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Abstract:Precision Agriculture is a concept of farmmanagementwhichmakes
use of IoT and networking concepts to improve the crop. Plant diseases are one
of the underlying causes in the decrease in the number of quantity and quality
of the farming crops. Recognition of diseases from the plant images is an active
research topic whichmakes use of machine learning (ML) approaches. A novel
deep neural network (DNN) classification model is proposed for the identifi-
cation of paddy leaf disease using plant image data. Classification errors were
minimized by optimizing weights and biases in the DNN model using a crow
search algorithm (CSA) during both the standard pre-training and fine-tuning
processes. This DNN-CSA architecture enables the use of simplistic statistical
learning techniques with a decreased computational workload, ensuring high
classification accuracy. Paddy leaf images were first preprocessed, and the
areas indicative of disease were initially extracted using a k-means clustering
method. Thresholding was then applied to eliminate regions not indicative
of disease. Next, a set of features were extracted from the previously iso-
lated diseased regions. Finally, the classification accuracy and efficiency of
the proposed DNN-CSAmodel were verified experimentally and shown to be
superior to a support vector machine with multiple cross-fold validations.
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1 Introduction

The early identification of plant disease indicators is of significant agricultural benefit. How-
ever, this task remains challenging due to a lack of embedded computer vision techniques designed
for agricultural applications. Agricultural yields are also subject to multiple challenges, such as
insufficient water and plant disease [1]. The early detection, treatment, and prevention of plant
diseases, particularly in the early stages of onset, is thus an essential activity for increasing
production [2]. However, few studies have addressed the issues associated with the efficient early-
stage identification and classification of plant diseases, which are subject to strict limitations. For
example, the manual examination of plants for this purpose is infeasible, as it is considerably time
consuming and labor intensive. This has led to the application of image-processing methods for
disease identification and prediction, based on the physical appearance of plant leaves [3]. These
techniques have been applied to common rice plant diseases, including sheath rot, leaf blast, leaf
smut, brown spot, and bacterial blight [4]. Image processing relies on segmentation results for the
extraction of characteristic disease features, such as color, size, and shape [5]. However, efforts
to then classify these features as specific disease types are complicated by extensive variations in
plant symptoms. A single disease may manifest as yellow structures in some cases and brown in
others [6]. A disease may also produce identical shapes and colors in a specific plant type, while
others may produce similar colors but different shapes. While experts can readily classify plant
diseases based on images, manual identification is far too time consuming and cost prohibitive to
offer solutions for large-scale agriculture [7]. In addition, manual inspection is often inconsistent
as it depends heavily on personal bias and experience [8]. As such, existing disease examination
procedures often lead to inaccurate classification results, which have limited rice yields in the last
few decades [9].

These issues have been addressed in recent years through the application of accurate and
robust disease detection systems based on machine learning (ML). For example, Lu et al. [10]
applied a deep convolution neural network (DCNN) to predicting paddy leaf diseases using a
dataset comprised of 500 images of both normal and diseased stems and leaves. Ten common
rice diseases were included in the classification task. Experimental results from studies using deep
learning (DL) have exhibited increased disease classification accuracy, compared to the levels
achieved by conventional ML techniques. Image classification often utilizes region of interest
(ROI) estimation, a segmentation approach that relies on neutrosophic logic, preferably expanded
from a fuzzy set, as described by Dhingra et al. [11]. This approach has been applied to
three-membership functions in various segmentation tasks. Feature subsets are typically used for
detecting affected plant leaves with reference to segmented sites. The random forest algorithm has
also been shown to be effective in distinguishing diseased and healthy leaves.

Nidhis et al. [12] introduced a framework for predicting paddy leaf diseases based on the
application of image-processing models, in which the severity of the disease was determined
by calculating the spatial range of affected regions. This enabled the application of appropriate
insect repellents in suitable quantities, to reduce bacterial blights, brown spots, and rice blast
effects in paddy crops. Islam et al. [13] developed a novel image processing model that used red-
green-blue (RGB) images of rice leaves to detect and classify rice plant diseases. Classification
was then performed using a simple and effective naive Bayes (NB) classifier. Similarly, Devi
et al. [14] applied image processing to diseased regions of rice leaves using a hybridized graylevel
co-occurrence matrix (GLCM), a discrete wavelet transform (DWT), and the scan investigate filter
target (SIFT) model. Diverse classifiers, such as multiclass support vector machines (SVMs), NBs,
backpropagation neural networks, and the k-nearest neighbor algorithm have also been applied
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to classifying image regions as normal or diseased, based on extracted features. Santos et al. [15]
developed a DCNN to identify and categorize weeds present in soybean images, based on a
database composed of soil, soybean, broadleaf, and grass weed images. Kaya et al. [16] examined
simulation outcomes from four diverse transfer learning techniques, used for plant classification,
with a deep neural network (DNN) trained by four common datasets. The results demonstrated
that transfer learning improved the accuracy of conventional ML models.

This study proposes a novel DNNfor paddy leaf disease classification. The error was min-
imized by optimizing weights and biases using a crow search algorithm (CSA), a metaheuristic
search technique that mimics the behavior of crows. Optimization was conducted during both the
standard pre-training and fine-tuning steps, to establish a DNN-CSA architecture that enables the
use of simplistic statistical learning, thereby decreasing computational workload and ensuring high
classification accuracy. Paddy leaf images were first preprocessed and areas indicative of disease
were extracted using a k-means clustering model. Thresholding was then applied to eliminate
healthy regions. Next, a set of features, including color, texture, and shape were extracted from
previously isolated diseased regions. Finally, the proposed model was used to classify paddy
leaf diseases. Results showed the DNN-CSA was superior to an SVM algorithm under multiple
cross-fold validation.

2 Proposed Method

The workflow for the proposed rice plant disease identification and classification technique is
illustrated in Fig. 1. The individual steps are discussed in detail below.

Figure 1: System design process of the proposed DNN-CS model
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2.1 Image Acquisition
In real-time applications, photographs of rice plant leaves are collected using a high-resolution

digital camera. A dataset containing images of both normal and diseased leaves was used in the
analysis process [17]. These data were further divided into training (including ds1 and ds2) and
testing sets.

2.2 Preprocessing
Images in the dataset were scaled to a uniform size of 300 × 450 pixels to limit demands

for storage and processing power. The primary objective was to avoid complications arising from
image backgrounds by employing a fusion operation in conjunction with components from hue-
saturation-value (HSV) images, which lack details regarding brightness and darkness and thus
represent only pure colors. Accordingly, the RGB images were first converted into HSV images.
Next, the S value(saturation) was used to account for the presence of excess exposure. HSV images
were then transformed into binary images using the im2bw function in MATLAB, prior to being
combined with corresponding RGB images for mask development using an established threshold
value of 0.28. These binary images were further processed with the bwarea function in MATLAB.
A fusion operation was then applied to remove background values.

2.3 K-Means Clustering-Based Segmentation
Diseased regions in the background-eliminated HSV images were detected as clusters using a

k-means clustering algorithm based solely on hue. The centroid value was used to make accurate
segments for resolving randomness issues by constructing a histogram of hue components. Next,
a specific threshold was identified from bin values in the hue histogram and used to distinguish
between diseased clusters and normal regions in the image. Maximum hue values in each region
were acquired from an appropriately selected cluster centroid. The rates of black colors and
chosen centroid values were provided in the clustering step. Diseased regions produced in this
process often included irregular regions of green pixels, which affected classification accuracy.
Therefore, these irregular regions needed to be removed from the clustered sections. In the hue
technique, green colors were mapped to a parameter with both lower and higher values.

2.4 Feature Extraction
Colors were also used to define shape and texture. The mean values of color, shape, and

texture features were determined from the non-zero pixels in the RGB images, which represented
the non-background regions of an image.

2.4.1 Extraction of Color Features
Diseased regions were defined using 14 colors. Initially, the color extraction process filtered

regions of the RGB images that included diseased areas. The mean2 function in MATLAB
was then applied after completion of the feature extraction process. The mean values of HSV
components in the images were then identified. Finally, the std2 function in MATLAB was applied
to the RGB color components.

2.4.2 Extraction of Shape Features
Shape features extracted from binary images acquired during preprocessing were based on

irregularly shaped diseased regions (blobs) in the images. These blobs were generally used to detect
image areas that represented different objects. Determining the number of diseased sections is
therefore a critical component of the blob prediction approach.
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2.4.3 Extraction of Texture Features
A GLCM was used to extract texture features from images. The GLCM records the number

of times a pixel with a given gray level i is found to be horizontally adjacent to a pixel with a
different gray level j, determined using the graycomatrix function in MATLAB. The GLCM used
in this study was an 8×8 array. The statistical properties of the GLCM were calculated using the
graycoprops function in MATLAB. In addition to texture, this approach can also extract attributes
such as contrast, association, power, and identity. Extracted texture features were further used to
compute the cluster shade and cluster prominence.

2.5 Deep Learning-Based Classification
The DNN architecture is composed of an input layer consisting of N input neurons (units),

three layers of hidden units, and an output layer that provides classification results [18]. The
DNN was trained using a DL technique composed of two stages: a pre-training step and a fine-
tuning step. In the pre-training process, network weights were randomly initialized, and the model
was trained using the training set. A fine-tuning model was then used to determine how well
the model could be generalized to different plant species datasets. For this purpose, the training
images were divided into two sets denoted as ds1 and ds2. This process is described in detail in
the following sections.

2.5.1 Pre-Training
In the pre-training step, the deep belief network (DBN) is applied to the input layer of the

DNN, which is subsequently forwarded through hidden layers to the output layer, thereby assign-
ing parameters for the activation functions employed in the individual nodes of the network. The
assignment of activation function parameters was further performed by a restricted Boltzmann
machine (RBM) using the following procedure. The elements of V (visible unit) are uploaded and
used for training the RBM vector. A mutual configuration of (v,h) then produces the energy F(v,h)
as follows:

F (v,h)=−
P∑
p=1

Q∑
q=1

Wpqvphq−
P∑
p=1

αpvp−
Q∑
q=1

βqhq. (1)

Here, v is a visible unit, h is a hidden unit, Wpq represents the weights between a visible
unit vp and a hidden unit hq (in the network), α and β are biasing terms, and P and Q respectively
represent the total quantities of visible and hidden units. The conditional probability of an input
layer, once the output layers are determined, is defined by:

ρ
(
hq= 1|v)= δ

⎡
⎣ P∑
p=1

Wpqvp+α1

⎤
⎦ . (2)

Here, vp and hq denote unbiased instances and δ (x) represents the logistic sigmoid function

given by 1
(1+exp(x)) . Visible units are considered synchronized when the hidden unit has been

extended. This produces the following relationship:

ΔWpq = θ(vphq)data− (vphq)reconstruction, (3)

where θ(vp, hq)data is the learning rate for (vp, hq)reconstruction.
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2.5.2 Fine-Tuning
The fine-tuning of network weights was conducted using back propagation (BP), which was

applied using the network weights acquired from the pre-training phase. The improved network
weights were obtained in the training phase using the training data once a minimum error rate
was achieved.

2.6 Crow Search Algorithm
Crows often monitor locations where neighboring birds hide food and will often steal food

when competitors leave the immediate area. In addition, crows make use of this information to
identify pilfering behavior in other birds and devise safeguarding measures to conceal food by
varying hiding locations [19]. The CSA invokes these same strategies as follows:

• Crows move in a flock comprised of N crows;
• Crows remember their food concealment locations;
• Crows follow each other in the execution of a theft.

The CSA involves a metaheuristic search conducted in a d-dimensional space, where d denotes
the number of decision variables. The location of crow u (u = 1, 2, . . . ,N) in the search space
at a particular iteration itr (itr = 1, 2, . . . , itrmx) is defined by the vector xu,itr, where xu,itr =
[xu,itruxu.itr2 . . .xu,itrd ]T . In addition, the hiding place of crow u is given by mu,itr at iteration itr.
Crows also explore the search space to locate food and find better places for hiding food.

Suppose crow v moves to hiding place mvitr at iteration itr and crow u follows crow v to
locate mvitr. In this case, the following two states must be considered.

State 1: Crow v is unaware of the pursuit activities of crow u. Consequently, crow u freely
visits mvitr. The new position of crow u at iteration itr+1 is therefore determined by the following
relationship:

xu,itr+1 = xu,itr+ ru× flu,itr× [
mv,itr−xu,itr

]T
, (4)

where ru denotes an arbitrary value evenly distributed in the range [0, 1] and flu,itr represents the
flight length of crow u along the vector [mv,itr−xu,itr]T at iteration itr. Here, small values of flu,itr

correspond to local searches in the vicinity of xu,itr and large values correspond to global searches,
typically far from xu,itr. As such, a value of flu,itr less than 1 represents a final destination between
positions xu,itr and mv,itr, while a value of flu,itr greater than 1 represents a final destination on
the side of mv,itropposite from xu,itr.

State 2: Crow v is aware of being followed by crow u and crow v misdirects crow u by
travelling randomly to an alternate location in the search space.

States 1 and 2 are determined by the level of awareness rv of crow v at iteration itr, which
is defined as an arbitrary value evenly distributed in the range [0, 1]. Therefore, xu,itr+1 is defined
for both states by the following relationship:

xu,itr+1 =
{
xu,itr+ ru× flu,itr× (

mv,itr−xu,itr
)

if xu,itr ≥ rv

a random position otherwise

}
(5)

Here, APv,itr is the awareness probability of crow v at iteration itr. The primary objective of
the CSA is to determine optimal values of all d decision variables. A step-by-step procedure for
CSA execution is provided below.
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Step 1: Define parameters for the search process, including d, N, itrmx, and AP values.

Step 2: Initializethe positions of hidden food caches (in memory) for individual crows.

Step 3: Define the objective function min(f)=min(d)+min(iter).

Step 4: Evaluate the relative fitness of a hidden food cache location for every crow in the flock.

Decision variables are evaluated by introducing the locations stored in memory into the
objective function. These locations are defined for each of the N crows and each of the d decision
variables as follows:

Memory=

⎡
⎢⎢⎢⎣
m1

1 m1
2 · · · m1

d
m2

1 m2
2 · · · m2

d
...
mN

1

...
mN

2

...
· · ·

...
mN
d

⎤
⎥⎥⎥⎦ . (6)

Step 5: Generatenovel hidden food cache locations (in the search space) for all crows in the
flock, using the process outlined in Eq. (5).

Step 6: The fitness function is used to measure the quality of solutions provided by a search
agent. Determine the fitness functionf (xt+1

i ) for these novel locations.

Step 7: Upgrade the elements of Memory at iteration itr+ 1 as follows:

mu,itr+1 =
{
xu,itr+1 if f

(
xu,itr+1) is better than f (mu,itr)

mu,itr otherwise
. (7)

Step 8: Repeat Steps 5–7 until itr = itrmax and store the optimal decision variable values in
Memory, as the optimal solution to the crow search process.

2.7 DNN-CSA Module
Individual steps in the proposed DNN-CSA module are provided in Algorithm 1. This

approach was developed to maximize classification accuracy by reducing the error rate.

Algorithm 1

Output: An optimal network model (Nm) that minimizes classification error.
Input: The weight (w), bias (β), flock population (N), maximum number of iterations itrmax, and
awareness probability (AP).
Step 1: Pre-train Nm with the image dataset ds1.
Step 2: Segment the images in ds1 using a k-means clustering algorithm.
Step 3: Perform feature extraction.
Step 4: Initialize the N individual crow positions in the d-dimensional search space using:
xu,itr(u= 1, 2, . . . ,N; itr= 1, 2, . . . , itrmx).
Step 5: Evaluate the fitness function f (·) for the positions.
Step 6: Set the memory values M.
Step 7: Select the random positions using the following steps:
For i= 1 to N do:

Select the random solution and the AP,
Generate the random number rv,

If (rv >AP) then:
xu,itr+ ru× flu,itr× (

mv,itr−xu,itr
)
,
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else
choose a random position.
end if
end for

Step 8: Test the likelihood of the new solution and evaluate f (·) for all positions.
Step 9: If f (xu,itr)≤Mi or itr= itrmax, then proceed to Step 10:
else
update M and go to Step 7.
Step 10: Fine-tune all parameters in Nm using values acquired after pre-training and the features
extracted from the image dataset ds2.

3 Experimental Validation

3.1 Dataset Description
An open-source database of rice plant leaves is not presently available. As such, we collected

a total of 120 photographs of normal and diseased rice plant leaves using a NIKON D90 digital
SLR camera with image dimensions of 2848× 4288 pixels in a JPEG format. All images were
acquired in an active agricultural environment during the rainy season from July to December in
India, when rice is typically cultivated. These photographs were generally captured with a white
backdrop in direct sunlight. The dataset included a total of 120 images, including 80 photos of
healthy leaves and 40 photos of diseased leaves. A dividing ratio of 80:20 was used, producing a
total of 96 images for training and 24 images for testing. The 80:40 ratio of healthy and diseased
leaves was maintained in all datasets. Finally, we divided the 96 training samples into the datasets
ds1 and ds2. Some sample images of diseased plants are shown in Fig. 2.

3.2 Analysis of Results
Examples of initial RGB images and segmented diseased regions are provided in Figs. 3a

and 3b, respectively.

Rice disease classification results produced by the proposed DNN-CSA module were com-
pared with those of an SVM algorithm during the training and testing phases. Two different
multiple cross-fold validations (accuracy and precision) were used as recall metrics. Accuracy is
defined as the number of correctly classified samples divided by the total number of samples:

Accuracy= TN+TP
TN+FP+TP+TN

Precision is defined as the ratio of correctly identified positive cases to all predicted posi-
tive cases:

Precision= TP
TP+FP

Recall compares correctly identified positive cases to the actual number of positive cases:

Recall= TP
TP+FN

In these expressions, TP denotes true positives, TN is true negatives, FP is false positives, and
FN is false negatives.
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Figure 2: Sample images (a) bacterial leaf blight (b) brown spot (c) leaf smut

Figure 3: (a) Input image (b) disease segmented image

Table 1: Performance analysis of proposed method DNN-CS with state of art methods

Methods Accuracy Precision Recall

DNN-CS 96.96 95.92 96.41
Training Phase-SVM 93.33 92.46 91.74
Testing Phase-SVM 73.33 73.10 72.40
5-Fold-SVM 83.80 82.50 81.20
10-Fold-SVM 88.57 87.46 88.27
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The results shown in Tab. 1 and Figs. 4–6 demonstrate that the proposed DNN-CSA model
offers superior classification performance, compared to an SVM algorithm, for the considered
conditions. While the SVM performed well during the training phase, its classification accuracy
was quite poor in the testing phase.

Figure 4: Accuracy analysis of proposed DNN-CS model

Figure 5: Precision analysis of proposed DNN-CS model

In fact, SVM accuracy remained inferior to that of the proposed model, even after apply-
ing cross-fold validation. The accuracy, precision, and recall values produced by the proposed
algorithm were respectively 9.5%, 9.7%, and 9.2% higher than those of the 10-fold SVM.
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Figure 6: Recall analysis of proposed DNN-CS model

4 Conclusion

This study addressed a lack of embedded computer vision techniques suitable for agricultural
applications by proposing a novelDNN classification model for the identification of paddy leaf
diseases in image data. Classification errors were minimized by optimizing weights and biases in
the DNN model using the CSA, which was performed during both the standard pre-training and
fine-tuning processes to establish a novel DNN-CSA architecture. This approach facilitates the
use of simplistic statistical learning techniques together with a decreased computational workload
to ensure both high efficiency and high classification accuracy. The performance of the proposed
DNN-CSA for the identification of paddy leaf diseases was compared experimentally with that
of an SVM algorithm under multiple cross-fold validation. In the experiments, the DNN-CSA
achieved an accuracy of 96.96%, a precision of 95.92%, and a recall of 96.41%, each of which
were more than 9% higher than that of a 10-fold validated SVM classifier. These results suggest
the DNN-CSA could be applied in the future to assisting farmers in the detection and diagnosis
of plant diseases in real time, using images collected in the field and loaded onto a remote device.
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