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ABSTRACT

Due to the frequent changes of wind speed and wind direction, the accuracy of wind turbine (WT) power prediction
using traditional data preprocessing method is low. This paper proposes a data preprocessing method which com-
bines POT with DBSCAN (POT-DBSCAN) to improve the prediction efficiency of wind power prediction model.
Firstly, according to the data of WT in the normal operation condition, the power prediction model of WT is estab-
lished based on the Particle Swarm Optimization (PSO) Arithmetic which is combined with the BP Neural Network
(PSO-BP). Secondly, the wind-power data obtained from the supervisory control and data acquisition (SCADA)
system is preprocessed by the POT-DBSCAN method. Then, the power prediction of the preprocessed data is
carried out by PSO-BP model. Finally, the necessity of preprocessing is verified by the indexes. This case analysis
shows that the prediction result of POT-DBSCAN preprocessing is better than that of the Quartile method. There-
fore, the accuracy of data and prediction model can be improved by using this method.
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1 Introduction

Wind energy is a kind of clean, pollution-free, and renewable green energy. As an important part of new
energy, it has been paid close attention by countries all over the world. Many countries have taken the wind
power generation as an important strategy for economic development [1,2]. On the basis of the statistics of
the World Wind Energy Association, the newly installed global wind power capacity in 2019 was 59.7 GW,
and the total installed capacity was close to 650 GW. China accounts for approximately 38% of the global
total installed wind power capacity and has become currently the largest wind power market worldwide.
Compared with the wind farms on the northern plain, the wind farms in southern China are characterized
by strong randomness and instability because of the mountainous territory and complex turbulence, which
will have a great impact on wind power integration and is not conducive to safe and reliable operation of
the wind turbines (WTs) [3,4]. Operation experience of most wind farms shows that power prediction is
the main way to solve this problem [5]. According to the prediction results of WT output, effective
dispatching and scientific management of WTs can be carried out to improve the wind energy utilization
rate of WTs and ensure the safe operation of power network [6,7].
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The operation state of WT is mainly characterized by the power output, and the power curve reflects the
performance characteristics and operational features of WT. According to the IEC 61400-12 Standard, the
power curve of WT is the relation curve of output power with wind speed change, which is often used to
evaluate the operational performance of WT [8,9]. In the actual operation process, there are large amount
of abnormal data of wind speed power [10]. Without processing the abnormal data, using the actual
measured wind speed power data for analysis will have a huge effect on the results [11].

There are mainly two categories of traditional data cleaning methods with low applicability. The first
category is based on mathematical statistics. Shen et al. [12] proposed that under certain wind speed
interval conditions, the Quartile method was used to determine the identification boundary of the out-of-
limit wind-power data, and then out-of-limit abnormal data in the actual data set were identified and
eliminated. Kusiak et al. [13] established a nonlinear model of the power curve to identify and filter
abnormal data through the residual method and the control chart. Yue et al. [14] proposed the judgment
method of “3¢ Rule” to detect abnormal data and conduct corresponding filtering, that is, the error
outside 3¢ is an abnormal error but that inside 3¢ is a normal error. However, the power probability
density curve has multiple peaks so its accuracy is not high. Zhao et al. [15] used the 3-sigma Principle,
Hampel Identification Implement and Boxplot Rules to filter the data and those did not confirm to the
rules were determined as abnormal. Zheng et al. [16] proposed to use the Local Outlier Factor (LOF)
algorithm to detect the abnormal data, and calculate the relative density near the curve to filter abnormal
data according to the power curve. The second category is based on data mining and machine learning
methods to preprocess data. For example, the Fuzzy Inference System (FIS) [17], the Deep Neural
Network (DNN) [18] and the Support Vector Machine (SVM) [19] have been widely used. Schlechtingen
et al. [20] proposed to build an abnormal data identification model based on neural network and K
Nearest method, and filter abnormal data by checking the data consistency. Wu et al. [21] proposed to use
the FPCM clustering model to identify and filter abnormal data. They compared FCM and PCM with
PFCM, and concluded that the PFCM model has better recognition effect on abnormal data.

Although the above methods such as machine learning can get more accurate data, they did not take into
account the impact of the special working environment on the data. At the same time, because machine
learning method mainly starts from the characteristics and structure of data, mining the depth and
essential characteristics of data, it has been widely used in WT power prediction, with the common
methods including SVM [22], neural network [23], gray prediction [24] and so on in recent years.
Among them, artificial neural network has the characteristics of strong nonlinear fitting, adaptation and
self-learning, and it is especially suitable for predicting wind-power. Such as, Sun et al. proposed the
application of GA-ANN model in wind-power prediction [25]. Peng et al. [26] proposed a method for
wind-power prediction based on artificial neural network and a hybrid strategy. Although the above direct
use of DNN to predict the power can get more accurate results, there are problems of high calculation
cost and slow training speed in searching the optimal parameters of the network model, which is not
suitable for the nonlinear system with many parameters.

To solve the above problems, this paper proposes a WT power prediction method based on POT-
DBSCAN preprocessing. The method not only obtains more accurate data, but also obtains more accurate
prediction results by the PSO-BP algorithm, providing an effective early warning research method for the
safe and reliable operation of WTs. This research can help the relevant departments of power system to
accurately assess the risk of the power grid operation, formulate reasonable power generation plans,
effectively reduce the operation cost of the power grid, and greatly promote the development of green energy.

2 Influence of Wind-Power Data

The WT generator is to convert the changing wind energy into mechanical energy, then transform the
mechanical energy to electric energy and transport it to the power network. When the wind speed is
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between the cut in wind speed and the rated wind speed, wind power can be evaluated by the following
equation [27]:

P = 0.5p,nR*C,v* (1)

where p, and R are the air density and the rotor radius respectively, v is the wind speed, and C, is the power
coefficient.

As shown in Fig. 1, an obvious abnormal data exists in the actual measurement data. According to the
characteristics of abnormal data distribution, the operation data of WT can be divided into outlier data, power
limit data, deviating cluster data and abnormal stoppage data [28]. The distribution of outlier data in the
scatter diagram is discrete, isolated and far from the power curve, which is due to the large data error
caused by the sensor anomalies and failures. The deviation cluster data are distributed on the power curve
with high density and small range, which is mainly caused by the electromagnetic interference or
computer information processing and storage failure for a long time.
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Figure 1: Raw WT power curve with operating interference

Some abnormal data may also be due to the sudden change of wind speed, resulting in serious wind
speed rising or falling edge. The calculation method of 10-min average compression processing will
result in the data fluctuating along and deviating from the power curve, which leads to inaccuracy of the
data. A period of wind speed rise stage data using the IEC 61400 Standard Bin method is selected to
draw the power curve as shown in Fig. 2. It can be seen from the figure that there are some power points
that deviate from the power curve through the 10-min average compression processing calculation
method. Taking the red point in the figure as an example, with the sudden increase of wind speed, the
power is also increasing. Because there are many data with small power value in 10-min, the average
calculated power value will be pulled down and located at the bottom of the power curve. So, the data
obtained by the 10-min average compression processing method is not accurate in the process of sudden
change of wind speed. With the POT method, the power value can be corrected through multiplying the
average value of 10-min by the data within the threshold range. Therefore, this paper proposes a data
preprocessing method for POT-DBSCAN.

3 Wind-Power Data Preprocessing Methods

In addition to the data collected by SCADA system, there are also some abnormal data, which are
caused by complex environmental changes and sensor failures. Therefore, before modeling and analyzing
the WT units, it is necessary to preprocess the data. In this paper, the POT-DBSCAN method is used to
preprocess the data.
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Figure 2: Power diagram at wind speed rising stage

3.1 POT Method

Let the independent identically distributed random variables be X7, X3, - - -, X, and F(x) is denoted as
being subject to some unknown distribution, where a sufficiently large threshold is p. Let the numbers of
samples exceeding the threshold be N,. When X; > u(i = 1,2,---,n), X; is called the supra-threshold,

and the excess is ¥; = X; — u. The excess distribution of the random variable X; is called the conditional
excess distribution function.

Fu(x) =p(X —p < ylX > p)
F(u+y) = F(u) _ F(x) = F(p) @)
1= F(u) 1 —F(u)

The distribution of excess numbers is known by the Pickands-Balkama-de Hean Theorem. For a
sufficiently large threshold, the distribution function of excess values approximately follows the Generalized
Pareto Distribution (GDP). The GDP of the excess distribution is approximately expressed as:

1

_ AN
Gpely) = 1 [1+€B] ¢#0

Yy
l—exp[—5] ¢=0
[ [3]
when ¢ > 0, there is y > 0, and when & < 0, there is 0 < y < —f/¢. Where f§ and ¢ are called Scale

Parameter and Shape Parameters respectively. Different £ values are going to have different tail-thickness,
and the larger the & value is, the thicker the tail is vice versa.

(€)
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when x = y + u, the corresponding expressions are
Fx) = (1 = F()Gpe(x — 1) + F(u) 4)

when the threshold is determined, F(u) is estimated by the historical data, and F(u) is approximately
represented by (n — N,)/n, thus the overall distribution function equation can be written as:

1
- N X— U "z
Flx)=1-2f 45 ¢ 5)

3.2 DBSCAN Clustering Method

The DBSCAN clustering differs from other clustering algorithms in that it classifies clusters according to
the density distribution of data sets. It cannot only deal with noise effectively but also cluster arbitrary shape
data. The core principle of DBSCAN clustering algorithm is that every point exists in the database. When the
density of the points in the adjacent area is greater than a certain set threshold, the data sets will be added to
the adjacent class and then repeated clustering is continued. The DBSCAN clustering method, a typical
clustering method based on density, can identify a cluster by setting a density threshold. This clustering
algorithm has two key parameters—Eps and Minpts. Eps represents the radius of a cluster, and Minpts is
the number of neighbors within the cluster. With references [29,30], Minpts is set to 4 in this study, and
Eps is calculated using the following equation:

Eps — <V*Minpts* (0.5 % n + 1))

6
e (6)
where m denotes the number of objects in the experimental data set, n is the dimensionality of the
experimental space, y(-) is the factorial function, and ¥ is the volume of the experimental space formed
by m objects:

V= ﬁ{max(xi) — min(x;)} (7)
i=1

where max(-) is the largest value function, min(-) is the smallest value function, and x; is the i—th column
data of the m—by—n experimental data matrix.

3.3 Wind-Power Data Preprocessing Process

There are various sources of abnormal data of the WT. If the SCADA data containing abnormal data are
directly used in the WT power prediction, large errors will be produced. Because the operation state of a WT
is easily affected by the abnormal data, it is necessary to preprocess the abnormal data before analysis so as to
avoid the influence of abnormal data on the prediction model of the WT. In this paper, the high-frequency
data of the wind speed and power are all processed by the POT method to get 10-min data. The specific
process is as follows: First, the high-frequency data corresponding to each 10-min data are filtered by the
POT method. The filtering rule is taking the average value of each 10-min data which are multiplied by
the positive and negative o as the threshold value, where we take o as 0.05. Because in the practical
application of engineering, according to the Statistical Significance Test, we can see that o cannot be too
small, and taking o« = 0.05 is generally more effective. Then, the wind-power data within each 10-min
data threshold range are collected, and the average value of the collected power data is calculated to
replace the original 10-min average value in this period, so as to generate the new wind-power data.
Finally, the DBSCAN method is used to filter the obviously outlier data to get a new data set. The
process of wind-power data preprocessing method is shown in Fig. 3.
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Figure 3: The process of wind-power data preprocessing

4 PSO-BP Power Prediction Model

4.1 Particle Swarm Optimization BP Neural Network Algorithm

Although the PSO cannot realize adaptive learning and has slow convergence speed and poor
robustness, it has strong global optimization ability. If the PSO-BP neural network algorithm is used, it
can not only solve the problem that the BP neural network is easy to fall into local optimization and slow
training speed, but also can fill the shortage of the PSO Algorithm. The topology of the BP neural
network is shown in Fig. 4. The structure of the BP neural network is set as 6-6-1, and the number of
training, the learning rate and the error target are 100, 0.1 and 0.0001 respectively. The input layers x;,x5,
X3,X4,X5,X¢ Of the BP neural network represent the hub speed, wind speed, yaw coefficient, grid power,
grid current, generator current respectively, and Y of the output layer represents power. The interpretation
of every model parameter is shown in Tab. 1.

The performance of the BP neural network prediction will be greatly affected by the setting of weights
and thresholds. The PSO Algorithm can be used for global optimization to find the optimal combination of
the neural network weights and thresholds. Then the BP neural network with optimized parameters can be
used to predict the unit power, which can better improve the prediction performance. The flowchart of the
PSO-BP is shown in Fig. 5, and the specific steps are as follows:

(1) The BP neural network is created, and the weights and thresholds of the neural network are
initialized.

(2) Set parameters such as the transfer functions, number of training iterations, training error target,
learning rate, etc. for the implicit and output layers of the network.

(3) Normalize the input and output data in the training sample.

(4) Set the parameters of PSO algorithm, and randomly generate the position and speed of each particle.
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(5) The fitness function is constructed to optimize the weights and thresholds of the neural network.
(6) The fitness value of each particle is calculated to find the best position of individual and global.
(7) The velocity and position of particles are updated according to the correspondent updating equation.

(8) Increase the number of iterations to determine whether the iteration conditions are met. If they are
met, stop and output the optimal weight and the threshold value. Otherwise, go to Step (6).

(9) The optimal weights and thresholds obtained from Step (8) are used to train the BP neural network.
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s |
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Figure 4: The topology of the BP neural network

Table 1: Interpretation of model parameters

Parameter name  Interpretation Parameter name  Interpretation

X1 Hub speed X5 Grid current

X2 Wind speed X6 Generator current
X3 Yaw coefficient ¢ learning factor

X4 Grid power Cy learning factor

4.2 Construction of Prediction Model Based on PSO-BP Algorithm

Based on the above theory, the data are preprocessed by the POT-DBSCAN Algorithm, and then the key
parameters in the preprocessed data set are selected as the input of the PSO-BP neural network to establish
the power prediction model to predict the power of WT. Accuracy is the most important factor to measure the
effect of wind power prediction, and the main indexes of evaluating accuracy are the Root Mean Square Error
(RMSE), the Mean Absolute Error (MAE), the Root Mean Square Percentage Error of Relative Error
(RRMSE) and the Entropy [31,32].The formulas of these indexes are listed in (8), (9), (10) and (11).
Where f; and y; are the predicted value and the actual value respectively, n is the number of the sample
data and H, is the entropy.
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Figure 5: Flowchart of PSO-BP neural network algorithm
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where x; is a random event that may occur and P; is the probability of the occurrence of the event x;. The
flowchart of this study is displayed in Fig. 6 and the main process and steps involved are listed subsequently.

Stage 1: Data Preprocessing

The wind-power data are processed to the high-frequency data by the POT Method, and then the obvious
outlier data are filtered by the DBSCAN clustering method.

Stage 2: Establishment of the PSO-BP Prediction Model

The PSO-BP Prediction Model is established by selecting the data of the hub speed, the wind speed, the

yaw coefficient, the grid power, the grid current and the generator current in the normal working state of the
SCADA system.
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Stage 3: Verify the Effectiveness of the POT-DBSCAN Preprocessing Method

The preprocessed data are used for the power prediction through the PSO-BP Model, and the necessity
of preprocessing is verified by the MAE, RMSE, RRMSE and the entropy error.
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Figure 6: Flowchart of proposed in this study

5 Application and Analysis

5.1 Model

The SCADA data used in this study are derived from the 2 MW permanent magnet direct-driven WTs,
located in a mountainous wind farm in Southern China. The WT has a diameter of 96 m, a cut-in wind speed
of 3 m/s, a rated wind speed of 11 m/s, and a rated power of 2000 KW. The SCADA System records 10-min
average values under 1 Hz sampled WT condition and with external environment parameters, including the
wind speed, the rotational speed, the current, the power, and so on. The SCADA data of WT No. 1, under the
normal operation within 3 to 4 months in 2017, are selected to establish the prediction model. The model has
6-dimensional input and 1-dimensional output, so the number of selected data set is 7200 x 7 groups.
According to the size of cut-in wind speed and rated wind speed, the data set is divided into eight parts.
In each part, sample data are selected randomly with the ratio of 8:1. And there are totally 900 x 7
groups of sample data. Then 600 x 7 groups of training sample data and 300 x 7 groups of test sample
data are selected with the ratio of 2:1. Finally, the accuracy test of the predicted value of the test sample
power obtained by the model and the actual value is shown in Fig. 7. The calculated RRMSE was 1.77%,
the calculated entropy was 2.69, and the correlation coefficient was 0.996. It can be found that the fitting
effect of this model is better, so this model can meet the requirement of precision.
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Figure 7: Comparison between the predicted value and the actual value of the test sample

5.2 Data Preprocessing

Fig. 8 shows the annual wind-power scatter diagram of WT No. 1 in 2017. First, the high-frequency data
corresponding to the 10-min data collected by SCADA system are processed by the POT method. Next, the
processed data are saved as a new data set. Then, the new data set is further processed by the DBSCAN

clustering method to generate the final data. Fig. 9 is obtained by using the POT-DBSCAN data
preprocessing method.
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Figure 8: Actual measurement wind-power data
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Figure 9: Wind-power data after preprocessing
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5.3 Method Validation

In this experiment, the prediction model is used to predict the power of the WTs. Since there are outlier
data, data preprocessing is required to filter all abnormal data points. In recent studies, many excellent data
preprocessing methods have been proposed. The Quartile method does not rely on the mean and variance to
detect outliers, nor does it need the sequence to follow a certain distribution model. When the proportion of
outliers is small, the data identification will be good enough. In this paper, the prediction model of quartile
data preprocessing is selected as the benchmark model. In order to verify the superiority and effectiveness of
the proposed POT-DBSCAN, the benchmark model is compared with the prediction model after data
preprocessing by the POT-DBSCAN. The results are shown in Tab. 2. From the error results in the table,
it can be concluded that the prediction effect of the POT-DBSCAN is better. The two methods will be
further analyzed later.

Table 2: Prediction results of two preprocessing methods

Wind turbine Preprocessing method MAE RMSE RRMSE Entropy

WT No. 1 POT-DBSCAN 27.21 29.51 0.020 2.36
Quartile 31.86 33.36 0.026 2.75

WT No. 2 POT-DBSCAN 27.67 32.64 0.018 2.16
Quartile 30.88 35.72 0.023 2.52

Under the condition of normal operation, data from WT No. 1 within the two months after August 10th,
2017 and data form WT No. 2 within the two months before October 6th, 2017 are selected for analysis. The
power prediction model of the PSO-BP is established by using the data of the POT-DBSCAN and Quartile
preprocessing respectively. A subsequent case analysis also shows that setting a lower threshold for
prediction model can more effectively predict an upcoming stoppage of the WTs (the MAE, RMSE,
RRMSE and the entropy are 50, 50, 0.03 and 3 respectively, which are the effective lower thresholds for
the WTs involved in this study). Fig. 10 shows the power prediction error results of the No. 1 WT two
months after August 10. According to the trend of the MAE curve in this figure, the MAE values after
the POT-DBSCAN preprocessing are all below 50, while the Mae values after the Quartile preprocessing
are higher than 50. Similarly, the RMSE and entropy of the POT-DBSCAN preprocessing were below
50 and 3, while the RMSE and entropy were higher than the threshold after the Quartile preprocessing.
After the POT-DBSCAN preprocessing, the RRMSE values were lower than 0.03, and the RRMSE
values after the Quartile preprocessing were higher than 0.03.

Fig. 11 shows the power prediction error results of the No. 2 WT in the two months before October 6.
According to the trend of the MAE curve after the POT-DBSCAN preprocessing, the MAE values are all
below 50. According to the trend chart of the root mean square error curve after the POT-DBSCAN
preprocessing, RMSE values are all below 50. After the POT-DBSCAN preprocessing, RRMSE and
entropy values were less than 0.03 and 3. It can be concluded from this figure that after the Quartile
preprocessing, the four indicators are higher than the threshold for some time. These results verify the
accuracy of the threshold value. Therefore, it can be considered that the WT operating state is better when
the MAE, RMSE, RRMSE and the entropy value are below the threshold value of 50, 50, 0.03 and



560 EE, 2021, vol.118, no.3

3 respectively, which is consistent with the results of the normal operation of WT. The MAE, RMSE,
RRMSE and the entropy are all lower than the threshold value from the trend chart of indicators
pretreated by the POT-DBSCAN. However, from the trend chart of the MAE, RMSE, RRMSE and the
entropy after the Quartile preprocessing, it can be seen that the indexes of some days are obviously
higher than the threshold value. Because the normal working state of WT is selected, it is unreasonable to
have such a phenomenon. Therefore, according to the above numerical results, the POT-DBSCAN
method proposed in this paper is superior to the Quartile method. Both Quartile method and DBSCAN
method are used to preprocess the 10-min data after averaging, and do not take the impact of sudden
change of wind speed on the high-frequency data into consideration, while the POT method can better
process the high-frequency data. Thus, it has also been verified that this data preprocessing method can
improve the accuracy of the power prediction and is more effective.
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Figure 10: Results of power prediction error of No. 1 WT
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Figure 11: Results of power prediction error of No. 2 WT

6 Conclusion

Aiming at the strong nonlinear relationship of the wind-power data caused by frequent changes of wind
speed, a wind-power data preprocessing method based on the POT-DBSCAN is proposed in this paper. First,
the power prediction model of WT based on the PSO-BP method is established by using the data collected
under the normal operation. Then, the accuracy of the threshold is verified by calculating the MAE, RMSE,
RRMSE and the entropy. Finally, through the prediction model analysis of the two WTs, it has been
concluded that the indexes of the model after data POT-DBSCAN preprocessing are less than the
threshold value, which is consistent with the results of the WT data under the normal operation condition.
Data from the forecast model indicator trend chart that have been Quartile data preprocessed can be
found to be higher than the threshold for a certain number of days. This is contrary to the result of the
WT in normal working state. The results show that the POT-DBSCAN is more effective than the Quartile
method. Because the Quartile preprocessing method does not consider the impact of frequent changes in
wind speed on high-frequency data, but the POT-DBSCAN method can better solve this problem.

This paper proposes a method for the WT data preprocessing. The frequent changes of wind speed
and direction not only affect the reliability of the WT, but also are not conducive to the accurate use of
the SCADA data. The POT-DBSCAN preprocessing method proposed in this paper can improve the
accuracy of data and prediction models. However, only the wind speed and power are considered in
the current method. Wind direction and temperature also have great influence on the power of WT, which
should be take into consideration in further studies.
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