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Abstract: Wireless Capsule Endoscopy (WCE) is an imaging technology,
widely used in medical imaging for stomach infection recognition. However, a
one patient procedure takes almost seven to eight minutes and approximately
57,000 frames are captured. The privacy of patients is very important and
manual inspection is time consuming and costly. Therefore, an automated
system for recognition of stomach infections from WCE frames is always
needed. An existing block chain-based approach is employed in a convolu-
tional neural network model to secure the network for accurate recognition of
stomach infections such as ulcer and bleeding. Initially, images are normalized
in fixed dimension and passed in pre-trained deep models. These architectures
are modified at each layer, to make them safer and more secure. Each layer
contains an extra block, which stores certain information to avoid possible
tempering, modification attacks and layer deletions. Information is stored in
multiple blocks, i.e., block attached to each layer, a ledger block attached
with the network, and a cloud ledger block stored in the cloud storage. After
that, features are extracted and fused using aMode value-based approach and
optimized using a Genetic Algorithm along with an entropy function. The
Softmax classifier is applied at the end for final classification. Experiments are
performed on a private collected dataset and achieve an accuracy of 96.8%.
The statistical analysis and individual model comparison show the proposed
method’s authenticity.
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1 Introduction

Stomach infections are the most common nowadays. These infections include polyp, ulcer, and
bleeding [1]. In 2019, about 22% of the adult population having gastric conditions in the United
States. A total of 27,510 new stomach cancer cases are estimated, and 11,140 deaths are occurred
due to these cases. In 2018, 160,820 deaths occurred due 319,160 new stomach cancer cases [2].
Stomach cancer is the third leading cause of death [3]. Colorectal or bowel cancer causes an
average of 694,000 deaths in developing countries [4,5]. Esophageal cancer is the seventh common
cancer disease in mature humans [6]. The early identification of gastric infections can improve the
survival rate from 19% to 80% [7]. Therefore, humans’ mortality rate can be decreased if infections
are treated at an early stage [8].

Wireless Capsule Endoscopy (WCE) is widely utilized to recognize stomach infections. WCE
is an imaging technique in the medical field. In WCE, a small camera captures the images of
the gastrointestinal (GI) tract. The physicians detect and recognize the infections from these
WCE images. However, this WCE technology has limitations such as an expert is required and
consumption of time for infection recognition [9]. Several researchers developed the Computer-
Aided Diagnostic (CAD) systems [10]. Using computer vision and image processing techniques
along WCE can decrease the overall cost and time for infection recognition [11]. Many supervised
Machine-Learning (ML) based CAD systems have developed and helped physicians identify the
abnormalities in WCE images. Several researchers focused on deep feature extraction from pre-
trained deep learning models such as AlexNet [12], ResNet [13], and VGG-16 [14]. Researchers
extract different handcrafted features, including geometric, shape, color, and texture, along with
deep CNN features to present their model. Color features descriptors have shown its importance
in gastric infection recognition. Rajaei et al. [15] extract Discrete Cosine Transform (DCT) and
Discrete Wavelet Transform (DWT) features to classify the WCE images. The fundamental steps
to develop these CAD systems for detecting abnormalities in WCE images are feature extraction,
feature selection, and classification. Different methods which are utilized for the extraction features
include color features [16], Scale Invariant Feature Transform (SIFT) [17], texture features, and
many others. However, all extracted features may not be helpful in WCE images analysis. There-
fore, the selection of best features is important, and several techniques have been developed, such
as principal component analysis (PCA), linear discriminant analysis [18], and genetic algorithm
(GA) [19]. A good feature selection method collects the best subset of features and reduces the
classification time. The deep learning models save features, and these features are transformed in
between several layers; therefore, it is a chance of disturbing few important features. The more
recent, the entrance of blockchain in the machine learning, play a success for securing data. It
is an absolute and encrypted database technology with a continuous growing list of blocks [20].
As a new technology, the researcher tries to implement this in several sectors and medicine is
one of them. The importance of blockchain in the medical sector is needed when the number of
patients are increasing with a high ratio. In this work, we are employing hash functions to secure
the in-between CNN layer features. Our major contributions are as follows:

Blockchain technology in CNNs has been implemented to form a Secure CNN model called
SecureCNN. The architecture of CNN is modified at each layer, to make it safer and more secure.
For this purpose, we implemented an existing approach [21]. Each CNN model layer contains an
extra block, which stores certain information to avoid possible tampering, modification attacks,
and layer deletions. This information includes a) encrypted inputs and outputs of previous and
current layers; b) public keys of all layers and private keys of neighboring layers, and c) weights
of current and next layers. This information is stored in multiple blocks, i.e., a block attached
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to each layer, a ledger block, attached with the network, and a cloud ledger block, stored at the
cloud storage. The proposed CNNs are intelligent enough to detect any sort of tempering, either
on the parameter level or on the network level, and perform restoration steps to avoid it. Later, we
also optimize the features of CNN models using the Genetic Algorithm (GA) and passed optimal
output in a Softmax classifier.

2 Related Work

This section explains the challenges of classifying and detecting ulcers in the past. Different
Gastrointestinal (GI) tract infections include ulcer, polyp, esophagitis, and bleeding. The ulcer
is the most common disease from all these infections [22]. Several techniques were proposed to
effectively classify or detect anomalies in endoscopic images [23]. WCE images are used to classify
abdominal infected gastrointestinal tracks using a novel automated method. A saliency estimated
method called Color Features based Low-level and High-level Saliency (CFbLHS) is proposed to
extract the frames from dataset videos. Transfer Learning (TL) has been an active technique in
many domains to extract the deep features, which later proved vital in all computer-aided classifi-
cation systems [24,25]. A pre-trained CNN network DenseNet has been used to extract the deep
features using the TL technique and is fine-tuned using Kapur’s entropy. Tsallis based entropy
has been used to extract the 50% top-level features. The proposed method achieved an overall
classification accuracy of 99.5% on the selected controlled WCE dataset [26]. An automated clas-
sification method using deep features is proposed, which combined densely connected models with
non-local attention mechanisms. Contextual and relevant information is extracted by combining
attention blocks with dense cascade blocks. The medical staff has annotated the used dataset twice
per image on which the classification accuracy of 96.79% is achieved. Simultaneously, the ROC
is noted at an average of 0.93 for the deep learning model [27]. A novel technique for automated
localization and detection of gastrointestinal anomalies was proposed using the endoscopy images,
in which training is carried out using the weakly annotated images. This training was performed
using the image level semantic labels instead of pixel-level annotations, making it a cost-effective
technique to analyze huge repositories of endoscopy. The proposed technique enabled the detector
to detect the location’s anomalies on the input image. The proposed technique’s main steps
included classifying the abnormal or normal image using, CNN model, detecting salient features
using deep layers and deep saliency detection, and localizing the anomalies using Iterative Cluster
Unification (ICU). The derived information from CNN was used to detect salient from the
Pointwise Cross-Feature-Maps (PCFMs) in ICU. The proposed model achieved an average AUC
of 88% on publicly available datasets [10]. The gastrointestinal disease was classified and detected
using an automated diagnosis method on WCE images. In the proposed method, HSI color-space
is utilized before the contour segmentation before implementing a saliency method in the YIQ
color-space. The images are then fused using the proposed posterior probability maximization
technique. The resultant images were then used to extract the GLCM, LBP, SVD features, which
were serially fused to form a single feature vector. The proposed technique was tested on a private
dataset containing 9,000 healthy, bleeding, and ulcer images. The proposed technique achieved an
overall classification accuracy of 100% using the 10-fold cross-validation [18]. A pre-processing
technique of edge enhancement was proposed to make images more appropriate to extract the
features. Initially, the edges of the image were calculated using an edge extraction operator and
then a brightness lookup table was utilized to calculate the edge map by applying addition or
subtraction operation. The proposed technique achieved a classification accuracy of 95.55% on
WCE images [28].
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3 Proposed Methodology

Blockchain (BC) is a decentralized technology that uses distributed ledgers to record different
transactions between users [29]. These users can either be people or systems or even algorithms.
The transactions stored so that it remains permanent, could not be tempered, and can easily
be verified upon a single request. Various crypto-currencies have used BC technology as basic
building blocks. The Convolutional Neural Networks (CNNs) and BCs are not directly related.
Still, these technologies can form a more secure structure in many real-time applications, i.e.,
machine security, health-care, and surveillance. The BCs are powerful and secure due to the
following characteristics:

• Transitive Hash
• Encryption at every level
• Decentralization

The transitive hashes and encryption techniques disallow any algorithm’s tempering, i.e.,
feature extraction, fusion, feature matching, and feature optimization. Transitive hashes will try to
find any change at any level to trigger a notification highlighting an illegal change at a specific
node or layer of algorithm and that specific node or layer can be restored to a previously valid
state. The decentralized nature ensures that the whole algorithm is not stored on a single network,
and no one, at any level, can deceive the algorithm. These properties can be used to propose a
secure and safe CNN. Thus, blockchain stands as a favorite candidate for secure and safe CNN.
The encryption can be carried out using symmetric or asymmetric key algorithms. Symmetric
encryption algorithms use only one key to encrypt or decrypt the message, thus leaves a loophole.
Anyone with the key can easily decrypt the message and change or delete it accordingly. In an
asymmetric algorithm, two keys, i.e., public and private, are used to encrypt and decrypt the plain
text [30]. The public key is openly distributed, while the private key is kept secretive. Anyone can
encrypt receiver’s message using their public key, but this encrypted message can only be decrypted
using their private key. Asymmetric encryption improves the security level but reduces the overall
speed of the process [31]. Asymmetric Encryption (AE) is applied during the implementation of
BC enabled CNNs.

A Smart Contract (SC) is a code that can guarantee credible and secure transactions. SCs
are also used to track the creation and updating of all transactions. The biggest advantage of
these SCs is that it does not require any third-party API; thus the data cannot be compromised
by any other external agent. SCs can be implemented at multiple levels on CNN to make it safer
and more secure. All the inputs and outputs of the network can be saved in a ledger using an
SC and can verify or restore the network inputs at any stage. Several SCs are formed during
the proposed CNN, called Layer Ledger Block (LLB) with each layer, and stores the current
and next layer’s information. Another SC, called Central Ledger Block (CLB), is formed with all
information about every layer of the network. CLB is stored within the network as local storage
and a CLB copy is also stored on the cloud storage. The CLB at cloud storage keeps syncing
with the local CLB. LLBs randomly update CLB so that the intruder cannot predict the order of
each layer. The overall structure of SecureCNN is shown in Fig. 1.

The structure of SecureCNN is inspired by the architecture of BC itself, where blocks are
connected in the form of an ever-growing linked list. The only difference is that the BC technology
includes an infinite number of blocks and ledgers. Simultaneously, the SecureCNN has a finite
number of blocks and ledgers, which solely depend upon the number of layers in a CNN network.
A ledger block follows each layer of the network, which: a) Stores the parameter information of
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the layer, b) Compute the output of current layer, c) Validate the output of the current layer and
d) Update the ledger block of the current layer as well as the central ledger block. The structure
of LLB and CLB is shown in Figs. 2 and 3, respectively.

Figure 1: Architecture of SecureCNN

Figure 2: Structure of layer ledger block
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Figure 3: Structure of a central ledger block

The LLB is nothing but another layer of a CNN model with an identity weight matrix, zero
bias, and identity function as an activation function. Thus, the output of the layer ledger block
will be input itself. The LLB contains hashes of previous and current layers, private and public
keys of current layers, public keys of immediate next and previous layers, and encrypted layer
parameters of current and next layers. Hash generation and parameter encryption is achieved
using a famous AE algorithm Data Encryption Standard (DES) [32]. Once a single layer is
processed and provides output to the next layer, the whole process is treated as one transaction.
The CLB contains information on all transactions random and associates each transaction with
a signature. The purpose of randomizing this information is to make it more secure against the
tempering. The central ledger block is a shared storage, which also stores the state of a model.
A hash at a specific layer is calculated using the current and previous layer parameters and
a hash of the previous layer. If it’s the current layer, then the hash (H) of this layer can be
calculated as:

Hi = σ (Hi−1,parametersi,parametersi−1) (1)

Here, σ denotes the DES algorithm. These hash keys are stored in a central ledger block,
which is later used to identify the tempered layer, in case of any tampering. The central ledger
block has the information of every layer, which is stored randomly. Even the layers don’t know
their sequential orders in the central block. The layer ledger block calculates the authenticity
parameter using the hash keys of the current and previous layers. This authenticity parameter has
two possible values; true or false. If the value is set to true, the layer will take the output to the
next layer. If the value is set to false, then the network has been compromised, and it will stop
propagating the output to the next layer. It restores the parameters of previous and current layers
and recalculates the hashes. This process will be repeated unless authenticity becomes valid again.

After the authenticity check, the central ledger block performs a) encryption of layer output
through the public key of the next layer using DES, b) attach signature, and c) calculation of the
hash of the next layer. After each update in the central block, each layer check either the update
is verified through signature or not. The immediate next layer carries this verification. For any
layer i, the signature Signi of this layer can be calculated by encrypting the parameters of previous
layer using the private key of current layer. If Wi denotes weights, Ii denotes the layer input
and Bi denotes the bias, then the Oi using the activation function ρ can be calculated as Oi =
ρ ((Wi×Xi)+Bi). When encrypted using the public key of the next layer, this output becomes
the input of that layer. Xi+1 = σ(Oi,Pubi+1). Using the parameters of current layer and hash of
previous layer, the hash of the current layer is calculated as Hi = σ(Hi−1,Xi,Xi−1). Suppose the
current layer updates the central ledger block using Xi,Oi,Hi and Signi Then, at the next layer
i+1, the verification process will be carried out by decrypting the previous layer’s signature using
the public key of the previous layer. If the signature matches, the outputs are valid otherwise,
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the network is compromised. This signature verification ensures that the layer receives input from
authorized layers.

The validation of any layer at any time can also be conducted. Suppose that layer i is
tempered. Any layer is considered tempered if the signature of the current layer is not equal to
decrypting the signature of the previous layer using the public key of previous layer or the input
of the current layer Xi is not equal to the output of previous layer Oi−1. From this, we can
conclude that either the Oi is not genuine, which implies that the previous layer i−1 is tempered
or Xi are not genuine, which implies that the current layer i is tempered. Oi−1 must be genuine
as if it would have been tempered, the layer would never be able to produce an output, thus the
current layer i is tempered.

3.1 Deep Learning Architecture Using SecureCNN
The Deep Learning (DL) architecture is used to classify the polyps into their related classes.

The DL architecture consists of a pre-trained model AlexNet, InceptionV3, and DenseNet201.
These models are transformed into SecureCNN models as per the proposed method to extract
features of images. The extracted features are fused by the mode value-based serially approach
and optimized using GA. Through GA, the most optimal features are selected and passed in the
Softmax classifier for final classification. The overall flow of DL architecture is shown in Fig. 4.

Figure 4: Proposed deep learning architecture for stomach infections recognition

3.1.1 Convolutional Neural Network (CNN)
The CNNs were proposed by [33] to classify the handwritten digits [34]. CNN models are

inspired by the human mind’s biological structure, where neurons transfer the information from
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one cell to another. The firing capacity and accuracy of neurons determine the intellectual level of
a human. Similarly, the success of CNN’s depends upon it’s learning and reducing the error-rate.
The CNN architectures are made up of several layers, which perform different tasks at different
levels. These networks always start with an input layer, which only accepts a certain specific size
image. The input image is followed by multiple combinations of convolutional layers, pooling
layers, ReLu layers, and normalization layers.

The last layers of CNN are used to extract the learned features and mostly include fully
connected layers and the Softmax layer. The pre-trained networks are famous whenever we talk
about the CNNs. These pre-trained networks differ from other Machine Learning (ML) networks,
as pre-processed images are input instead of feature vectors. These models are trained in a
supervised environment on large datasets like ImageNet.

AlexNet: It has eight (8) distinguished layers, out of which five connected convolutional layers
are at the beginning with pooling layers, followed by three (3) fully-connected layers [35]. The
output layer of this model is the Softmax layer, which is directly connected with the last fully-
connected layer. The last layer is labeled as the FC8 layer, which fed the Softmax layer with 1000
size and softmax, which produces 1000 channels. Neurons of fully connected layers are directly
attached to neurons of previous layers. Normalization layers are connected with the first and
second layers. The fifth convolutional layer and response normalization layers have max-pooling
layers. The output of every fully connected and convolutional layer has a ReLU layer. Input for
this network is an RGB image of size 227× 227×3. The FC7 layer returned a feature matrix of
dimension V1×4096.

DenseNet: It consists of a total of four dense blocks like dense block 1, dense block 2, dense
block 3, and dense block 4 [36]. In the first three dense blocks, a transition layer is added for
each, and for the last dense block, a classification layer is added. The output size of the first
convolutional layer is 112× 112, where filter size 7× 7 and stride 2× 2. After the convolutional
layer, the max-pooling layer is added of pooling size 3× 3 and stride 2. The global average pool
layer of filter size 7× 7 and fully connected (FC) layer are added in the classification layer. The
FC layer returned a feature matrix of dimension V2 × 1000. Input for this network is an RGB
image of size 224× 224× 3.

Inception V3: It was presented as an enhanced adaptation of the ILSVRC-2014 Large Scale
Visual Recognition Challenge [37]. The system was intended to decrease the computational
expense while enhancing the characterization precision with the goal that computer-related appli-
cations can also be versatility ported with it. It achieves 22.0% best 1 and 6.1% best 5 error ratio
on the ILSVRC-2012 characterization [38]. This model includes 346 layers, and the input for this
network is an RGB image of size 299× 299× 3. The “avg_pool” layer returned a feature matrix
of dimension V3× 2048.

Features Extraction: Features are extracted from three layers, such as FC seven layer of
AlexNet, FC eight layer of Inception V3, and global average pool layer of DenseNet201. These
models are trained using the destination transfer learning approach. The feature vector size of
each selected layer is V1× 4096, V2× 1000, and V3× 2048. These features are fused by a Mode
value-based approach, discussed in the next section.

3.2 Tempering Attack
The primary purpose is to prevent tampering attacks against a learned model so that the

performance and results are not compromised. To test the capabilities of proposed SecureCNN, a
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tempering attack is proposed in this article, which tries to temper the learned model at different
levels. The proposed attack justifies the integration of BC technology with CNNs. Algorithm 1
presents the pseudo-code for the proposed tempering attack.

Algorithm 1: Parameter tempering for a model
Input: model, parameters
Output: modelt

1: i← 0
2: layers←model.layers
3: attacktype← [0, 1, 2]
4: if

(
attacktype == 0

)
attackname←mild
Classes← findSoftmaxLayer (model.layers)
Classesnew← interchange (Classes)
findSoftmaxLayer (model.layers)=Classesnew

End if
5: else if

(
attacktype == 1

)
attackname← average
Perform Attack1
Layersoutput =FindOutputLayers(model)
Layershape←LayersOutput.shape
noise←GaussianNoise(ρ, Layershape)
w←weights(Layersoutput)
wnew←w+noise
weights

(
Layersoutput

)=wnew
End if

6: else if
(
attacktype == 2

)
attackname← severe
Perform Attack2
for i← 0to size(Layers)
Layershape←Layersi.shape
noise←GaussianNoise(ρ, Layershape)
w←weights(Layersi)
wnew←w+noise
weights

(
Layersi

)=wnew
end for
end if

7: modelt = trainMod(model)

3.3 Features Fusion and Selection
Consider we have three feature vectors named AlexNet features, Inception V3 features, and

Densenet201 features denoted by ψ1(k1), ψ2(k2), and ψ3(k3). Where k1, k2, and k3 represent
the length of the extracted features. As we know, the length of the feature vector, mentioned in
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Fig. 4. We first serially combined all features in one vector as follows:

ψki =
⎛
⎝
ψ1 (k1)
ψ2 (k2)
ψ3 (k3)

⎞
⎠
N×Ki

∈R (2)

where, ψki denotes serially combined vector, and Ki represents the size of the final fused vector.
Later on, we organize all features in the highest value-based and for this, mode value is computed.
Based on mode value, features are arranged in the highest order. Later, applied Genetic Algorithm
of Entropy controlled Naïve Bayes (GAEcNB) fitness function. The algorithm of GAEcNB is
given below:

Algorithm 2: Features Optimization using GAEcNB
Input: Fused Feature Vector ←ψki
Output: Optimal Feature Vector ← φki

1: Initialized Parameters
• Population= 100
• Iterations= 500
• MutationRate= 0.001
• Crossover= 0.8
• B= 6

2: Calculate Fitness
• E=−∑N

k=1 p(ki) logP(ki)
• H (k)= P (K1|K2)= P(K2|K1)P(K1)

P(K2)• Calculate Error
3: Perform Uniform Cross Over
4: Generate Features using Roulette Wheel
5: Perform Mutation
6: Merge Populations
7: Sort best population
8: Best Chromosomes

Finally, the selected features are passed in the Softmax classifier for final classification.
Mathematically, Softmax is formulated as follows:

SM = exp (ki)∑
i exp (ki)

(3)

When the feature vectors V1 × 4096, V2× 1000, and V3× 2048 are fused into a stand-alone
vector; final size becomes V × 7144. After applying GA, feature vector V becomes of size V ×
2858, 40% of fused features.

4 Experimental Results and Analysis

4.1 Experimental Setup
The proposed CNN model is trained on NVIDIA GeForce GTX 1080 with 6.1 computation

capability, seven multiprocessors, and 1607–1733 MHz clock rate. The dataset is divided into two
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parts: training and testing, using a traditional approach of 50–50. The CNN model is trained
and testing using MATLAB 2019b. The Stochastic Gradient Descent with momentum (SGDM)
algorithm represents the minibatch size training technique of 64. The learning rate is started at
0.01 and decreased after every 20 epochs by 10. The momentum is set at 0.4 and maximum
epochs are set at 450. Cross-Entropy [39] is used as a suitable loss function as it has performed
reasonably for many multiclass issues. For the CNN models, different output layers are selected
to extract features. AlexNet model extracts the 4096 features against a single image on the FC7
layer; InceptionV3 extracts 2048 features for one image on the avg_pool layer; the densenet201
model extracts 1000 features against one image on the fc1000 layer. For the hand-crafted features,
the input image size is fixed to 250× 250× 3.

4.2 Dataset
In this work, we used a Private Stomach dataset, originally collected by Liaqat et al. [9].

Later, the number of images are increased and reached up to above 5500 by Sharif et al. [23].
This dataset was originally collected in videos from POF Hospital, Wah Cantt, Pakistan. In this
work, we further increase the images, and each class images are 5000. Three classes of the selected
dataset are ulcer, Bleeding, and Healthy.

4.3 Fine Tuning of CNNModels
Transfer learning is an essential element for datasets, which does not have many images or

classes [40]. For the smaller datasets, pre-trained networks are utilized as a feature extractor. Fine-
tuning has shown promising results as compared to generic feature extraction using CNN [41].
The CNN models, i.e., AlexNet, InceptionV3, and DenseNet201, are already trained on large-
scale dataset ImageNet having 1000 classes. The selected dataset only has three classes, so the
softmax layer of these pre-trained models is updated by replacing 1000 with 3. But this change
forces the network to start training process with some random weights on each layer. The training
accuracy and training loss of fine-tuning can be observed in Fig. 5. The softmax layer’s learning
rate increases exponentially in transfer learning as it must learn the new features quickly. The pre-
trained models are fine-tuned over a mini-batch size of 64, weight decay of 0.005, and momentum
of 0.7. A Gaussian distribution with 0.01 standard deviation is used to initialize the weights of
the softmax layer containing three (3) classes. For 450 iterations, a dropout size of 0.5 is fixed to
avoid overfitting. The CNN models are trained over 70%, 15%, 15% ratio for training, and testing
and validation.

4.4 Classification Results
The classification results are computed using several experiments, where features from stan-

dalone networks, fused features, and optimized features were utilized to obtain results. All the
networks are used as simple CNNs, as well as SCNNs. Tab. 1 shows the classification results
in different experiments. The results on both CNNs and SCNNs remain almost the same with
an extremely low variation. All pre-trained networks are used with and without fine-tuning to
compare the impact. In the first experiment, AlexNet, without fine-tuning got a classification
accuracy of 78.3% with 21.7% FNR. The model was trained in 214.3 s and the average prediction
time remained at 1.63 s. When AlexNet was used with fine-tuning, results improved 10.34% by
achieving an accuracy of 86.4% and FNR of 13.6%. The training time decreased by 16.52%
to 178.9 s and the average prediction time decreased 26.99% to 1.19 s. In the second experi-
ment, InceptionV3 without fine-tuning got a classification accuracy of 83.8% with 16.2% FNR.
The model was trained in 193.4 s and the average prediction time remained at 0.94 s. When
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InceptionV3 was used with fine-tuning, results improved 4.42% by achieving 87.5% accuracy,
FNR of 12.5%. The training time decreased by 12.20% to 169.8 s and the average prediction
time decreased 11.70% to 0.83 s. In the third experiment, DenseNet201 without fine-tuning got
a classification accuracy of 74.3% with 25.7% FNR. The model was trained in 187.1 s and the
average prediction time remained at 1.23 s. When DenseNet201 was used with fine-tuning, results
improved 14% by achieving 84.7% accuracy, FNR of 15.3%. The training time decreased by
12.61% to 163.5 s and the average prediction time decreased 20.23% to 0.98 s. In the fourth
experiment, fused networks without fine-tuning got a classification accuracy of 89.4% with 10.6%
FNR. As the model contains all features from the previous three pre-trained networks, training
time increases to 497.2 s and the average prediction time remained at 0.78 s. When networks with
fine-tuning were fused, results improved by achieving 90.3% accuracy, FNR of 9.7%. The training
time decreased by 30.03% to 347.9 s and average prediction time decreased 19.23% to 0.63 s. In
the final experiment, optimized features of networks without fine-tuning got classification accuracy
of 92.4% with 7.6% FNR. The model was trained in 200.8 s and the average prediction time
remained at 0.42 s. When optimized features of networks with fine-tuning are utilized, results
improved 4.76% by achieving 96.8% accuracy, FNR of 3.2%. The training time decreased by
43.38% to 113.7 s and the average prediction time decreased 78.57% to 0.09 s. Fig. 6 shows the
impact of selected features during optimization.

Figure 5: Training accuracy and training loss for AlexNet, VGG19, and DenseNet201
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Table 1: Classification results on different experiments

Model Fine tuning Accuracy
(%)

FNR
(%)

Training
time (s)

Avg. prediction
time (s)

No Yes

AlexNet (A) � 78.3 21.7 214.3 1.63
� 86.4 13.6 178.9 1.19

InceptionV3 (I) � 83.8 16.2 193.4 0.94
� 87.5 12.5 169.8 0.83

Densenet201 (D) � 74.3 25.7 187.1 1.23
� 84.7 15.3 163.5 0.98

Fused [A+ I+D] � 89.4 10.6 497.2 0.78
� 90.3 9.7 347.9 0.63

Optimized CNN
(OCNN)
[A+ I +D]

� 92.4 7.6 200.8 0.42

� 96.8 3.2 113.7 0.09

95.5
96.8

94.9
94.1

92.5 93 93.5 94 94.5

Proposed Method

95 95.5 96 96.5 97 97.5

30%
40%
50%
60%

Figure 6: Impact of selected features during feature optimization

Several experiments were carried during the optimization procedure to check the impact of
the feature vector size. These experiments include selecting 30%, 40%, 50%, and 60% features of
the final feature vector. It can be seen that the highest classification accuracy of 96.8 is achieved
by selecting 40% of the features as compared to 95.5%, 94.9%, and 94.1% on 30%, 50%, and 60%,
respectively. The reduction of features also decreased training time and, eventually, prediction time
for any input image. Fig. 7 demonstrates the confusion matrices of experiments with the highest
accuracies with fine-tuning.

It can be seen from the confusion matrices that True Positive Rate (TPR) and False Negative
Rate (FNR) rates improved by performing fusion and optimization. The TPR remained on average
at 87% for InceptionV3, 90% for fused features, and 96% for optimized features. While the
Positive Predictive Values (PPV) and False Discovery Rate (FDR) also improved from 87% for
InceptionV3, 90% for fusion, and 95% for optimization. Correctly and incorrectly predicted images
are shown in Figs. 8 and 9 respectively. During the testing of the proposed method on selected
dataset, few images were incorrectly classified, which degraded the proposed model’s accuracy. All
these images have incorrectly predicted labels on the image with a yellow background and correct
labels under the image in black background.
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Figure 7: Confusion matrices of (a) InceptionV3; (b) Fusion of all networks; and
(c) Optimized features

Figure 8: Correctly labeled images using proposed model

Figure 9: Incorrect predictions using the proposed model
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Table 2: Impact of tempering attacks on models with and without blockchain

Attack type Blockchain inclusion Accuracy (%)

No Yes

Mild � 83.7
� 96.7

Average � 59.1
� 96.3

Severe � 35.8
� 96.0

Table 3: Comparison with existing techniques

Model Year Accuracy
(%)

Dataset size
(images)

Training
time (s)

Avg. prediction
time (s)

Liaqat [9] 2018 98.3 442 – –
Sharif [23] 2019 99.4 5,500 – –
Khan [42] 2020 98.4 6,000 – –
Proposed 2020 92.4 18,000 200.8 0.42

96.8 113.7 0.09

During the experiments, the trained classifiers were modified with different kinds of tempering
attacks. These attacks were carried out at different severity levels. The severity of attacks was
categorized as mild, average, and severe attacks. In the mild attack, only the output classes were
interchanged, while in the average attack, the output classes and weights of output layers were
tempered. In the severe attack, the weights of all layers, sizes of filters, strides, output size of
the output layer, and output classes are modified. The results of networks with and without
blockchain inclusion are illustrated in Tab. 2. A comparison with existing techniques, is presented
in Tab. 3. In this table, it is shown that the proposed approach works better as compared to
exiting techniques.

5 Conclusion

An existing blockchain approach is implementing in this work to secure the CNN model
for stomach infection classification. Three deep models are employing and secure through imple-
mented blockchain framework and extract the features. Features are fused using serially mode
value. Later on, we try to improve the GA using the proposed approach name GAEcNB. Through
this approach, selected optimal chromosomes known as features are obtained and passed in
Softmax Classifier for final classification. Based on results, it can be observed that even the mild
attack decreased the accuracy of the proposed model by 13.44%, and when the mild attack was
performed on a network with blockchain, the results remain almost the same.

Similarly, the average and severe attacks decreased classification accuracies by 38.88% and
62.98%, respectively. These findings prove the authenticity of proposed secure models and their
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robustness against the tempering attacks. In the future, SecureCNN can be made more secure by
employing multiple hashing algorithms and intricate integration of LLBs with CNN.
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