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Abstract: Protein tyrosine phosphatase 1B (PTP1B) inhibition is considered as a potential therapeutic for the treatment of

cancer, type 2 diabetes, and obesity. In our present work, we investigated the anti-diabetic potential of 8-hydroxydiospyrin

(8-HDN) from D. lotus against the PTP1B enzyme. It showed significant inhibitory activity of PTP1B with an IC50 value

of 18.37 ± 0.02 μM. A detailed molecular docking study was carried out to analyze the binding orientation, binding

energy, and mechanism of inhibition. A comparative investigation of 8-HDN in the catalytic, as well as the allosteric

site of PTP1B, was performed. Binding energy data showed that compound 8-HDN is more selective for the allosteric

site and hence avoids the problems associated with catalytic site inhibition. The inhibition mechanism of 8-HDN can

be further investigated as an active lead compound against PTP1B by using in vitro and in vivo models.

Abbreviations
8-HDN: 8-hydroxydiospyrin
PTP1B: Protein tyrosine phosphatase 1B
T2D: Type 2 diabetes

Introduction

Native to the tropics, Diospyros, known as data plum, is a
genus of shrubs and evergreen trees. About 500 forms of the
plant are known globally, of which 24 species are mostly

found in India (Uddin et al., 2011a). The importance of
different species might refer to either as their dark timber
called ebony trees or their fruit called persimmon trees.
Diospyros lotus L. (Ebenaceae), a deciduous tree, is
extensively cultivated in tropical zones of Asia and
Southeast Europe due to its resistance to drought. Its fruit
has been shown to have anti-tumor and anti-diabetic
competency (Hamedia and Shojaosadati, 2019), antiseptic
and febrifuge, as well as a medicating agent of constipation
(Rauf et al., 2015). In addition, a number of papers have
highlighted the various applications of D. lotus including its
nutritional content (Glew et al., 2005), being employed as
medical agents (Loizzo et al., 2009; Rauf et al., 2017; Rauf et
al., 2015), antidiarrheal activity (Rauf et al., 2014),
mitigating oxidative stress (OS) through scavenging free
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radicals (Rauf et al., 2017), protecting cisplatin-induced OS
(Cho et al., 2016; Saral et al., 2016), pro-inflammatory
mediators (Cho et al., 2016). Protein tyrosine phosphates
are referred to as a diverse family of enzymes that mostly
disaccord the regular activities accomplished by protein
tyrosine kinases (Gurzov et al., 2015). Several recent studies
revealed that the PTP enzyme plays critical roles in
signaling pathways. In this light, controlling the level of
protein tyrosine phosphorylation is considered as a rampant
mechanism that involves fundamentally in intracellular
activities such as transcription, differentiation, and
migration (Tonks, 2006; Nagata et al., 2012; Li et al., 2013).
Among PTP family members, PTP1B is found in the cell
and it is a type of PTP that is not associated with receptors.
It is an interesting target for several disorders such as
obesity and type 2 diabetes (T2D) (Kennedy and
Ramachandran, 2000). Also, PTP1B contributes to the
negative regulation of leptin- and insulin-receptor as
reported by some genetic and biochemical studies (Koren
and Fantus, 2007). In support of this, elevated insulin
sensitivity, increased glycemic regulation, and resistance to
obesity induced by diet were recorded in PTP1B-knockout
experimental mice (Ali et al., 2009). Thus, PTP1B inhibition
can serve as a novel target in the control of obesity and type
2 diabetes mellitus. Consistently, scientists have intensified
their efforts to isolate novel and natural PTP1B inhibitors
globally.Therefore, in this study, 8-hydroxydiospyrin
(8-HDN) (Fig. 1) from D. lotus was screened for PTP1B
inhibiting activity. By molecular docking model, to display
the molecular interaction between PTP1B and the 8-HDN.

Materials and Methods

Plant material (Diospyros lotus)
Diospyros lotus L. roots were obtained from Toormang Razagram,
Pakistan. The root samples of the plant were authenticated by Dr.
Abdur Rashid of the Department of Botany, University of
Peshawar, Pakistan. The voucher specimen number, RF/01, was
deposited at the Herbarium of the institution.

Extraction of the plant sample and isolation of the compound
The air-dried root samples of D. lotus were pulverized using
an electric blender, after which 14 kg of the pulverized
sample was weighted into another container. MeOH was
added to the container containing the pulverized root
sample of the plant and allowed to stand for 6 days.
Thereafter, the mixture of the plant with the MeOH was

filtrated and the filtrate was concentrated through the
process of evaporation using a rotary vacuum evaporator at
50°C and reduced pressure. After the extraction process, the
extract obtained was weighed (202 g) was defatted with
hexane to remove color and dyes. The crude extract was
subjected to various solvents to obtain various fractions such
as hexane, chloroform, and ethyl acetate. The chloroform
fraction (20 g) was subjected to repeat normal phase
column chromatographically, which afforded 8-HDN (1.24 g).

PTP1B inhibitory activity
The enzyme (PTP1B) inhibition analysis was performed in
96-well plates in the presence of 3,3-dimethyl glutarate
buffer, pH = 7.0. The reaction mixture includes p-
nitrophenol phosphate (pNPP) at a concentration of 1 mM,
PTB1B at a concentration of 10 mM, and various
concentrations of 8-HDN as per our recently published
method (Bawazeer et al., 2019). Following the incubation
period at 27°C for 40 min, the absorbance at 405 nm of the
released pNPP was recorded. The procedure was performed
in triplicates, and IC50 values were evaluated.

Molecular docking analysis
In this study, Molecular Operating Environment software,
(version 2016.0802) was used to dock 8-HDN (Alhumaydhi
et al., 2021). The three-dimensional (3-D) structure of enzyme
PTP1B in complex with catalytic inhibitor was retrieved from
protein data Bank (PDB ID = 1NNY). While the 3-D crystal
structure of PTP1B with allosteric inhibitor was obtained from
PDB (ID = 1T49). Preparation of ligands (ursolic acid and
8-HDN) and downloaded proteins (3D protonation, energy
minimization, and determination of binding site were carried
out by our previously reported methods (Jan et al., 2020;
Tanoli et al., 2019; Iftikhar et al., 2018). All the ligand
structures were drawn using the Builder option in MOE.
A database of compounds was built as ligand.mdb. The
compounds were then energy minimized up to 0.001 Gradient
using MMFF94X forcefield. The enzyme structure was opened
in the MOE window. The 3D protonation was done for all
atoms in an implicit solvated environment at pH = 7,
temperature = 300 K, and salt concentration of 0.1. The
complete structure was energy minimized using MMFF94X
forcefield. Finally, all the compounds were docked into the
binding sites of the prepared enzymes. Default docking
parameters were set, and ten different conformations were
generated for each compound. The lowest binding energy
ligand enzyme complexes were analyzed by the MOE ligand
interaction module. While, for the 3-D interaction plot, a
discovery studio visualizer was used (Biovia Systems 2017).
While the surface model was created using Chimera
(2020-09-08) (Pettersen et al., 2004)

Results

PTP1B inhibitory activity
The chemical structure of 8-HDN was characterized by using
physical and spectroscopic data recently published by our
group (Uddin et al., 2013; Ullah et al., 2015). The
chloroform fraction (20 g) was subjected to repeat normal
phase column chromatographically, which afforded 8-HDN
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FIGURE 1. Chemical structure of 8-HDN.

752 SAUD BAWAZER et al.



(1.24 g). The inhibitory activity of the compound (8-HDN) on
PTP1B gave an IC50 value of 18.37 ± 0.02 μM. The IC50 value
was greater than the value obtained for ursolic acid (control),
which has an IC50 value of 3.21 ± 0.02 μM (Tab. 1).

Molecular docking
We have performed a detailed molecular docking study to
analyze the binding orientation, binding energy, and
mechanism of inhibition. For the mode of inhibition, we
carried out a comparative investigation of 8-HDN in catalytic
as well as the allosteric site of protein tyrosine phosphatase
1B (PTP1B). It has been reported in the literature that the
inhibition of the catalytic domain could result in off-target
undesirable side effects. While the allosteric site is not well
conserved among phosphatases and hence avoids the
problems associated with catalytic site inhibition. For the
current study, the 3-D structure of enzyme PTP1B in
complex with catalytic inhibitor was retrieved from protein
data Bank (PDB ID = 1NNY). While the 3-D crystal
structure of PTP1B with allosteric inhibitor was obtained
from PDB (ID = 1T49). Ribbon and surface superimposed
models of the two retrieved proteins are shown in Figs. 2a
and 2b. The catalytic site is centered at Cys215. It includes a
WPD loop (Trp179, Pro180, and Asp181). While the
allosteric site is located nearly 20 Å away from Cys215 (Fig. 2a).

Before docking of 8HDN and control (ursolic acid), we
validated the docking protocol by using the redock method.

The computed root-mean-square deviation (RMSD) for
redocking of ligands from both studied proteins showed the
reliability of the docking algorithm (RMSD for 1NNY =
0.86 Å; RMSD for 1T49 = 0.93 Å). The superimposed
ribbon and surface diagram of 8-HDN and native catalytic/
allosteric site inhibitors are shown in Figs. 3a and 3b. Three-
dimensional interaction plot into the binding site of catalytic
site (PDB ID INNY) revealed that the compound under
study forms three hydrogen bond interactions with Arg24,
Arg254 and Gln262. Met258 forms π-sulfur interactions. A
weak π-alkyl interaction also helps to stabilize the ligand-
enzyme complex (Fig. 4a). A two-dimensional (2-D)
interaction plot of the compound into the catalytic site is
shown in Fig. 4b. The computed binding energy for
compound 8-HDN in the catalytic site is −5.3659 kcal/mol.

A three-dimensional interaction plot into the allosteric
binding site (ID = 1T49) revealed that the affinity of the
compound is favored by three hydrogen bonds and five
hydrophobic interactions. Ser187 and Asn193 form
hydrogen bond interactions with carbonyl oxygen. While
Glu276 forms hydrogen bond interactions with the hydroxyl
group. Leu192, Phe196 and Phe280 forms π-π stacking
interactions with 5,8-dihydronaphthalen rings (Fig. 5a). 2-D
interaction plot of the compound into the allosteric site is
shown in Fig. 5b. The computed binding energy for
compound 8-HDN in the allosteric site is −6.2109 kcal/mol.
While for control (Ursolic acid) is −4.8945 kcal/mol (Tab. 2).

The binding energy computed for ursolic acid (positive
control) in the catalytic site is −6.7216 kcal/mol (Tab. 1). It
forms four hydrogen bond interactions with Arg24, Arg254,
and Gly259 (Figs. 6a and 6b).

POM analyses
A potential drug candidate must have a good pharmacological
profile with pharmacokinetic properties. Among in silico
prediction tools. Petra, Osiris and Molinspiration (POM)
calculations have been developed and documented for years to
access the pharmacokinetic profile (Hakkou et al., 2017;

TABLE 1

Protein tyrosine phosphatase 1B (PTP1B) inhibition activity of
8-HDN and ursolic acid

S. No. Compound IC50 (μM ± SEM)

1 8-HDN 18.37 ± 0.02

2 Ursolic acid 3.21 ± 0.02

FIGURE 2. Superimposed ribbon (a)
and surface (b) diagram of natives
into the catalytic and allosteric
binding site of protein tyrosine
phosphatase 1B (PTP1B).
The two retrieved enzymes are
superimposed by using discovery
studio visualized.

FIGURE 3. Superimposed ribbon (a)
and surface diagram of compound
8-HDN (pink stick) and natives
(yellow) into the catalytic and
allosteric binding site.
The two retrieved enzymes are
superimposed by using discovery
studio visualized.
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Mabkhot et al., 2016; Rauf et al., 2015; Tighadouni et al., 2016;
Sajid et al., 2016; Abdelhady et al., 2015; Header et al., 2015;
Ben Hadda, 2015) to form sets of pharmacologically and
diverse important conformers and tautomer, which can be
used within 2D pharmacophore search procedures to elevate
the number of meaningful hits of such test. These POM
analyses give some information about the general limitations
in the area of 2D structure and conformers/tautomer
generation. The results of POM calculations are briefly
described and discussed, and some outcomes obtained with

the different tools are given. The results of the analysis are
shown in Tab. 3.

Discussion

Current research indicates the promising potential of 8-HDN
to be further explored and developed as a novel compound
targeting PTP1B, especially in diabetes and cancer. Recently,
enzyme inhibitory activity of similar compound diospyrin
has been reported on DNA gyrase of Mycobacterium

FIGURE 4. (a) Close-up 3-D
interaction plot of the compound
8-HDN into the catalytic binding
site of protein tyrosine phosphatase
1B (PTP1B, PDB ID = 1NNY) (b)
2-D interaction plot.

FIGURE 5. (a) Close-up 3-D
interaction plot of the compound
8-HDN into the allosteric binding
site of protein tyrosine phosphatase
1B (PTP1B, PDB ID = 1T49) (b)
2-D interaction plot.

TABLE 2

Binding energy values (in kcal/mol) computed via MOE docking into the binding site of catalytic and allosteric domains of PTP1B

Compounds Binding energy (kcal/mol)

Catalytic Domain
(PDB = 1NNY)

Allosteric domain
(PDB = 1T49)

8-HDN −5.3659 −6.2109

Ursolic acid (Control) −6.7216 −4.8945

FIGURE 6. (a) Close-up 3-D
interaction plot of the compound
ursolic acid (positive control) into
the catalytic binding site of protein
tyrosine phosphatase 1B (PTP1B,
PDB ID = 1NNY) (b) 2-D
interaction plot.
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tuberculosis (Karkare et al., 2013), as well as anticancer and
antiparasitic activities of its derivatives and analogs (Dev
et al., 2012; Kumar et al., 2012).

Docking studies
The design or identification of protein tyrosine phosphatase 1B
(PTP1B) is an attractive area of research for medicinal/drug
discovery researchers. However, there are a few challenges in
developing PTP1B inhibitors. The catalytic site and its
surrounding sub-sites have highly conserved polar
architecture resulting in low bioavailability and off-target side
effects. A few strategies have been developed to address these
challenges (Kumar et al., 2018; Wiesmann et al., 2004).
Wiesmann et al. (2004) discovered a druggable and non-
conserved allosteric pocket (20 Å away from the active site)
formed by more hydrophobic Leu192, Phe196 and Phe280.
Asn193, Glu276 and Trp291 of α3 and α6 helices also
interact with the inhibitors. There are a number of studies
reported in the literature about the inhibition mechanism of
PTP1B. These studies were carried out via inhibition kinetics
and docking simulations. In a study carried out by Na et al.
(2007), they revealed that naturally occurring amentoflavone
from Selaginella tamariscina showed allosteric inhibition of
PTB1B. Cai et al. (2015) reported in-vitro inhibition of
PTP1B and docking studies of fifteen identified constituents
from Anoectochilus chapaensis. The IC50 values of the nine
active compounds were found in the range of 1.16–6.21 μM.
Docking studies were carried out on the catalytic site of
1NNY, and the computed binding energy values were found
between −7.4 to −8.5 kcal/mol. The tested compounds
showed interactions with catalytic domain residues. Recently,
Mphahlele et al. (2020) presented in-vitro and docking
studies of 5-acetyl-2-aryl-6-hydroxybenzo[b]furans. The IC50

values of the nine active compounds were found in the range
of 11.9–31.88 μM. Mechanism of inhibition was also
investigated catalytic (PDB = 1NNY) as well as the allosteric
site (PDB = 1T49) of protein tyrosine phosphatase 1B
(PTP1B) via docking simulations. The computed binding
energy values were found between −5.35 to −7.81 kcal/mol
for catalytic inhibition. While for allosteric inhibition, the
binding energies range from −6.82 to −11.20 kcal/mol. They
concluded that the studied compounds are more selective for
the allosteric site. Paudel et al. (2018) evaluated the PTP1B
inhibitory potential of three principal components:
mulberrofuran G, albanol B, and kuwanon G in M. alba

rootbark. The studied compounds showed allosteric PTP1B
inhibition via Asn193 and Glu276. While for catalytic
inhibition, their mode of inhibition was through Arg24,
Tyr46, Asp48, and Arg254.

In the current study, we investigated the mechanism of
PTP1B inhibition by 8-HDN. Catalytic site inhibition by
8-HDN with a binding energy value of −5.3659 kcal/mol
established three hydrogen bond interactions, a π-sulfur
interaction, and a weak π-alkyl interaction. While the
computed binding energy for positive control was −6.7216
kcal/mol. The PTP1B complex with 8-HDN allosteric site
showed a binding energy value of −6.2109 kcal/mol. Binding
energy data showed that compound 8-HDN is more
selective for the allosteric site.

Pi-charge calculation and molecular structure optimization
The charge repetition of 8-HDN shows an important
combined antibacterial/antifungal and antiviral O, O, O-
pharmacophore site (Figs. 7 and 8), which deserves a
separate supplementary antiviral/antiparasite screening.
Thus, we have started this compound, and other
achievements can be made. Our previous experience with
similar flavonoids molecules indicates that a subtle change
in pharmacophore can lead us to more efficient antioxidant
and antinociceptive and anti-inflammatory agents (Ben
Hadda et al., 2013; Rauf et al., 2016).

Osiris calculations
The theoretical toxicity risks determination for the 8-HDN
using the Osiris program indicated that this flavonoid
(Fig. 9) causes fewer side effects compared to the standard
clinical drugs. It also revealed that 8-HDN can serve as an
antibiotic with some pharmacomodulation (DS = 0.52).
From the data estimated in Fig. 9, the structure is not
supposed to mutagenic when analyzed via the mutagenicity
assessment of the molecular system. Based on the
reproductive and irritating effects, 8-HDN is at low risk
compared with the control. The hydrophilicity character of
the compound has been shown in terms of the cLogP value.
It has been established that the permeation or absorption is
highly affected by the hydrophilicity (cLogP < 5).

POM analysis
Petra, Osiris and Molinspiration (POM) analysis is a well-
known bioinformatics tool to identify the pharmacophore

TABLE 3

Molinspiration calculations of molecular properties and bioactivity scores of 8-HDN

Calculation of molecular properties Calculation of bioactivity scores

miLogP 3.02 GPCR ligand −0.08

TPSA 129 Ion channel modulator −0.14

nOHNH 3 Kinase inhibitor 0.06

nviolations 0 Nuclear receptor ligand 0.08

nrotb 1 Protease inhibitor −0.07

Volume 321 Enzyme inhibitor 0.34
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sites and predict the biological activities of molecules on the
basis of steric/electrostatic properties. According to
Molinspiration calculation, when miLogP is greater than 5,

the permeation or absorption reduces. As a result of this,
the compound (8-HDN) has a miLogP value within the
acceptable criteria, but other vital indices should be

FIGURE 7. Charges and molecular
structure optimization of 8-HDN.
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FIGURE 9. Osiris calculations of molecular properties
of 8-HDN.
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considered. This is linked to the geometrical configuration of
the pharmacophore site (Fig. 5) because it is flexible for 8-
HDN. We have calculated the molecular properties (TPSA,
number of violations and volume) for the compound, and
we have noted that they could be used as potential hits.
Theoretical drug scores calculated via the online
Molinspiration program are presented in Tab. 3. The
calculation of bioactivity scores combines ion channel
modulator, nuclear receptor ligand, kinase inhibitor, GPCR
ligand, enzyme inhibitor and protease inhibitor in five separate
values that may be employed to investigate the 8-HDN’s total
ability to qualify as a drug. The studied compound showed a
promising ability to act as an enzyme inhibitor (Tab. 2).

Conclusions

In conclusion, to the best of our knowledge, no report is
available on the antidiabetic potential of hydroxydiospyrin
and D. lotus; our results deserve attention. Further studies,
based on in vivo models, are needed to further elucidate this
relevant biological activity. Docking studies were carried out
to investigate the mechanism of inhibition. Binding
orientation and binding energy data were computed into the
catalytic (−5.3659 kcal/mol) and allosteric (−6.2109 kcal/mol)
binding site of PTP1B. Binding energy data showed that
compound 8-HDN is more selective for the allosteric site.
8-HDN can be further screened as an active lead compound
against PTP1B by using in vitro and in vivo models. Overall,
we found that 8-HDN structure optimizations based on the
performed POM analysis.
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