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ABSTRACT

The present paper is devoted to the convergence control and accelerating the traditional Decomposition Method
of Adomian (ADM). By means of perturbing the initial or early terms of the Adomian iterates by adding a
parameterized term, containing an embedded parameter, newmodified ADM is constructed. The optimal value of
this parameter is later determined via squared residualminimizing the error. The failure of the classical ADM is also
prevented by a suitable value of the embedded parameter, particularly beneficial for theDuan–Rachmodification of
the ADM incorporating all the boundaries into the formulation. With the presented squared residual error analysis,
there is noneed to check out the results against the numerical ones, as usually has to be done in the traditional ADM
studies to convince the readers that the results are indeed converged to the realistic solutions. Physical examples
selected from the recent application of ADM demonstrate the validity, accuracy and power of the presented novel
approach in this paper. Hence, the highly nonlinear equations arising from engineering applications can be safely
treated by the outlined method for which the classical ADMmay fail or be slow to converge.
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1 Introduction

Researchers prefer an easily accessible and user friendly method requiring less computational
labor while accurately approximating highly nonlinear equations resulting from mathematical mod-
eling of real-life phenomena. The Adomian decomposition method (ADM) is one such popular
technique capable of dealing with the prevailing nonlinearities by means of Adomian polynomi-
als [1,2]. A modification of the classical ADM is proposed within the current study based on
the recent publications [3,4] successfully generating fast convergent ADM series solutions with as
small Adomian polynomials as possible in the solution series.

A quick literature survey exhibits that ADM has been applied to many nonlinear equa-
tions [5]. To classify some of the recent bibliography, algebraic equations were contained within
the references [6,7]. The ordinary differential equations were dealt within the citations [8–14].
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The articles [15–18] covered the efforts to partial differential equations. Mathematical analysis of
the convergence of ADM to certain nonlinear equations was fulfilled in the publications [19–21].
It can be successfully used to gain correct physical parameters domain [22]. A traffic model was
also very recently treated in [23] via the Adomian method. The publications by [24,25] present
investigation of some nonlinear problems via different numerical approaches.

It is now well-known that an inadequate arrangement of the classical ADM series may lead to
non-convergent solutions or solutions with a poor convergence rate. To avoid these shortcomings,
a parameter is generally inserted at the leading term of the Adomian series and later it is
subtracted at the first order term not to break down the equation structure. This procedure
was pursued by the recent publications [11,17,18]. However, how a proper value of the inserted
parameter will be determined was not mentioned in these references. Instead, a randomly chosen
value was assigned to it. A variety of modifications were also offered in the articles [26–31].
A successful formulation of the ADM was made in the recent work of [3] which was named as
the optimal ADM. Further applications of the homotopy analytic approximate method may be
found in the literature [32–35].

The motivation of the current work is, benefiting from the idea in [11], to devise a method
that greatly improves the mathematical property of classical ADM. Within this aim, a reorgani-
zation of the ADM series is proposed by altering the early terms so that they incorporate extra
controllable terms. The reason of such a treatment is to get a rapidly converging ADM solutions
with the least Adomian polynomials. In place of randomly selecting, an optimum value of the
introduced parameter is later determined through error on the grounds of total residual. With this
value at our disposal, there is no doubt that the ADM method is convergent to the true solution
in a most rapid way, not demanding a verification of the ADM solutions by numerical ones. The
failure of the classical ADM in the usual form or in the Duan–Rach formulation is also prevented
by a suitable value of the embedded parameter. The present approach can also extend the region
of convergence of the traditional method. Examples of physical value are provided to justify and
validate the given procedure.

2 Traditional Decomposition Method of Adomian

The usual steps of traditional ADM can be inferred from the aforementioned citations. The
methodology in brief is such that under an invertible linear operator L and a forcing function f ,
it is desired to approximate the function u having the nonlinearity N(u) and satisfying the general
nonlinear equation

L(u)=N(u)+ f , (1)

with the initial and/or boundary restrictions

B(u)= b. (2)

Having inverted (1) under the restrictions (2) generally leads to

u= g+L−1[N(u)]+L−1[f ], (3)

where g is due to the conditions in (2). If u is a single scalar parameter like (1) representing an
algebraic equation, then there is no such g in (3), whereas, in the case of a variable u, L−1 denotes
an integral operator giving rise to g in (3). Then (3) is a mixed Volterra-Fredholm type equation
so-called as the Duan–Rach formulation in the recent literature, see for instance [13,14].
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The subsequent series decompositions of u and N(u)

u=
∞∑
n=0

un, N(u)=
∞∑
n=0

An, (4)

in which An’s are the classical Adomian polynomials, are later substituted into (3). The solution
u of (1) is finally generated from the recurrence relation

u0 = g+L−1[f ],

un+1 =L−1[An], n≥ 0. (5)

As a result, by means of the relations from (5), an approximate series solution of order M is
obtained as

u=
M∑
n=0

un, (6)

which serves for practical purposes.

In general, the procedure in (5) yields convergent ADM series solutions, see for
instance [19–21]. If not, to achieve convergent solutions or for computational conveniences some
modifications in the terms ui in (5) are implemented as in the articles [11,12], without a proper
mathematical evidence and support.

3 A Modified Decomposition Method of Adomian

To overcome the divergence of classical ADM or to speed up the convergence rate of the
ADM series, the leading order term u0 in (5) (which is in compliance with the previous implemen-
tations, in for instance [11]) or some of the early terms, call ue, 0≤ e≤Me, in (5) will be modified
so that the modification will account for the change in the ADM by incorporating parameterized
terms ũe(h) with h an embedded unknown parameter [3]. To exemplify, consider the modified
version of (5) in the manner

u0 = u0+ ũ0(h),

u1 = u1+ ũ1(h),

...,

ue = ue+ ũe(h),

...,

un+1 =L−1[An], n≥ e. (7)

The following conditions for parameterized terms in the new algorithm (7) should be added

ũ0(0)= ũ1(0)= · · · = ũe(0)= 0, (8)

so that it can be reduced to the traditional ADM for h= 0.

It is remarked that there is no a unique way of selecting the ũe(h) terms, but they must
be as simple as possible in line with the simplicity inspiration of the ADM method itself. For
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instance, constants depending on h or simple power functions (or simple integrable functions)
in combination with h can be used, refer to the illustrations belove for more details. We should
remark that in the absence of tilde terms (or h) (7) dully conforms with (5). Having inserted such
tilde terms in the modified ADM (7), the question now arises, how to determine the correct or
proper value of h? So far, in ADM applications of this kind, only random or trial values are
preassigned, see for instance [11] amongst others. On the other hand, we may either observe the
least change in the plot of some physical quantities, the method is so-called as the constant h-level
curves [36] giving rise to rough estimates for h, or we outline the following rigorous algorithm to
determine the best or optimal h.

Algorithm. Consider the squared residual error corresponding to (1) defined by

Res(h)= ‖L(u)−N(u)− f ‖2, (9)

where either L2(�) or L(�) norms are employed. Moreover, u in (8) is owing to the modified
ADM from (7). The optimum value of h is such that it minimizes the squared residual error (8)
at the approximation level M.

As a consequence, the above Algorithm will generate the best value of h which will ensure the
convergence of ADM series solution (7) in a fastest rate of convergence. The minimization task of
(8) may be fulfilled by means of contemporary softwares, such as MAPPLE or MATHEMATICA.

4 Applications

Potential applications of the introduced ADM in (7) are given here. To control the error, we
use the norm

err= ‖ue− u(t)‖ (10)

with the exact ue and ADM solution u.

4.1 An Algebraic Equation
As stated by Adomian [1] the classical ADM method (5) fails to result in a convergent

solution of

u2− 2u− 2= 0, (11)

for the solution u=−0.73205080757. On the other hand, when the new ADM is built via

u0 =−1− h,

u1 = h+ 1
2
u20,

un+1 = 1
2

n∑
k=0

ukun−k, n≥ 1, (12)

Fig. 1 displays h-level curves at selected truncation orders M. The interval h ∈ (−0.35, −0.25)
is observed to yield convergent ADM solutions, which excludes the traditional ADM with
h= 0 [1].

Through the residual minimization

Res(h)= u2− 2u− 2 (13)
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at the approximation level M = 8, h=−0.2679492 is obtained as the optimum. The history and
why this value is the best for the convergence control, as compared to the failure of classical
ADM can be visualized in Tab. 1.

M = 12, 16, 20

-0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20
-0.80

-0.78

-0.76

-0.74

-0.72

-0.70

h

u

Figure 1: Convergence control parameter h regarding (11)

Table 1: Convergence of modified ADM (12) for Eq. (11) with different h. Paranthesis is for the
absolute error (10)

M h= 0.0 h=−0.20 h=−0.2679492 h=−0.40

2 −1.000000000 −0.7760000000 −0.7320508035 (4.06× 10−9) −0.6880000000
4 −1.250000000 −0.7707200000 −0.7320508054 (2.17× 10−9) −0.7390400000
8 −4.234375000 −0.7794992000 −0.7320508069 (6.24× 10−10) −0.7295606400
12 −33.22070313 −0.8094297223 −0.7320508074 (1.79× 10−10) −0.7332243215
16 −349.4215698 −0.8769006132 −0.7320508075 (5.15× 10−11) −0.7314507918
20 −4071.603386 −1.0260654160 −0.7320508076 (1.48× 10−11) −0.7323668046

The convergent solution of (11) with the new modified ADM (12) at the approximation level
M = 8 is found to be

u= 1
128

(
−542− 6435h− 37752h2− 117348h3− 210420h4− 223594h5

−140280h6− 50292h7− 9438h8− 715h9
)
, (14)

for which the optimum h is tabulated in Tab. 1.

4.2 Equation Involving Integral
Consider the equation given in [30]

u(η)= 1
20

(
300+ 315η2+ 5η4+ η6

)
− 1

150

∫ η

0
(η− τ)u(τ)2dτ, 0≤ η ≤ 1. (15)



6 CMES, 2021, vol.127, no.1

The modified ADM method (7) for the current integral problem is adopted as

u0(η)= 1
20

(
300+ 315η2+ 5η4 + η6

)
− hη2,

u1(η)= hη2− 1
150

∫ η

0
(η− τ )u0(τ )2dτ ,

un+1(η)=− 1
150

∫ η

0
(η− τ )

n∑
k=0

uk(τ )un−k(τ )dτ , n≥ 1. (16)

We find h ∈ (−1500, 1500) for the convergence interval in Fig. 2, refer also to [3]. A compari-
son and convergence accelerating feature of the present ADM can be visualized from the Tab. 2. It
is noticed from Tab. 2 that even the 4th-order modified ADM (16) is able to produce the solution
accurate of order 10−10, which is adequate in practical purposes.

M = 10

u(1)

u(0.5)

u(0)

-2000 -1000 0 1000 2000
0

10

20

30

40

h

u

Figure 2: Convergence control parameter h regarding (15)

Table 2: Errors in (15) regarding (14). Parenthesis denotes the optimum values of h

M |ue(1)− u(1)| in [30] |ue(1)− u(1)| present
2 3.568238353× 10−4 2.585085279× 10−6 (0.8164225489)
4 8.462701192× 10−8 4.525954643× 10−11 (0.7993559975)
5 1.233325816× 10−9 1.783106924× 10−13 (0.7958113139)
10 6.276712343× 10−19 1.264455451× 10−25 (0.7889813873)

4.3 A Fin with Porosity Feature
As taken from [14], a porous fin can be modelled via

u′′ = su2+β2u, 0< η < 1,

u′(0)= 0, u(1)= 1. (17)
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In (17), temperature along the fin is u, and s and β are physical parameters.

The modified ADM algorithm (7) here is

u0(η)= θ0− hη2,

u1(η)= hη2+
∫ η

0

∫ η

0

(
su0(η)2 +β2u0(η)

)
dηdη,

un+1(η)=
∫ η

0

∫ η

0

(
β2un(η)+ s

n∑
k=0

uk(η)un−k(η)
)
dηdη, n≥ 1. (18)

At the selected values s= 5 and β = 1, the history of convergence is tabulated in Tab. 3. It is
seen how useful the modified ADM over the classical one by more than doubling the convergence
rate at the same number of iterations. The CPU times evaluated by MATHEMATICA through
the residual are shown in Tab. 3. The list proves the improved efficiency of the current method
over the classical ADM.

Table 3: Residual errors of classical ADM and modified ADM (18) for Eq. (17) with s= 5 and
β = 1. Parenthesis denote the optimum values of h

M
√
Res(h) ADM (h= 0) CPU

√
Res(h) modified ADM CPU

2 9.275340168× 10−1 0.031 2.9362768064× 10−2 (−0.5306610965) 0.031
4 1.570940630× 10−1 0.156 4.4652370216× 10−4 (−0.4863076732) 0.178
8 2.113503722× 10−3 0.625 5.6679833941× 10−8 (−0.4699160217) 0.703
12 1.711030679× 10−5 2.026 4.3828152149× 10−12 (−0.4655830387) 2.203

The values of u(0) and u′(1) are listed in Tab. 4 with M = 12 from the ADM and also with
the optimums hopt. The ADM (18) excellently compares with the full numerical solutions and
hence, they can be used without consulting a numerical verification.

Table 4: Numerical and modified ADM results regarding (17) [3]

s θ0 u′(1) θ0 (OADM) u′(1) (OADM) hopt

1 0.5227380936 1.1393789158 0.5227380936 1.1393789158 −0.4071445322
2 0.4487571832 1.4182574617 0.4487571832 1.4182574617 −0.4410040002
3 0.3977684724 1.6480019963 0.3977684724 1.6480019963 −0.4567006260
4 0.3596753295 1.8474903623 0.3596753295 1.8474903623 −0.4635604524
5 0.3297469637 2.0261010880 0.3297469637 2.0261010880 −0.4655830387

Instead of the modification of ADM in (18), we may use the Duan–Rach formulation
involving no unknown parameters within it except the embedded parameter h

u0(η)= 1− h,

u1(η)= h+
∫ η

1

∫ η

0

(
su0(η)2 +β2u0(η)

)
dηdη,



8 CMES, 2021, vol.127, no.1

un+1(η)=
∫ η

1

∫ η

0

(
β2un(η)+ s

n∑
k=0

uk(η)un−k(η)

)
dηdη, n≥ 1. (19)

Choosing s = β = 1, Fig. 3 shows h−level curves, indicating that the prescription of h must
be made within the range (0.39, 0.49) to ensure the convergence of the modified ADM 19. The
exact values of u(0) and u′(1) are respectively, 0.522738093570 and 1.13937891581.

M = 20

u(0)

u’(1)

0.35 0.40 0.45 0.50 0.55
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

h

u

Figure 3: Convergence control parameter h regarding (17)

To demonstrate the power of the modified ADM (19), Tab. 5 shows the squared residual error
(9) from both the novel and classical ADM. It is unfortunate to observe that the Duan–Rach
formulation (19) with h= 0 fails to converge, however, the optimum embedded parameter h insures
that the modified ADM is convergent for the present physical problem, even if the convergence is
not as fast as the modified formulation in (18).

Table 5: Values of
√
Res(h) for (17) from the classical and modified ADM methods

M
√
Res(0)

√
Res(h) h

4 0.91× 101 9.379592752× 10−3 0.5717083134
8 5.90× 102 8.485113566× 10−5 0.4466738418
12 1.90× 105 1.712138085× 10−5 0.4205569783
16 9.50× 107 8.888688579× 10−6 0.4108495377
20 5.68× 1010 3.872408211× 10−6 0.4061899784

4.4 Gelfand Equation
The Gelfand equation [5] involves exponential nonlinearity [8]

u′′ = eu, u(η = 0)= u(η= 1)= 0, (20)

with u′(0)=−0.4636325917 [3].

In line with the publications [5,8] when h= 0, the modified ADM is

u0(η)= 0,
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u1(η)=−h− η

2
+ η2

2
,

u2(η)= h−
(
− 1
24

− h
2

)
η− hη2

2
− η3

12
+ η4

24
,

un+1(η)=−η

∫ 1

0

∫ η

0
Andηdη+

∫ η

0

∫ η

0
Andηdη, n≥ 2, (21)

where An(h, η) are the polynomials of Adomian for eu(η), encompassing all boundary conditions
in (20) within the Duan–Rach approach, and we have

u′(0)=−
∫ 1

0

∫ η

0
Andηdη.

Fig. 4 shows the predicted convergence control parameters. With M = 12, an optimum value
for the embedding parameter h is found to be −0.01274 from the Algorithm in (9). We find that
the residual error is 1.6835117258×10−15 with u′(0)=−0.4636325917 from the present approach.
On the other hand, and error of 4.813740934× 10−9 with u′(0) = −0.4636325899 is calculated
from the traditional ADM. Our value is given by

u′(0)=− 767093598322389372691
1654529071288638504960

+ 15169262547373h
37157048852152320000

+ 7945655577131h2

243290200817664000

+ 9908796519071h3

8536498274304000
+ 17536069217h4

980755776000
+ 38157057179h5

373621248000
+ 10097225749h6

57480192000

+ 93183637h7

1045094400
+ 1216277h8

81285120
+ 147689h9

174182400
+ 283h10

21772800
+ h11

79833600
. (22)

The success of the present modified ADM (21) is thus obvious.

M = 12

u’(0)

u’(0.33)

u’(1)

-1.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

h

u’

-0.6

-0.4

-0.2

-1.0 -0.5

Figure 4: Convergence control parameter h regarding (20)
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4.5 Electrostatic Cantilever Micro-Electromechanical System
The beam-type electrostatic actuators for the nonlinear cantilever micro-electro mechanical

systems are modelled by the fourth-order boundary value problem from [11]

u′′′′ = −αK

uK
− β

u2
− γ

u
, 0< η < 1, K = 3, 4,

u(0)= 1, u′(0)= u′′(1)= u′′′(1)= 0. (23)

To comply with the Duan–Rach Adomian decomposition method in [11], the present modified
ADM is

u0(η)= 1− h,

u1(η)= h+
∫ η

0

∫ η

0

∫ η

1

∫ η

1
A0dηdηdηdη

= h+
(
αK +β − hβ + (−1+ h)2γ

)
η2(6+ (−4+ η)η)

24(−1+ h)3
,

un+1(η)=
∫ η

0

∫ η

0

∫ η

1

∫ η

1
Andηdηdηdη n≥ 1, (24)

where the Adomian polynomials An(h,η) are due to the negative-power nonlinearities in (23), see
[11] for more details.

For the fixed parameters K = 3, αK = 0.2, β = 0.5 and γ = 0.25, Fig. 5 produced from (24)
helps us guess the proper values of embedded parameter h. Small values of h are seen to be
adequate to get convergent ADM solutions.

M = 10
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-1.0

-0.5

0.0
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1.0

h

u

Figure 5: Convergence control parameter h regarding (23)

Fig. 6 demonstrates different approximation levels M, and it signifies to h = 0.1045421730
as the optimum h when M = 10. With this optimum value of the embedding parameter, the
squared residual error for the current problem is

√
Res = 3.2727623195 × 10−9, whereas the

classical residual error with h = 0 is
√
Res = 8.7520447833× 10−5. This implies that much more

Adomian series terms are required for the classical ADM to reach the accuracy of the modified
ADM here. Moreover, from [11] the physical values are u′′(0) = −0.56764 and u′′′(0) = 1.07585
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evaluated with 12 Adomian polynomials. The present values are u′′(0) = −0.5676684138 and
u′′′(0) = 1.0758898885 evaluated with only 10 Adomian polynomials, correct to 9 decimal places.
Hence, the advantage of the present modification is clear for the present highly nonlinear physical
problem. We should remark that with the present Algorithm, the validation of the ADM results
against the numerical ones is no longer a prerequisite. Also, there is no need to evaluate error
remainder functions, nor to consult to Pade-approximates to increase the accuracy, both of which
as implemented in [11].

M 2

4

6

8

10

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

10 8

10 6

10 4

0.01

h

R
es

h

Figure 6: Error regarding (23) for various M

The convergence accelerating feature of the present modified ADM (24) as compared to the
classical ADM is better visualized from the Tab. 6. Table also shows the comparable CPU times.

Table 6: Convergence history of modified ADM vs. classical ADM for Eq. (23)

M
√
Res(0) CPU

√
Res(h) (hopt) CPU

2 4.2251049880× 10−2 0.023 1.4791163690× 10−2 (0.0777275068) 0.034
4 7.0270444089× 10−3 0.041 3.9824140521× 10−4 (0.0961306006) 0.058
6 1.4789254421× 10−3 0.070 9.1320572997× 10−6 (0.1020430905) 0.089
8 3.4800777077× 10−4 0.105 1.8150755783× 10−7 (0.1040090218) 0.131
10 8.7520447833× 10−5 0.136 3.2727623195× 10−9 (0.1045421730) 0.173

4.6 Electrostatic Cantilever Nano-Electromechanical System
Nonlinear model for the electrostatic double cantilever nano-electromechanical system in the

case of Casimir force (K = 4) is given by [11]

u′′′′ =−αK

uK
− β

u2
− γ

u
, 0< η < 1,

u(0)= u(1)= 1, u′(0)= u′(1)= 0. (25)
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We adopt the subsequent modified ADM, that conforms to the classical ADM (h= 0) given
in [15]

u0(η)= 1− h,

u1(η)= h+
(
2η3 − 3η2

)∫ 1

0

∫ η

0

∫ η

0

∫ η

0
A0dηdηdηdη

+
(
η2− η3

)∫ 1

0

∫ η

0

∫ η

0
A0dηdηdη+

∫ η

0

∫ η

0

∫ η

0

∫ η

0
A0dηdηdηdη

= h−
(
αK + (−1+ h)2(β + γ − hγ )

)
(−1+ η)2η2

24(−1+ h)4
,

un+1(η)=
(
2η3− 3η2

)∫ 1

0

∫ η

0

∫ η

0

∫ η

0
Andηdηdηdη (26)

+
(
η2 − η3

)∫ 1

0

∫ η

0

∫ η

0
Andηdηdη+

∫ η

0

∫ η

0

∫ η

0

∫ η

0
Andηdηdηdη, n≥ 1,

where the Adomian polynomials An(h, η) are due to the negative-power nonlinearities in (25), see
[11] for more details.

For the specific parameters αK = 1, β = 1.5 and γ = 0.5, Fig. 7 displays the constant h-level
curves drawn at the approximation level M = 8. Similar to the previous example, very small values
of h are seen to be adequate to get convergent ADM.

M = 8

u’’(0)

u’’(0.5)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
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-0.2

0.0

0.2

0.4

h

u’
’

Figure 7: Convergence control parameter h regarding (25)

In order to evaluate the performance of modified ADM over the classical one, Tab. 7 shows
the unknown physical quantities u′′(0) = u′′(1) and u′′′(1) at several truncation orders M. The
faster convergence rate of the present ADM is apparent.

To illustrate, the analytical formula computed via the present algorithm (26) at M = 4 for the
value of u′′(0) is given by
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u′′(0)= 1
33476463820800(−1+ h)19

(8484398647110− 161202053045835h

+ 1450626144581925h2− 8210561431139865h3+ 32657066457192189h4

− 96557260487752602h5+ 219137184603173574h6− 389199830265020934h7

+ 547311661233315516h8− 613303909999850619h9+ 548763779900139189h10

− 391219305253946049h11+ 220658166826273313h12− 97137704049404928h13

+ 32601652101188352h14− 8015172092928000h15+ 1344650417510400h16

−133905855283200h17+ 5579410636800h18
)
, (27)

which is of almost nine degree of accuracy as seen from Tab. 7.

Table 7: Values of u′′(0) and u′′′(1) for (25) from the classical and modified ADM methods

M u′′(0) (h= 0) u′′′(1) (h= 0) u′′(0) u′′′(1) h

2 −0.2533482143 −1.5156250000 −0.2534302817 −1.5159601707 0.0053058312
4 −0.2534436938 −1.5160577858 −0.2534438205 −1.5160583465 0.0061391414
6 −0.2534438213 −1.5160583545 −0.2534438215 −1.5160583555 0.0063873039
8 −0.2534438215 −1.5160583555 −0.2534438215 −1.5160583555 0.0064510177

4.7 Lane–Emden Equation
We consider the Lane–Emden type boundary value problem from [9]

u′′ + k
x
u′ − ru

s+ u
= 0, 0< x< 1,

u′(0)= 0, 5u(1)+ u′(1)= 5, (28)

that models the oxygen diffusion in a spherical cell with Michaelis–Menten uptake kinetics. We
take into account the subsequent constants to comply with the literature [9]

k= 4, r= 0.76129, s= 0.03119.

The modified ADM that is offered for the present problem is then

u0(η)= a− h,

u1(η)= h+ 76129(a− h)η2

10(3119+ 100000a− 100000h)
,

un+1(η)= 1
3

∫ η

0
t

(
1−

(
t
η

)3
)
Andt, n≥ 1, (29)

which conforms with the classical ADM of [9] in the limit h→ 0 and the Adomian polynomials
An(h,η) are to account for the nonlinearity ru

s+u . The interest is to determine the physical value
of u(0)= a.
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We present Tab. 8 to demonstrate the performance of the modified ADM (29) versus the
classical ADM. The expected practical accuracy is met at lower Adomian series approximations
via the modified method.

Table 8: Values of u(0)= a and
√
Res(h) for (28) from the classical and modified ADM methods

M
√
Res(0)

√
Res(h) a (h= 0) a h

2 5.05920434× 10−5 1.82258949× 10−5 0.896870943665 0.896877048532 −0.0289267765
4 2.24898539× 10−7 2.18219055× 10−8 0.896877026028 0.896877046709 −0.0321993310
6 1.12229262× 10−9 2.83931728× 10−11 0.896877046624 0.896877046709 −0.0335012655

4.8 The Fluid Flow of Jeffery–Hamel
The Jeffery–Hamel fluid flow problem is modelled via [22]

u′′′ + 2αReuu′ + (4−Ha)α2u′ = 0, 0< η < 1,

u(0)= 1, u′(0)= u(1)= 0, (30)

with α, Re and Ha are the physical parameters [13].

Following the successful Duan–Rach ADM formulation of the problem (30) in [17], we
propose the following modified version

u0(η)= 1− η2 − h,

u1(η)=− 1
60

αη2
(
−1+ η2

)
(
5(−4+Ha)α+ 2Re

(
−4+ η2

))
+ 1

6
h
(
6−Reαη2

(
−1+ η2

))
,

un+1(η)=−η2
∫ 1

0

∫ η

0

∫ η

0
Andηdηdη+

∫ η

0

∫ η

0

∫ η

0
Andηdηdη, n≥ 1, (31)

where An(h,η)=−(4−Ha)α2u′n(η)− 2αRe
∑n

k=0 uk(η)u′n−k(η) are the Adomian polynomials.

For the diverging channel, considering the specific parameters α = 50, Re= 50 and Ha= 1000
to be in line with [13], the constant h-level curves are depicted in Fig. 8 at the approximation
order M = 8. Accordingly, we expect the convergency of the modified ADM (31) in the vicinity
of zero.

The performance of modified ADM (31) is next measured by computing the centerline veloc-
ity u(0.5) (numerical value is 0.764064240111) at different approximation levels M as shown in
Tab. 9. It is observed that 10 digits of accuracy is quickly reached by the present ADM, whereas
the classical ADM falls behind. Hence, even though it was not clearly mentioned in [13] (see
Tab. 1 therein), the accuracy of order 10−8 as obtained via the classical ADM demands at least
15–20 Adomian polynomials, whereas only 6 Adomian polynomials are sufficient to gain the same
accuracy with the present modification.
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M = 8
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Figure 8: Convergence control parameter h regarding (30)

Table 9: Values of u(0.5) and
√
Res(h) for (30) from the classical and modified ADM methods

M
√
Res(0)

√
Res(h) u(0.5) (h= 0) u(0.5) h

2 6.92050730× 10−2 1.13520536× 10−2 0.763699786377 0.764097626541 −0.0180187189
4 1.94819917× 10−3 1.87302552× 10−5 0.764051346961 0.764064279681 −0.0179816107
6 7.53651632× 10−5 3.95453415× 10−8 0.764063696627 0.764064239975 −0.0178807933
8 3.34939742× 10−6 9.72265613× 10−11 0.764064214850 0.764064240111 −0.0178880579

4.9 Squeezing Two Parallel Plates
The flow squeezed between two parallel plates are modelled by the nonlinear equations [22]

u(4) −SA(1−φ)2.5(ηu′′′ + 3u′′ + u′u′′ − uu′′′)= 0, 0< η < 1,

u(0)= u′′(0)= 0, u(1)= 1, u′(1)= 0, (32)

see [14] for the flow parameters.

In accordance with the Duan–Rach ADM formulation of the physical problem (32) in [14],
we set the modified ADM in the form

u0(η)= 1
2

(
3η− η3

)
− hη3,

u1(η)= 1
560

(
560hη3+A(−27+ 2h)(1+ 2h)Sη

(
−3+ η2

)
(1−φ)2.5

+ 2A(1+ 2h)Sη5
(
−28+ (1+ 2h)η2

)
(1−φ)5/2

+14A
(
−19

2
+ h

)
(1+ 2h)S

(
η− η3

)
(1−φ)2.5

)
,
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un+1(η)= 1
2

(
η− η3

)∫ 1

0

∫ η

0

∫ η

0
Andηdηdη+ 1

2

(
η3− 3η

)∫ 1

0

∫ η

0

∫ η

0

∫ η

0
Andηdηdηdη

+
∫ η

0

∫ η

0

∫ η

0

∫ η

0
Andηdηdηdη, (33)

where

An(h,η)= SA(1−φ)2.5

(
ηu′′′n (η)+ 3u′′n(η)+

n∑
k=0

(u′k(η)u′′n−k(η)− uk(η)u′′′n−k(η))

)

are the Adomian polynomials.

To make a comparison with the classical ADM in [14], we set the parameters S = 1, φ =
0.02 and concentrate on Cu-Water nanofluid with ρs = 8933 and ρf = 997.1. The corresponding
constant h-level curves are plotted in Fig. 9. It appears that the convergence of the modified ADM
(32) is guaranteed if h is selected in the overlapping interval (−1, 1).

M = 10 u’(0)

u(0.5)

u’’(1)

-4 -2 0 2 4

-4

-3

-2

-1

0

1

2

h

u

Figure 9: Convergence control parameter h regarding (32)

The effects of iterative number M on the skin friction u′′(1) are next demonstrated in Tab. 10.
The advantage of the modified ADM (33) with optimum values of embedding parameter h is
clearly observed against the classical ADM with h= 0. It appears that the accuracy of classical
ADM of O(10−8) as displayed in Tab. 2 of [18] clearly requires more Adomian series terms (see
M = 8 in Tab. 10) as compared to the less terms needed in the modified ADM here.

Table 10: Values of u′′(1) and
√
Res(h) for (32) from the classical and modified ADM methods

M
√
Res(0)

√
Res(h) u′′(1) (h= 0) u′′(1) h

2 2.67740258× 10−1 6.68835495× 10−2 −3.6764267174 −3.6917310584 −0.0991340307
4 1.61057990× 10−2 7.92481375× 10−4 −3.6952425904 −3.6965216730 −0.1097576248
6 1.09939458× 10−3 6.61056361× 10−6 −3.6964553942 −3.6965506329 −0.1111585030
8 8.10446170× 10−5 7.71479681× 10−8 −3.6965431988 −3.6965505168 −0.1112323962
10 6.28790630× 10−6 1.09803715× 10−9 −3.6965499276 −3.6965505117 −0.1112270087
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The following fourth-order modified ADM series solution for the skin friction may serve good
to the purpose of engineering applications if not high accuracy is required

u′′(1)= 1
2940824761875

(
−8822474285625− 2100589115625AS(1−φ)5/2

− 53295A3
(
1036330+ h2(1966073+ 36h(−77288+ 16563h))

)
S3(1−φ)15/2

− 72747675A2
(
3687+ 1468h3

)
S2(−1+φ)5+A4(1+ 2h) (12606590933

+h
(
−17941167514+ h

(
12710854094− 4619738103h+ 509582226h2

)))
S4(−1+φ)10

)
. (34)

4.10 Nonlinear Oscillator Problem
Let us consider the nonlinear oscillator Duffing problem (see [36] (Chapter 5) and [4])

u′′ + u+ u3 = 0, u(0)= 1, u′(0)= 0; 0≤ t≤ 3, (35)

which involves a cubic nonlinearity.

The improved ADM can be given via

u0(t)= 1− ht,

u1(t)= ht−
∫ t

0

∫ t

0
(un−1(t)+A0(t))dtdt,

un+1(t)=−
∫ t

0

∫ t

0
An(t)dtdt, n≥ 1, (36)

with the Adomian terms An(t) in (35).

The classical Adomian method with h = 0 in (36) is not convergent, whereas with h =
0.68981924, the residual error becomes

√
Res(h)= 0.02589439, and the convergency is satisfied as

revealed in Fig. 10 for the domain of definition.

 Traditional ADM (with h = 0)

Numerical Solution (Dashed)

Improved ADM (Dotdashed)
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0.5

1.0

t

u

Figure 10: Convergence control parameter h regarding (35)
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4.11 Diffusion Equation
Let us consider the nonlinear diffusion equation, see [18] and [3]

ut+ u+ u3 = (u2ux)x, u(x, 0)= e
x√
3 ,

0≤ x≤ 1, 0≤ t≤ 1, (37)

for which [18] presents an exact solution.

The form of modified ADM for the partial differential equation (37) is

u0(x, t)= e
x√
3 (1− ht),

u1(x, t)= 1
2
e

x√
3 t(−2+ h(2+ t)),

un+1(x, t)=
∫ t

0
An(h,x, t)dt, n≥ 1, (38)

where

An(h,x, t)

are the Adomian polynomials corresponding to the function −u− u3 + (u2ux)x.

Fig. 11 shows the constant h-level curves at the approximation level M = 10, indicating a very
large range of embedding parameter h.
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Figure 11: Convergence control parameter h regarding (37)

Actually at this truncation of the modified ADM series, it is obtained

u(x, t)= e
x√
3

(
−h t

11

11!
+

10∑
n=0

(−1)ntn

n!

)
. (39)

Defining the squared residual error for (37) as

Res(h)= ||ut+ u+ u3 − (u2ux)x||2 =
∫ 1

0

∫ 1

0
(ut+ u+ u3− (u2ux)x)2dxdt, (40)
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Tab. 11 tabulates how the modified ADM has smaller residual errors.

Table 11: The residual errors
√
Res(h) for (37) from the classical and modified ADM methods

M
√
Res(0)

√
Res(h) h

2 3.067520559× 10−1 1.126425884× 10−2 0.78155339805
4 1.905329025× 10−2 2.920732957× 10−4 0.84725848564
6 5.284431922× 10−4 4.431860700× 10−6 0.88282078470
8 8.251967252× 10−6 4.360598101× 10−8 0.90500266099
10 8.249541273× 10−8 2.997208214× 10−10 0.92013994524

4.12 Burger’s Equation
The final example is known as Burger’s equation [3]

ut+ uux = uxx, u(x, 0)= 2x,

0≤ x≤ 1, 0≤ t≤ 1, (41)

with an exact solution u(x, t)= 2x
1+2t .

u(x,1)

u(x,0.5)

u(x,0.1)x -1

x -1

x -1

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

h

x-1
u

Figure 12: Convergence control parameter h regarding (41)

The form of modified ADM for the partial differential equation (40) is

u0(x, t)= x(2− ht),

u1(x, t)=−1
3
t(12+ h(−3+ t(−6+ ht)))x,

un+1(x, t)=
∫ t

0
An(h,x, t)dt, n≥ 1, (42)

where

An(h,x, t)
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are the Adomian polynomials corresponding to the function uxx− uux.

The traditional ADM with h = 0 in the domain 0 ≤ x ≤ 1, 0 ≤ t ≤ 1 is noticed to fail
to produce a convergent series as also clear in Fig. 12, because h = 0 is not lying in the
overlapping region.

With the definition

Res(h)= ||ut+ uux− uxx||2 =
∫ 1

0

∫ 1

0
(ut+ uux− uxx)2dxdt, (43)

Tab. 12 justifies the success of the present modified ADM over the classical divergent one,
both in terms of accuracy and computational cost.

Table 12: The residual errors
√
Res(h) for (41) from the classical and modified ADM methods

M
√
Res(0) CPU

√
Res(h) (hopt) CPU

5 1.75× 102 0.012 4.674547981× 10−2 (2.2068296567) 0.039
10 1.67× 105 0.053 4.082713247× 10−3 (2.3147042279) 0.078
15 1.39× 108 0.101 6.755704561× 10−4 (2.3159080855) 0.145
20 1.24× 1011 0.242 2.741368603× 10−5 (2.3820449852) 0.289

5 Concluding Remarks

The aim of the present work is to present superiority over the well-known Adomian decompo-
sition method (ADM) often employed in the recent literature to analytically approximate solutions
to highly nonlinear algebraic and differential equations of some real physical motions. Within this
aim, a reformulation of the ADM is targeted to prevent first the failure and then convergence
acceleration of the classical Adomian polynomials.

To accomplish the objective, the classical ADM is modified by inserting some simple param-
eterized terms into the early iterates involving an embedded parameter to control and pacing the
convergence of the generated ADM series. In order to determine the best suitable value or the
optimum value of this parameter, squared residual minimizing of the governing equation is pro-
posed. This enables us to overcome the divergence of the classical ADM, and more importantly,
there is no need to check out the results against the numerical ones, as usually has to be done
in traditional ADM studies, since the optimum embedded parameter obtained is an insurance for
ADM series convergence in a most rapid manner.

Physical examples selected from the recent application of ADM demonstrate the validity,
accuracy and power of the present approach in terms of generating the convergent solution
within the least number of iterations. In particular, the Duan-Rach modification of the ADM
incorporating all the boundaries mostly used in the recent ADM applications takes great benefit
of the present proposal, otherwise there is always the inevitable danger that it may lead to
non physical solutions. The present approach successfully extends the convergence interval of the
studied problem. In conclusion, the present formulation of ADM offers a promising tool to treat
more strongly nonlinear equations/systems of real life phenomena.
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