutional neural network (FSRCNN), aiming to 

accelerate the speed of SRCNN. Compared with SRCNN, FSRCNN can directly learn the mapping from 
the original LR image to HR image by introducing the deconvolution layer at the end of the network. In 
addition, FSRCNN adds a shrinking and an expanding layer at the beginning and the end of the mapping 
layer to enhance the presentation capability of non-linear mapping [31]. In the nonlinear layer, FSRCNN 
adopts a smaller filter (size = 3 × 3) to reduce the computational cost of the network. The whole network 
is designed as a compact hourglass-type CNN structure, which includes five parts: feature extraction, 
shrinking, non-linear mapping, expanding, deconvolution. The shrinking layer uses a filter of size 1 × 1 to 
reduce the LR feature dimension from d  to s , where d  is the feature dimension of LR image after 
feature extraction and s  is the number of filters ( s d£ ). The expanding layer uses d  filters with a size 
of 1 × 1 to maintain consistency with the shrinking layer, which is the inverse operation of the shrinking 
layer. To avoid the “dead features” [32] caused by zero gradients in Re LU , the author uses ReP LU  
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[33] as the activation function after each convolution layer. Thus, a complete FSRCNN can be 
represented as: 

( ) ( ) ( ) ( )
( )

5, ,1 1, , 3, , 1, ,

9,1, .

Conv d PReLU Conv s d PReLU Conv s s PReLU mConv d s

PReLU DeConv d

− − − − − −

− −
             (1) 

3 Cascaded Super-Resolution Convolutional Neural Network 
3.1 Network Structure 

We propose a cascaded super-resolution convolutional neural network (CSRCNN) framework in this 
section. Our proposed network consists of three cascaded FSRCNNs, where each FSRCNN can process a 
specific scale image. Fig. 1 shows the structure of our CSRCNN. 

In each sub FSRCNN, we set its scaling factor to 2 for double enlarging the size of input image. 
Suppose that all images have the same width-to-height ratio. We denote W  and H  respectively as the 
width and height of the original HR image. For the first sub FSRCNN, the image shape of the input is 

/ 8* / 8W H  and the output will be as the input of next sub FSRCNN. Due to each sub FSRCNN can 
double enlarge the size of input image, the image shape of the input for the second sub FSRCNN is 

/ 4* / 4W H . Similarly, for the third sub FSRCNN, the image shape of the input is / 2* / 2W H . 
During the training process, images of different scales are trained simultaneously. Here, we use kI  to 
represent the input image of each sub FSRCNN, where 0,1,2k =  is the ID of each sub FSRCNN and the 
scale index of the input image. We set kr  to represent the scale ratio of LR image to HR image, the size of 

input image kI  is described as *k kr W r H . The scale ratios are set as 0 11/ 8, 1/ 4r r= = and 2 1/ 2r =  

respectively. 1 ( )k k
kI F I+ = is the super-solved HR image obtained by sub FSRCNN-k. For each 

cascaded FSRCNN, the output image is twice the size of input image. We use 
1~ k

I
+

represents the real HR 
image, which has the same size with the super-solved image ( )k

kF I . Our goal is to learn super-resolved 

functions that estimating the reconstructed HR images  1kI +  and real HR images 
1~ k

I
+

. 

3.2 Loss Function 
Our network includes three cascaded FSRCNNs. For each subnetwork, the output of previous 

network will be the input of the next cascaded subnetwork. We use L1 loss functions as the sub-loss 
functions for all three subnetworks, and the sum of these sub-loss functions will eventually form the total 
loss function of the whole network. We use 0

1
SRL , 1

1
SRL  and 2

1
SRL  represent the loss functions of three 

subnetworks, respectively. The loss function of the whole network can be expressed as: 
0 1 2

1 1 1 .SR SR SR
totalL L L L= + +                                                                                                                          (2) 

For each subnetwork, the loss function is defined as follows: 
1 1 1~

,1 ,2
1 11 1

1 ( ) , 0,1, 2.
k k

k

kr W r H
SR k

x y k x y
x yk

L I F I k
r WH
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= − =∑ ∑                                                                        (3) 

In Eq. (2), we select L1 loss function to replace MSE loss function. The main reason is that L1 loss 
function can make the reconstructed image clearer in texture and edge, while MSE loss function will lose 
high-frequency information in the reconstruction process, such as texture and edge [34]. 
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Figure 1: The network structure of our CSRCNN. The network is composed of three cascaded FSRCNNs, 
in which the upscaling factor of each FSRCNN is 2. For the first sub FSRCNN, the input is an 

/ 8* / 8W H  LR image and the output of previous layer will be the input of the next layer. Each sub 
FSRCNN can double enlarge the size of input image. We select L1 loss function as sub-loss functions of 
three subnetworks, and the sum of three sub-loss functions will eventually form the loss function of the 
whole network 

3.3 Assessment Process 
According to the scale ratios of LR images to HR images, we assign LR images to different stages of 

the cascaded networks during the evaluation process. When a LR image is input into FSRCNN-k, the 
input shape will be resized based on the corresponding network *k kr W r H . For example, for a given test 
image with size of / 3* / 3W H , we will resize the shape of the image as / 2* / 2W H  by bicubic 
interpolation. The resized image will be arranged into FSRCNN-2. Here, each sub-network can double 
enlarge the size of input image. Finally, all images are enlarged to the uniform HR images [35]. Fig. 2 
shows the entire evaluation process of our network. 

 

Figure 2: LR images are assigned to different stages of the cascaded FSRCNNs according to their 
resolution scale ratios. Through the CSRCNN, all LR images are enlarged to the uniform HR ones 
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3.4 The Difference between Our Model with FSRCNN 
Our network contains three cascaded FSRCNNs, where each FSRCNN can process a specific scale 

image. For each sub FSRCNN, we use the L1 loss function, whereas original FSRCNN uses the MSE loss 
function. In addition, FSRCNN only considers a specific scale image, while our network can 
simultaneously train different scales of images due to adopting the cascaded structure. In the test phase, 
our network can generate multiple intermediate results in a prediction process, while FSRCNN only 
obtains a single scale result. 

4 Experiments 
4.1 Dataset 

Training and testing dataset: Following SRCNN and FSRCNN, we combine 91 images dataset and 
the general-100 dataset to train our network. In particular, general-100 dataset [8] contains 100 bmp-format 
images with ranges from 710 × 704 (large) to 131 × 112 (small) in size. All of these images are favorable 
quality with clear edges and less smooth regions. Following the setting used in [8], we adopt the data 
augmentation method [36], includes scaling and rotating images. 1) Scaling: each image is down-sampling 
with the factor 0.9,0,8,0.7 and 0.6. 2) Rotation: each image is rotated with the degree of 90, 180 and 270. For 
testing dataset, we use Set5 [37], Set14 [38] and BSD200 [39] datasets. All testing images will be cropped 
according to the model structure which make the size of output image of the model as an integer. 

Training samples: Cascaded structure are adopted in our network. To form LR/HR sub-image pairs, 
we first down-sample the original training images by different scale factors n , then crop LR images and 
real HR images obtained in sampling process. 

4.2 Training Details 
Training strategy: In our experiment, we combine 91 images dataset and the general-100 dataset [8] 

for training. The 91-image dataset is used to train a network from scratch. Then, we add General-100 dataset 
to the network for fine-tuning when the training is saturated. Using this strategy, the training converges much 
earlier compare with training with both two datasets. 

The choice of learning rate: The learning rate plays a very import role for the performance of our 
network. For FSRCNN, the learning rates in the convolution layers and deconvolution layer are set to be 

310-  and 410- , the learning rates of all layers are reduced by half during fine–tuning. Obviously, the 
learning rates of convolution layer and deconvolutional layer are static in each iteration, while we adopt a 
dynamic strategy to update the learning rates for convolution layer and deconvolutional layer in our 
network. This strategy can make our network produce better learning rates in different iterations. We set 

3 4
0 10 ,10a - -=  as the initial learning rates of the convolution layer and the deconvolution layer, and the 

total number of iterations in our network is set as n . When the number of iterations is m , the learning 
rates in convolution layer and the deconvolution layer are represented as: 

( )
0.8*

0 *0.1
m

n
ma a

ρ
=                                                                                                                                    (4) 

Here,  represents the integer part of the final result. 

The choice of network initialization: Network initialization has a great influence on network training, 
a good initialization can largely reduce the training time of the network. In our network, we select ReP LU  
[33] as the activation function and use MSRA initialization [33]. MSRA is a gaussian with a mean of zero 
and variance of / 2n , which make each layer neuron input/output variance is consistent.  

Parameter setting: Our proposed cascaded CSRCNN consists of three subnetworks. For each 
subnetwork, there are three sensitive variables governing the network’s performance. The LR feature 
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dimension d , the number of shrinking filters s , and the mapping of the depth m . Following the same 
setting in FSRCNN, we set 56, 12d s= =  and 4m =  for each subnetwork. 

4.3 Experiments for Different Loss Functions 
In this section, we conduct experiments to evaluate the effects of different loss functions on our 

network on three datasets when the upscaling factor is 3. We compare MSE-Loss, Huber-Loss, 
Charbonnier-loss and L1-loss functions and the results are listed in Table 1. The delta of Huber-Loss is 
0.9 and the delta of Charbonnier-Loss is 0.0001. From Table1, we can see that using L1-loss, our 
cascaded network can achieve better performance. Fig. 3 shows the convergence curves of these four loss 
functions on Set5 datasets with upscaling factor 3. From the Fig. 3, we first observed that using L1-Loss, 
our cascaded network gets the best average test PSNR values, followed by Charbonnier-Loss, and Huber- 
Loss get the worst average test PSNR values. In addition, after 160 iterations, the PSNR value curves of 
these four loss functions tend to be stable. Among them, the network has a small fluctuation when we use 
Charbonnier-Loss and MSE-Loss as our network loss functions. We also find that the initial value of 
PSNR is low when we use L1 loss as the loss function of the network, with the increase of the number of 
iterations, the PSNR value will gradually increases and eventually tends to be stable. In this section, we 
evaluate the performance of our network versus the number of cascaded FSRCNNs. Since the scaling 
factor of each FSRCNN is set to 2, if we cascaded more than three FSRCNNs, the scale of the input 
image to the network will too small, which makes the effective information contained in these images are 
very limited. Therefore, in our model, we only cascaded three FSRCNNs. These three networks are 
respectively denoted as Net-1, Net-2 and Net-3. Net-1 contains one FSRCNN with upscaling factor is 4, 
and Net-2 contains two cascaded FSRCNNs, where upscaling factor is 2. We use PSNR as the evaluation 
criteria and test on three datasets for 4× SR. Table 2 lists the results our model versus different number of 
FSRCNNs and the number of FSRCNNs varies from 1 to 3. From Tab. 2, we can observe that Net-3 
obtains the highest PSNR value on all testing datasets. Net-2 obtains higher results than Net-1. This 
indicates that cascading multiple basic models can achieve better performance than a single basic model. 
In addition, the increasing trend of PSNR is gradually decreasing with the increase of the number of 
cascaded FSRCNNs, one possible reason is that the extra information provided by LR images with small 
scale is limited. 

4.4 Evaluation for the Number of Cascaded FSRCNNs 
In this section, we evaluate the performance of our network versus the number of cascaded 

FSRCNNs. Since the scaling factor of each FSRCNN is set to 2, if we cascaded more than three 
FSRCNNs, the scale of the input image to the network will too small, which makes the effective 
information contained in these images are very limited. Therefore, in our model, we only cascaded three 
FSRCNNs. These three networks are respectively denoted as Net-1, Net-2 and Net-3. Net-1 contains one 
FSRCNN with upscaling factor is 4, and Net-2 contains two cascaded FSRCNNs, where upscaling factor 
is 2. We use PSNR as the evaluation criteria and test on three datasets for 4× SR. Tab. 2 lists the results 
our model versus different number of FSRCNNs and the number of FSRCNNs varies from 1 to 3. From 
Tab. 2, we can observe that Net-3 obtains the highest PSNR value on all testing datasets. Net-2 obtains 
higher results than Net-1. This indicates that cascading multiple basic models can achieve better 
performance than a single basic model. In addition, the increasing trend of PSNR is gradually decreasing 
with the increase of the number of cascaded FSRCNNs, one possible reason is that the extra information 
provided by LR images with small scale is limited. 
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Figure 3:  Experiments for different loss functions on Set5 datasets when the upscaling factor is 3 

Table 1: The influence of different loss choices on CSRCNN with upscaling factor 3, where the test 
datasets are Set5, Set14 and BSD200 

Test-
dataset 

Upscaling 
factor 

MSE-Loss Huber-Loss 
(delta = 0.9) 

Charbonnier-Loss 
(delta = 0.0001) 

L1-Loss 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 
Set-5 
Set-14 
BSD200 

3 
3 
3 

34.02/0.9218 
29.98/0.8321 
29.69/0.8282 

33.97/0.9213 
28.86/0.8319 
28.77/0.8279 

34.04/0.9219 
30.02/0.8332 
29.68/0.8285 

34.10/0.9233 
30.02/0.8346 
29.78/0.8302 

Table 2: The influence of the number of cascaded FSRCNNs with upscaling factor 4, where the test 
datasets are Set5, Set14 and BSD200 

Test-dataset Upscaling 
factor 

Net-1 Net-2 Net-3 
PSNR PSNR PSNR 

Set-5 
Set-14 

BSD200 

4 
4 
4 

30.55 
27.50 
26.92 

30.82 
27.66 
27.42 

31.01 
27.71 
27.68 

4.5 Comparison with Popular SR Algorithms 
In order to verify the reconstruction performance of our proposed CSRCNN. We compare our 

model with three popular SR algorithms: Bicubic, SRCNN [7], and FSRCNN [8]. We carry out extensive 
experiments on three datasets: Set5 [37], Set14 [38] and BSD200 dataset [39]. We adopt two image 
quality indicators to evaluate the SR images, i.e., PSNR and SSIM [40]. Tab. 3 reports quantitative 
comparisons for ×2, ×3 and ×4. From Tab. 3, we can observe that among all the compared methods, our 
proposed CSRCNN achieves the best results in three evaluation datasets for ×2, ×3 and ×4. Fig. 4 shows 
the convergence curves of CSRCNN on three evaluation datasets with upscaling factor 3. Among them, 
the PSNR value of the proposed CSRCNN achieve 0.51 db, 1.04 db and 0.46 db improvement over 
FSRNCNN in Set5 datasets for ×2, ×3 and ×4. We observe that the PSNR value of CSRCNN obtains 
1.04db improvement over that of FSRCNN on factor 3. One possible reason is that we use bicubic 
interpolation to resize the size of the image before throwing the LR image into the network. Considering 
that our network is made up of three cascaded FSRCNNs, where each FSRCNN’s upscaling factor is 2. 
We also made a quantitative comparison for ×8. This comparison result is shown in Tab. 4. Obviously, 
our network achieves higher PSNR and SSIM values than FSRCNN due to the cascaded design.  
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Figure 4: Visual comparisons on Set5, Set14 and BSD200 with upscaling factor 3 

Table 3: Quantitative evaluation of popular SR algorithms average PSNR/SSIM for scale factors 2, 3 and 4 
Test-dataset Upscaling 

factor 
Bicubic SRCNN FSRCNN CSRCNN (our) 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 
Set-5 

Set-14 
BSD200 

2 
2 
2 

33.66/0.9299 
30.23/0.8677 
29.70/0.8625 

36.33/0.9521 
32.15/0.9039 
31.34/0.9287 

36.94/0.9558 
32.54/0.9088 
31.73/0.9074 

37.45/0.9570 
32.82/0.9112 
32.92/0.9122 

Set-5 
Set-14 

BSD200 

3 
3 
3 

30.39/0.8682 
27.54/0.7736 
27.26/0.7638 

32.45/0.9033 
29.01/0.8145 
28.27/0.8038 

33.06/0.9140 
29.37/0.8242 
28.55/0.8137 

34.10/0.9233 
30.02/0.8346 
29.78/0.8302 

Set-5 
Set-14 

BSD200 

4 
4 
4 

28.42/0.8104 
26.00/0.7019 
25.97/0.6949 

30.15/0.8530 
27.21/0.7413 
26.72/0.7291 

30.55/0.8657 
27.50/0.7535 
26.92/0.7398 

31.01/0.8702 
27.71/0.7589 
27.68/0.7552 

Table 4: Quantitative evaluation of popular SR algorithms average PSNR/SSIM for scale factor 8 

Test-dataset Upscaling 
factor 

Bicubic SRCNN FSRCNN CSRCNN (our) 
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

Set-5 
Set-14 

BSD200 

8 
8 
8 

24.39/0.657 
23.19/0.568 
23.67/0.547 

25.33/0.689 
23.85/0.593 
24.13/0.565 

25.41/0.682 
23.93/0.592 
24.21/0.567 

25.74/0.715 
24.30/0.614 
24.50/0.581 

 
Figure 5: Visual comparisons on Set5 and Set14 datasets with upscaling factor 3. The first row is 
“butterfly” image from Set5 dataset, and the second row is “lenna” image from Set14 dataset 
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Fig.  5 shows the visual comparisons on Set5 and Set14 datasets with upscaling factor 3. As you can 
see, our method can accurately reconstruct the details of the image, such as texture and edge. 

5 Conclusion  
In this paper, we proposed a more efficient network for mining image information in different scales, 

named Cascaded super-resolution convolutional neural network (CSRCNN). We adopted a cascaded 
network structure to mine the information of image in different scales. Furthermore, we adopted L1 loss 
function as the loss function of each subnetwork in the training process which make the reconstructed 
image clearer in texture and edge. Finally, we also explored the effects of the number of cascaded 
FSRCNNs for the performance of our network. Extensive experiments show that the proposed method 
achieves satisfactory SR performance. 
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