
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.015318

Article

An Optimized Deep Residual Network with a Depth
Concatenated Block for Handwritten Characters Classification

Gibrael Abosamra* and Hadi Oqaibi

Department of Information Systems, King Abdulaziz University, Jeddah, 21589, SA
*Corresponding Author: Gibrael Abosamra. Email: gabosamra@kau.edu.sa

Received: 15 November 2020; Accepted: 24 December 2020

Abstract:Even thoughmuch advancements have been achievedwith regards to
the recognition of handwritten characters, researchers still face difficulties with
the handwritten character recognition problem, especially with the advent of
new datasets like the Extended Modified National Institute of Standards and
Technology dataset (EMNIST). The EMNIST dataset represents a challenge
for both machine-learning and deep-learning techniques due to inter-class
similarity and intra-class variability. Inter-class similarity exists because of the
similarity between the shapes of certain characters in the dataset. The presence
of intra-class variability is mainly due to different shapes written by different
writers for the same character. In this research, we have optimized a deep
residual network to achieve higher accuracy vs. the published state-of-the-art
results. This approach is mainly based on the prebuilt deep residual network
model ResNet18, whose architecture has been enhanced by using the optimal
number of residual blocks and the optimal size of the receptive field of the
first convolutional filter, the replacement of the first max-pooling filter by an
average pooling filter, and the addition of a drop-out layer before the fully
connected layer. A distinctive modification has been introduced by replacing
the final addition layer with a depth concatenation layer, which resulted in a
novel deep architecture having higher accuracy vs. the pure residual architec-
ture. Moreover, the dataset images’ sizes have been adjusted to optimize their
visibility in the network. Finally, by tuning the training hyperparameters and
using rotation and shear augmentations, the proposed model outperformed
the state-of-the-art models by achieving average accuracies of 95.91% and
90.90% for the Letters and Balanced dataset sections, respectively. Further-
more, the average accuracies were improved to 95.98% and 91.06% for the
Letters and Balanced sections, respectively, by using a group of 5 instances of
the trained models and averaging the output class probabilities.

Keywords: Handwritten character classification; deep convolutional neural
networks; residual networks; GoogLeNet; ResNet18; DenseNet; drop-out;
L2 regularization factor; learning rate

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.015318

2 CMC, 2021, vol.68, no.1

1 Introduction

Handwritten character recognition has a wide spectrum of applications in all software systems
that allow handwritten input through an electronic stylus or digital tablet or through an offline
scan of documents such as postal envelopes, bank cheques, medical reports, or industrial labor
reports. The handwritten alphanumeric character recognition problem is still a challenge in the
field of pattern recognition due to the high variability within each handwritten class and the high
similarity among certain classes in the alphabet itself. The EMNIST dataset [1] is considered one
of the recent datasets that possess such difficulties where there is variability within each class
due to the variability of the patterns produced by different writers and variability for the same
writer who produces different patterns for the same character due to the nature of the handwriting
process itself. Traditional machine-learning techniques have been developed to tackle this chal-
lenge, leading to accuracies that may be accepted for old datasets such as the Modified National
Institute of Standards and Technology dataset (MNIST). Recently deep-learning techniques, espe-
cially Deep Convolutional Neural Networks (DCNN), made a breakthrough that upgrades the
recognition accuracy of machines to an accuracy level comparable to a human being’s recognition
accuracy. The MNIST dataset is now considered an already solved problem where the percentage
error of many works approaches 0.2% that is considered to be irreducible. The EMNIST dataset
is built to represent the new challenging handwriting alphanumeric dataset instead of the old
MNIST dataset. The EMNIST is an extended version of the MNIST dataset [2], which consists of
52 characters (both upper and lowercase) and 10 digits. It includes a total of 814255 samples from
almost 3700 writers [1]. The dataset has different labeling schemas: (1) By_class (62 alphanumeric
characters: digits: 0–9, upper case: A–Z, and lower case: a–z), (2) By_merge (47 classes: digits 0–9,
37 fused upper and lower case letters where similar upper and lower letters are unified), (3) Letters
(26 classes having one class for each letter, either upper or lower), and (4) Digits (10 classes: 0–9
with more and different samples than MNIST digits). A Balanced dataset section is introduced
that represents a reduced version of the By_merge section but has an equal number of samples
for each label. A limited number of systems have been built to reach significant classification
accuracies of the different sections of the EMNIST dataset, as will be shown in Section 2.

Our approach is mainly based on starting with the architectures of two main ready-made
image classification DCNN models and modify them by exploring the possible dimensions of
variations such as increasing or decreasing the number of building blocks (or layers) to select
the faster and more accurate one, and then enhance the selected architecture. Also, the suitable
pre-processing and augmentation of the image data is accompanied to get the highest possible
accuracy to compete with state-of-the-art results.

In Section 2, we summarize and record the state-of-the-art results of the most important
researches done on the Letters and Balanced sections of the EMNIST dataset. In Section 3,
a brief background of DCNN and the smallest DCNN models that we think have significant
achievement in the image classification problem is presented. In Section 4, our work is elaborated
with detailed experiments, in addition to the presentation of the different types of image pre-
processing and data augmentation that are considered, until reaching a final configuration of a
DCNN that gives competing accuracy with state-of-the-art systems. In Section 5, final experiments
are performed on the Letters and Balanced sections of the dataset, and two extra experiments are
performed on each section using a reduced training set for each dataset section. In Section 6, our
work is compared with state-of-the-art works. Finally, important contributions are summarized in
the conclusions and future work section.

CMC, 2021, vol.68, no.1 3

2 Literature Review

In this section, we concentrate on CNN, Capsule network (CapsNet), and machine-learning
based efforts done after the creation of the EMNIST dataset [1]. Works done on the National
Institute of Standards and Technology dataset (NIST) Special Database 19 (from which EMNIST
was obtained) can be found in [3]. Also, we mainly refer to works done on the Letters and
Balanced sections only.

The authors of the original EMNIST paper [1] included a baseline using a linear classifier
and the Online Pseudo-Inverse Update Method (OPIUM) [4]. Using OPIUM, the highest baseline
reported accuracies were 85.15% for the Letters dataset and 78.02% for the Balanced dataset.

The authors of [5] combined Markov random field-models with CNN (MRF-CNN) for image
classification. They reported accuracies of 95.44% and 90.29% when applying their technique to
the Letters and Balanced datasets, respectively.

The authors of [6] used K-Nearest Neighbor (KNN) and Support Vector Machine (SVM)
classifiers to classify handwritten characters based on features extracted by a hybrid of Discrete
Wavelet Transform (DWT) and Discrete Cosine Transform (DCT). They reported accuracy of
89.51% when their model was applied to the Letters data set (using SVM based on DWT’s and
DCT’s combined features).

In [7], a bidirectional neural network (BDNN) was designed to perform both image recogni-
tion and reconstruction using an added style memory to the output layer of the network. When
their model was tested on the EMNIST Letters dataset, it achieved an accuracy of 91.27%.

Some authors have made use of neural architecture searches to automatically optimize the
hyper parameters of CNN classifiers. For example, Dufourq et al. [8] introduced a technique
called Evolutionary Deep Networks for Efficient Machine Learning (EDEN). They applied neuro
evolution to develop CNN networks for different classification tasks achieving an accuracy of
88.3% with the EMNIST Balanced dataset. Researchers in [9] used genetic algorithms in the
automatic design of DCNN architectures (Genetic DCNN) for new image classification problems.
When their generated architecture was applied to the Letters dataset, it achieved an accuracy of
95.58%, which is the highest published accuracy to date.

Committees of neuro evolved CNNs using topology transfer learning have been introduced
by the authors [10], who obtained an accuracy of 95.35% with the EMNIST Letters dataset. Due
to the highly challenging level of this classification task, they resorted to the use of 20 models to
enhance accuracy from 95.19% to 95.35% which was still less than the highest previously recorded
accuracy (95.44%).

Researchers [11] introduced a hierarchical classifier that uses automatic verification based on
a confusion matrix extracted by a regular (flat) classifier to enhance the accuracy of a specific
classifier type. It relatively succeeded in enhancing the accuracy of some machine-learning based
techniques such as the linear regression classifier but not in enhancing the accuracy of the CNN
classifier. Its flat CNN classifier resulted in an accuracy of 93.63% and 90.18% when applied to
the Letters and Balanced datasets, respectively.

The researchers [12] proposed TextCaps, which used two capsule layers (a highly advanced
concept introduced by Sabour et al. [13]) preceded by 3 CNN layers. They reported accuracies of
95.36% and 90.46% for EMNIST Letters and EMNIST Balanced datasets, respectively.

Some researchers designed DCNN architectures to classify letter sets other than the English
alphanumeric handwritten characters and then tested their models in the EMNIST database.

4 CMC, 2021, vol.68, no.1

For example, the researchers [14] built a DCNN for the classification of Arabic letters, and when
they tested their architecture on the EMNIST Letters dataset, they reported accuracy of 95%.
Similarly, the authors of [15] designed a system using a DCNN with six CNN layers and two
fully connected layers for Bangla handwritten digit recognition. They reported an accuracy of
90.59% when their DCNN model was tested on the EMNIST Balanced dataset. Fig. 1 displays
a timeline of the accuracy recorded for the Letters dataset in the mentioned references based on
their published dates.

85.15%

95.44%

88.30% 95.00%

91.27%
89.51%

93.63% 95.35%

95.36%

95.58%

O
P

IU
M

 (
B

as
e)

[1
]

M
R

F
- C

N
N

[5
]

E
D

E
N

[8
]

D
C

N
N

[1
4]

B
D

N
N

 +
 S

ty
le

 M
em

[7
]

D
W

T
+

D
C

T
+

S
V

M
[6

]

F
la

t(
2C

on
v+

1D
en

s)
[1

1]

N
eo

ro
E

ve
ol

ve
d

C
N

N
s[

10
]

T
ex

tC
ap

s[
12

]

G
en

et
ic

 D
C

N
N

[9
]

M
ay

-1
7

O
ct

-1
7

D
ec

- 1
7

D
ec

-1
7

Ju
l-1

8

A
ug

- 1
8

N
ov

-1
8

Ja
n -

19
Ja

n -
19

F
eb

-2
0

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Publishing Date

Timeline of the Classification Accuracy of the EMNIST Letters Researches versus the Publishing
Date

Figure 1: A timeline graph of the accuracies achieved by different researches on the Letters dataset

From Fig. 1, it is clear that DCNN-based techniques resulted in higher accuracies compared
with machine-learning techniques or non-deep learning techniques when applied to the EMNIST
Letters dataset. Also, some techniques more advanced than DCNN did not achieve remarkable
accuracies such as the CapsNet (TextCaps [12]) although characterized by orientation-invariability
and requires less number of training samples.

From the timeline curve, we also observe two global peaks. The first significant peak was
achieved in October 2017 by the MRF-CNN technique [5] with a 10.29% increase from the base
classifier [1]. All subsequent works from October 2017 until February 2020 didn’t even reach the
achieved accuracy of 95.44% (in October 2017). The second peak (95.58%) was achieved after
approximately two-and-a-half years by the Genetic DCNN technique [9], which raised accuracy
by 0.14%.

The timeline includes two very close local peaks (there is mathematically one peak, but
because their accuracies are very close we can consider them two in one) representing two highly
advanced techniques ([10,12] published on 1 January 2019 and 9 January 2019, respectively), which
have a 0.01% difference in accuracy.

The same conclusions are drawn when investigating the achievements in the case of the
Balanced dataset, but with lower accuracy due to the inclusion of more classes (47) than the
Letters dataset (26 classes), which resulted in more confusing letter shapes.

CMC, 2021, vol.68, no.1 5

An important conclusion to be drawn from this review is that no advanced architecture
of the DCNN [16] (such as ResNet, Inception, DenseNet) has been applied to the EMNIST
Letters or Balanced datasets in standalone research. The researchers [9] tested some ready-made
architectures without modifications on the EMNIST letters yielding accuracies of 89.36%, 94.62%,
and 94.44% using AlexNet, VGGNet, and ResNet, respectively. Hence, in this paper, we will
introduce standalone research to optimize one of these advanced architectures, specifically the
ResNet architecture, to achieve higher classification scores on the Letters and Balanced datasets.

3 Review of the Concerned Convolutional Networks

In this section, we summarize the basic building blocks of DCNN and the two most famous
DCNN networks, mainly GoogLeNet and ResNet18 and the main concepts on which these
networks are based, in addition to a brief definition of the drop-out technique.

3.1 Deep Convolutional Neural Networks (DCNNs)
A typical DCNN is composed of many convolutional layers, max-pooling layer and/or

average-pooling layers, one or two fully connected layers and finally a softmax layer in the case
of classification tasks. The purpose of a convolutional layer is to map an M-channel Input
(image) of size Iw × Ih into N-channel output (Feature Maps (FMs)) with size Ow × Oh by
using N Convolutional Filters (CFs) of size Fw × Fh. Each of the N CFs is applied to each of
the overlapping windows (having size Fw × Fh) in the M-channel input layer using dot product
operations to generate one of the N-channel outputs. The overlapping between the windows is
controlled by the step length (stride) in the horizontal and the vertical directions when the filter
is iterated across the windows of the input channels that affects the size of the output FMs
(Ow×Oh). The max-pooling layer (or average-pooling layer) is a special filter with size (Pw×Ph)
that is applied to each of the overlapping windows (of size Pw × Ph) in every individual input
channel to map it into its corresponding output channel using max (or average) operation with a
stride length of 2 or more to perform a type of down-sampling to reduce the size of the output
channels (FMs). Down-sampling can also be achieved by the CFs when using a stride of 2 or
more. The convolutional layers are always followed by activation layers that map each output
value (v) to values that fall within the ranges of (−1 to +1), (0 to 1), or (0 to v when v > 0
and 0 otherwise). The fully connected layer maps the last KFMs into C outputs in case of C
classes or C regression outputs. The softmax layer is used for classification purposes to determine
the output classes’ relative probabilities based on the input real values such that all the output
probabilities sum to 1. All the learnable weights of the DCNN are initialized randomly using a
variety of techniques. By training a DCNN network using the proper backpropagation algorithm,
the weights of the CFs and the fully connected layers are optimized for a specific classification or
regression task. When many convolutional layers are cascaded, the first CFs do a role similar to
image processing filters such as smoothing and edge detection; however, in deeper levels, the CFs
perform different types of abstractions until the required output representation is reached. Fig. 2
depicts a simple DCNN.

3.2 GoogLeNet
As described in the previous subsection, in a convolutional operation at one location, every

output channel (N) is connected to every input channel (M), so it is called a dense connection
architecture. The GoogLeNet [17] builds on the idea that most of the activations in a deep
network are either unnecessary (value of zero) or redundant because of correlations between
them. Therefore, the most efficient architecture of a deep network will have a sparse connection

6 CMC, 2021, vol.68, no.1

between the input and output activations, which implies that all N output channels (FMs) will
not have a connection with all the M input channels (FMs). There are techniques to prune out
such connections which would result in a sparse weight/connection. However, kernels for sparse
matrix multiplication are not optimized in libraries such as BLAS or CuBlas (CUDA for GPU)
packages, which render them even slower than their dense counterparts. So, GoogLeNet devised
an inception module that approximates a sparse CNN with a normal dense construction (as shown
in Fig. 3).

N-channel Output
(N FMs)

Cl2

Convolutional
Layer

M-channel
Input Layer

Fh

Oh

Cl1

Clc

CF1

Ih

Fw
M

K FMs
(K=N)

CH 1

CH i

CH M

FM11

FM12

FM1i

FM1N

CF2

CFi

CFN

FM21

FM22

FM2i

FM2K

K=N

F
u

lly

C
o

n
n

ec
te

d
L

ay
er

S
o

ft
m

ax
 L

ay
er

Iw

hannel Ou
Ow

Max-Pooling
Layer

(Pw×Ph)F

FFFFF

FFF

F

Figure 2: A simple DCNN composed of an input layer, a convolutional layer, a max-pooling layer,
a fully connected layer, and a softmax layer

1×1

Previous Layer

1×1
3×3 5×5

1×1 1×1 3×3

Depth Concatenation
Filter

Figure 3: Inception module with dimension reduction using 1× 1 convolutions [17]

Since only a small number of neurons are effective as mentioned earlier, the width/number of
the CFs of a particular kernel size is kept small. Also, it uses convolutions of different sizes to
capture details at different scales (5× 5, 3× 3, 1× 1).

Another salient point about the inception module is that it has a so-called bottleneck layer
(1 × 1 convolutions as shown in Fig. 3). It helps in the massive reduction of the computa-
tion requirements.

The GoogLeNet model is built of 9 inception modules in addition to the lower layers of
traditional convolution and max pooling and the final layers for average pooling, drop-out, linear
mapping (fully connected), and soft-max layer for classification. All the convolutions, including
those inside the inception modules, use rectified linear activation. By running multiple instances
of the GoogleNet in conjunction with several types of data augmentation and by aggregation

CMC, 2021, vol.68, no.1 7

of their class probability outputs, the GoogleNet team achieved a top-5 error of 6.67% in the
ILSVRC 2014 competition.

3.3 ResNet18
Residual networks are deep networks that solve the degradation problem by letting a layer

or group of layers learn the residual of a mapping function instead of learning the complete
mapping function by making the output mapping equal to the summation of the input plus the
learned function [18]. In other words, if we assume that the input is a simple variable X and the
output is the required mapping MP(X), the learned function F(X) will be

F(X)=MP(X)−X (1)

This is accomplished simply by using a direct shortcut connection from the input and adding
it to the output as shown in Fig. 4, which includes two mapping layers, each followed by a
Rectified Linear Unit (ReLU).

X

F(X) X

Identity

ReLU

Mapping layer 1

Mapping layer 2

ReLU

F(X)+X

Figure 4: A basic residual learning building module (or block) [18]

When N residual modules are cascaded, the final residual output ResOut(N) without regard-
ing the intermediate non-linear effects can be defined iteratively by the following formula:

ResOut(N)= Input0+
N∑
i=1

ResOut(i) (2)

where Input0 is the input to the first residual module.

Which can be represented by the following recursive formula:

ResOut(N)=
{
FN(ResOut(N− 1))+ResOut(N− 1) N> 0

Input0 N= 0
(3)

where FN is the learned function at block N.

A very important characteristic of residual networks that makes them compete with inception
networks is that a residual network that includes many residual modules with intermediate down
sampling between every two modules has the advantage of combining different scales of the input
image using addition in an iterative manner rather than combining them using concatenation
in a parallel manner in the inception networks. Thus, the residual architecture allowed deeper
networks (such as ResNet18) to learn better than plain networks and hence achieved higher

8 CMC, 2021, vol.68, no.1

accuracies on many well-known datasets such as ImageNet and CIFAR-10 than previous plain
networks [18]. The ResNet18 model is built of 8 residual modules preceded by lower layers of
traditional convolution and max-pooling and followed with final layers for average pooling, linear
mapping (fully connected), and a soft-max layer for classification. Batch normalization [19] is
adapted right after each convolution and before rectified linear activation.

3.4 The Drop-Out Technique
Overfitting is a serious problem in a deep neural network, especially when a large set of

parameters is used to fit a small set of training data. Drop-out is a powerful technique to
address this issue [20]. This works by randomly removing neurons at a fixed probability during
training, and then using a whole architecture at test time. This counts as combining different
“thinned” subnets for improving the performance of the overall architecture. Drop-out is used in
GoogLeNet, while it is not used in ResNet18. We will add a drop-out layer in the residual DCNN
solution to test its effect on classification accuracy.

4 Development of the Proposed Solution Through Experimentation

In this section, we start implementing our methodology by experimenting and compar-
ing the two lightweight prebuilt models GoogLeNet and ResNet18 in the classification of the
EMNIST Letters dataset with demonstration of important types of image preprocessing and data
augmentation methods that can help in increasing classification accuracy.

Then, the architectures of both models (ResNet18 and GoogLeNet) are modified by the
removal or the addition of a limited number of their basic building blocks, and the effects of the
modifications are tested based on the resultant accuracy.

Finally, fine-tuning of the selected architecture from the previous step is achieved through
some architecture modifications such as the insertion of a drop-out layer (with proper drop-
out probability) and the replacement of one or more addition layers with depth concatenation
layer(s), in addition to the selection of the best augmentation methods and the optimum values
for the training hyper parameters such as learning rate and regularization factor. It is important
to note that due to the stochasticity involved in the training process, every experiment is repeated
three times, and the mean accuracy of the three generated models is used to identify the best
architecture modification or parameter value that will be implemented in the final solution(s).
Only the final solutions are repeated fifteen times, and their mean accuracies are calculated and
recorded for comparison with state-of-the-art results. Since we have based our methodology on
using a pre-built DCNN that has already been optimized for recognizing images and our goal is
to adapt this architecture to recognize handwritten character images, we use a concept similar to
partial differentiation by changing a single parameter and observing its effect and using the best
one or two values for this parameter and continue in this manner using a beam search with a
beam width of two in most cases until reaching to optimal or semi-optimal tuning of the used
architecture. The reason for using a beamwidth of two is that the tested parameters may have a
correlation and also due to the stochasticity of the training process. Increasing the beam width
to 3 or 4 may be necessary in some cases to guarantee that we didn’t miss a significant solution
path, especially when there is a structural modification such as adding (or removing) layers (or
blocks) or changing the way of merging two layers from addition to concatenation. Also, using a
beamwidth of 1 is possible if the best path is very clear.

CMC, 2021, vol.68, no.1 9

4.1 Preprocessing and Data Augmentation
Although, the dataset images are well prepared, some preprocessing may be needed to enhance

the visibility of the images to the deep network model used in this research. Also, the adaption
of the input images to the required input characteristics of these models such as resizing and
gray-to-color conversion is performed whenever necessary.

4.1.1 Increasing the Background Area Around the Bodies of the Characters
Although the bodies of the characters are centered in the images of the characters of the

EMNIST dataset, some character bodies may extend to touch the end of the boundary of their
images. Increasing the background area (surrounding blank pixels) around the bodies of the
characters allows the bodies of the characters (or their transformed versions) to be processed
by the CFs without being affected by the padding mechanism needed at the boundary of the
images, either in the earlier layers of the network or the deeper layers. In addition, during image
augmentations such as rotation, the resultant images may suffer from distortion if the rotated size
of the character body exceeds the original image size.

Increasing the background area around the bodies of the characters minimizes such effects.
For example, if the character body is represented by zeros and the background by ones and the
character stroke touches the extreme ends of the rectangle surrounding the character, then zero
padding will increase the thickness of the character stroke by the amount of padding.

By adding a blank padding of 6 pixels per side (for example), the character image size
becomes 40×40 pixels instead of 28×28 pixels, which makes the boundaries of the bodies of the
characters less affected by the filters padding mechanisms. In addition to avoiding the padding
effect, the extra blank padding controls the percentage of the character body in the resized image
seen by the DCNN model. Hence, allowing accurate adaptation by selecting the appropriate
zooming factor to the available mapping and processing done by the concerned model, as will be
verified by the performed experiments.

4.1.2 Image Resizing and Gray-to-Color Conversion
Image resizing is done using bi-cubic interpolation [21]. Grey-to-color conversion is done

simply by using three copies of each grey image to represent the three channels of the color
version to adapt the image with the input characteristics of the used network model. This type
of conversion is needed only when training the original model with its pre-trained parameters on
the new images dataset in a transfer-learning paradigm.

4.1.3 Image Augmentation
Although, the number of training samples in each EMNIST dataset section is large, some

type of data augmentation is needed to increase the trained model generalization when subjected
to new unseen samples in the testing phase.

Since we deal with handwritten characters, image rotation and shearing [22] are beneficial aug-
mentation methods because they increase the possible views of the input data and hence increase
the network ability for generalization, as will be shown in the early and fine-tuning experiments.

4.2 Testing ResNet18 and GoogLeNet
In this subsection, GoogLeNet and ResNet18 prebuilt DCNN models are tested through

transfer learning on the EMNIST Letters dataset. The models are used in two cases with and
without their pre-trained weights.

10 CMC, 2021, vol.68, no.1

Since these prebuilt networks were built to classify color images with different sizes, the
Letters dataset images are resized, and each image is copied 3 times to represent the 3-channel
images to be compatible with the required input of the concerned DCNN model. In the case
of using the models without their pre-trained weights, the inputs of the models are modified to
accept 1-channel images, as will be done in the following subsections.

4.2.1 Testing ResNet18 Model
This model accepts 3-channel images with a size of 224× 224 pixels. Hence, each image is

resized to this size and copied 3 times to represent the three channels. Since the original network
was built to classify 1000 classes, only the last two layers are replaced by new ones, mainly the
fully connected layer and the softmax layer where only 26 classes are present in the EMNIST
Letters dataset.

Training of the modified net is done using Stochastic Gradient Descent with Momentum
(SGDM) optimizer [23] with a base learning rate of 0.1 and learning rate drop factor of 0.1
applied every 6 epochs for a total number of 30 epochs.

It is worth mentioning that all network training is done using SGDM optimizer, unless stated
explicitly otherwise. The mini-batch size is 128 samples per iteration. Shuffling is done randomly
every epoch to change the order of the image samples during training in order to minimize overfit-
ting and decrease the probability of getting stuck in local minima [24]. The default regularization
factor value (0.0001) is used until its optimum value is determined in different configurations. The
default momentum value of 0.9 is used whenever the SGDM optimizer is used.

This experiment resulted in 95.06% classification accuracy. For instance, when the ResNet18
model has been modified to accept 28 × 28 gray images without scaling the input images and
without image augmentation we got a relatively low accuracy of 94.81%, which is higher than the
reported result (94.44%) in [9], sure because of differences in the training hyperparameters. Hence,
the introduced enhancement (0.52%) in the accuracy w.r.t. [9] is due to using different training
hyperparameters and scaling up the sizes of the images from 28× 28 to 224× 224, which is our
first step in enhancing the ResNet model’s accuracy.

4.2.2 Testing GoogLeNet Model
This model accepts images with the same characteristics as ResNet18, and the images are

resized and prepared in the same way mentioned in the previous subsection. Also, the last two
layers are replaced with new ones to support 26 classes instead of 1000 classes.

The SGDM optimizer is also used, just as in the previous experiment, but with a base learning
rate of 0.001. This experiment resulted in 95.37% classification accuracy.

4.2.3 Testing the Effects of the Selected Pre-Processing and Image Augmentation Methods
In this subsection, the previous two experiments with ResNet18 and GoogLeNet are per-

formed in different situations with the original networks without loading the pre-trained parame-
ters using gray input images (or 1-channel images). In the case of GoogLeNet, Adaptive Moment
Estimation (ADAM) learning algorithm [25] is used with a base learning rate of 0.0001 in case
of 1-channel images because of convergence problems. In addition, the images are inverted. The
effect of extra blank padding around the original character images (as stated in the previous
section, where the character images are padded with 6-pixels in the four sides to get a 40× 40
pixels image size instead of 28× 28 pixels) is also tested in different experiments. Hence, different
experiments are performed with the 1-channel version of each model based on the two cases of

CMC, 2021, vol.68, no.1 11

character sizes (28× 28 pixels and 40× 40 pixels character sizes). Resizing to 224× 224 pixels is
done after the padding operation to fit the model input characteristics using bi-cubic interpolation
as mentioned before. Rotation and shear augmentation is also tested by generating images after
rotation with a random angle in the range of [−5◦ +5◦] and shear in both X and Y directions
within the range [−4◦ +4◦]. The results are shown in Tab. 1 for the different cases including the
training times in the format of (hours:min:sec). It is important to note that the training times
can decrease more than indicated if we prevent accuracy-and-loss plotting. Also, if we consider
early stopping, 24 epochs may be enough to get acceptable results but we decided to wait until
the training accuracy is considered stable.

Table 1: The accuracies of the single and 3-channel versions of the GoogLeNet and ResNet18
when applied to the EMNIST Letters dataset section under different blank-padding and augmen-
tation conditions

Category 3-channel-images with
pre-trained models

1-channel-images with fresh models

Character size 28× 28 pixels 28× 28 pixels 40× 40 pixels

Augmentation None Rotation [−5◦ 5◦]
& Shear in X and
Y [−4◦ 4◦]

None Rotation [−5◦ 5◦]
& Shear in X and
Y [−4◦ 4◦]

None Rotation [−5◦ 5◦]
& Shear in X and
Y [−4◦ 4◦]

ResNet18
Accuracy (%) 95.06 95.41 95.14 95.35 95.38 95.50
Train-time 04:59:21 05:19:25 03:47:36 04:16:34 04:00:33 04:15:16

GoogLeNet
Accuracy (%) 95.37 95.54 95.53 95.56 95.45 95.63
Train-time 08:02:27 08:05:19 08:34:25 8:30:48 08:37:02 10:04:40

The experiments are conducted on a desktop computer that is equipped with a Win-
dows 10 Pro operating system, 16 GB random-access memory (RAM), Intel core i7-8700K
CPU@3.70 GHz and a graphical accelerated processing unit (GPU) of NVIDIA GeForce GTX
1080 Ti with 11 GB RAM. All experiments are programmed using MATLAB 2019A, and some
of the later experiments are programmed with MATLAB 2019B. The main difference between
the two versions that affects our experiments lies in the available normalization techniques for
the input image layer. In version 2019A there is only zero-mean normalization while in version
2019B there is ZSCORE normalization where each zero mean value is divided by the standard
deviation. Most of the experiments are done with the ZSCORE normalization when implemented
on the 2019B version. To compensate for this shortage in the 2019A version, we added a batch
normalization layer immediately after the input image layer, which stabilizes the results of the
experiments by minimizing the variance of the final accuracies when an experiment is repeated
many times.

From Tab. 1, it appears that GoogLeNet gives higher accuracies than ResNet18 in all cases,
but it takes 2.5 to 2.9 times the ResNet18 training time.

Also, we notice that the cases of 40 × 40 pixels in the 1-channel versions with rotation–
and-shear augmentation have the highest results in both models. An early conclusion is that
GoogLeNet models, in all cases except the 28× 28 pixels without augmentation case, give higher
accuracies than the highest recorded value (95.44%) in the recent survey [3]. Also, the 1-channel

12 CMC, 2021, vol.68, no.1

version of GoogLeNet with rotation augmentation gives a higher accuracy than the highest state-
of-the-art result (95.58%). The ResNet18 model gives a higher accuracy than 95.44% in the case
of blank pixel padding (40 × 40 pixels) and rotation-and-shear augmentation. From the above
table, we conclude that image augmentation using rotation and shear combined with blank pixel
padding increased the accuracy by 0.36% and 0.10% for the 1-channel versions of ResNet18 and
GoogLeNet models, respectively.

4.3 Changing the Number of Network Building Blocks
In this subsection, the number of residual blocks are varied in the 1-channel version of

ResNet18, and the accuracy is recorded in each case. The same is done for the GoogLeNet version
where the number of inception blocks are varied, and the corresponding accuracy is recorded in
each case. Rotation augmentation in the angle range [−5◦ +5◦] and shear augmentation in both
X and Y directions in the range [−4◦ 4◦] are done in all experiments for the 40×40 pixels blank-
extended version of the dataset. The base learning rate is changed to 0.0001 in the GoogLeNet
experiments in the cases from 8 to 11 blocks, because of convergence problems. It is important to
note that we use the terminology of the MATLAB documentation, where each type of important
transformation or operation done separately is considered as a layer.

Tab. 2 displays the number of blocks (residual or inception) and the corresponding number of
used layers with the resultant network classification accuracy of the EMNIST Letters test dataset.

Table 2: Classification accuracy vs. the number of inception or residual building blocks when
the modified (ResNet18 or GoogLeNet) model is tested on the EMNIST Letters dataset section
(maximum values are bold)

GoogLeNet ResNet18

Number of
inception
blocks

Number of
layers

Base
learning
rate

Classification
accuracy

Number of
residual
blocks

Number of
layers

Base
learning
rate

Classification
accuracy

2 44 0.001 94.63 2 26 0.1 93.61
3 59 0.001 95.22 3 32 0.1 93.50
4 73 0.001 95.33 4 41 0.1 95.32
5 87 0.001 95.48 5 48 0.1 95.53
6 101 0.001 95.55 6 55 0.1 95.68
7 115 0.001 95.58 7 64 0.1 95.75
8 130 0.0001 95.61 8 71 0.1 95.50
9 144 0.0001 95.63 9 80 0.1 95.40
10 158 0.0001 95.73
11 172 0.0001 95.66

From Tab. 2, we notice the following:

• The accuracy of both models increases with the increase of the number of blocks until
a certain threshold, 10 inception blocks for the GoogLeNet based model and 7 residual
blocks for the ResNet18 based model. After this threshold, the accuracy starts decreasing
in both models with the increase of the number of blocks.

• While the threshold of the residual network is lower than the number of the residual blocks
in the original network (8 in ResNet18), the threshold in the inception network is higher
than the number of inception blocks of the original network (9 in GoogLeNet).

CMC, 2021, vol.68, no.1 13

Hence, the residual network with 6 or 7 blocks is selected as the solution because it has
simpler architecture with slightly higher accuracy and lower training time, and surely it will have
lower testing time. In the following subsections, fine-tuning will be performed to increase the
accuracy of the residual solution.

4.4 Fine-Tuning of the Residual Solution
In this section, fine-tuning will be carried out by adding a drop-out layer with a proper drop-

out rate (or probability) (DrOPr). Then the receptive field of the first CF will be varied to select
the best size. Also, the hyper parameter, L2 Norm regularization factor (L2RF) will be tested to
select the best value, and finally the rotation angle augmentation range will be experimented to
determine the best range.

For instance, many other experiments have been performed to test the effects of other struc-
tural and parameter variations in the selected architecture, but most of them didn’t result in sensed
improvements in the performance of the model such as changing the size of the filters inside
the residual blocks to sizes other than 3× 3 or changing the activation functions types to types
other than the ReLU. Hence, we mention only those structural and parameter changes that led
to significant improvements in the model accuracy. Since we are facing a challenging problem,
we decide to include a modification in our model if it increases the average accuracy by 0.01%
or more.

4.4.1 Testing the Effect of the Addition of a Drop-Out Layer Before the Fully Connected Layer
In this subsection, we test the effect of adding a drop-out layer before the fully connected one

in four cases of the residual solution starting from the 5-block version until the 8-block version
of the residual model and select the best DrOPr value (s) based on the attained accuracies in
each case. We selected four cases to test because this modification affects the number of blocks
to retain in our model in conjunction with the insertion of a drop-out layer with proper DrOPr.
Since the 8-block version has the same layout as the original model of ResNet18 (with a 1-channel
image input), hence we display only the layout of the 7-block residual network in Fig. 5 with the
addition of a global variable named as Number of Filters (NF). The NF variable represents the
number of CFs in the first residual block that is doubled every time down-sampling with a factor
of 2 is performed in the subsequent blocks. The 6-block network is the resultant network after
the removal of the seventh block and changing the average pooling to get the average of 14× 14
instead of 7× 7 and replacing the fully connected (dense) layer with one having 256× 26 instead
of 512× 26. The 5-block version is obtained in the same way.

Twenty-eight experiments have been performed by adding a drop-out layer before the fully
connected layer in the 5-block until the 8-block versions and changing DrOPr from 0.2 to 0.8 to
find the best layout with the best DrOPr value. Training using SGDM continues for 24 epochs,
with a drop factor of 0.1 every 8 epochs. The results of the average accuracy in each case are
shown in Tab. 3.

From Tab. 3, we notice that the drop-out layer enhances the 5-block and 6-block versions
(bold values) while it does not enhance the 7-block version. The 8-block version is enhanced
slightly, but still has a lower accuracy than intended. Moreover, we can conclude that adding
a drop-out layer gives higher accuracy than adding an extra residual block at the end of the
residual network (sure after reaching a certain threshold). We also deduce that the best drop-out
probability is 0.7 for the 6-block case, which has an enhanced accuracy of 95.81%.

14 CMC, 2021, vol.68, no.1

Figure 5: The 7-block residual CNN network, where the number of CFs is denoted by the number
enclosed within brackets in the convolution unit and the resultant number of FMs is also denoted
by the number enclosed within brackets in the multi-channel symbols that are not connected to
the graph

CMC, 2021, vol.68, no.1 15

Table 3: The classification accuracy vs. the drop-out probability (DrOPr) in case of 5-block,
6-block, 7-block, and 8-block residual networks when applied to the EMNIST Letters
dataset section

DrOPr 0.2 0.3 0.4 0.5 0.6 0.7 0.8

5 Blocks 95.52% 95.63% 95.53% 95.51% 95.47% 95.38% 95.39%
6 Blocks 95.71% 95.75% 95.74% 95.72% 95.80% 95.81% 95.65%
7 Blocks 95.60% 95.61% 95.64% 95.67% 95.69% 95.71% 95.61%
8 Blocks 95.48% 95.60% 95.57% 95.65% 95.63% 95.65% 95.60%

Hence, the 7th and 8th blocks will be removed, and we will present further modifications of
the 6-block version in the following subsections.

4.4.2 Testing the Effect of the Size of the First CF
The first CF in ResNet18 has a 7 × 7 size with a stride of 2 in both directions. In this

experiment the filter size will be varied from 5 × 5 to 13 × 13 using odd values only, and the
corresponding average accuracy will be recorded in each case given the same conditions in the
previous experiment with a drop-out probability of 0.7 in the 6-block version.

The first max-pooling filter is replaced by an average pooling filter to get more stable results
because the max-pooling filter increases the character stroke thickness, while the average pooling
filter smooths the edges of the character strokes without increasing their thickness. Tab. 4 shows
the corresponding accuracy found for each filter size when using [−5◦ 5◦] rotation and [−4◦ 4◦]
shear augmentation ranges.

Table 4: The classification accuracy vs. the first CF size in case of the 6-block residual network

Filter size 5× 5 7× 7 9× 9 11× 11 13× 13

Average accuracy (%) 95.77 95.81 95.82 95.83 95.80

From this experiment, we can conclude that increasing the receptive field of the first filter
to 9× 9 or 11× 11 gives higher accuracies than the original 7× 7 in the case of the EMNIST
Letters dataset.

Hence, we selected the two models with the 9× 9 and 11× 11 filter sizes to be enhanced in
the following modification.

4.4.3 Testing the Effect of the L2 Norm Regularization Factor Value (L2RF)
The purpose of the L2 Norm regularization is to reduce overfitting by controlling change in

the network (filters) weights during the optimization process through the regularization factor [26].

In this subsection, L2RF is changed from 0.0001 to 0.0009 and the resultant accuracy is
recorded in each case for the 9× 9 and 11× 11 filters.

Tab. 5 lists the results of eighteen experiments done under the best conditions of the previous
experiments (having a drop-out layer with probability 0.7, [−5◦ 5◦] rotation and [−4◦ 4◦] shear

16 CMC, 2021, vol.68, no.1

augmentation ranges and first CF size 9× 9 or 11× 11) but with L2RF varied from 0.0001 up
to 0.0009.

Table 5: The classification accuracy vs. the L2 regularization factor value

L2RF/Filter size 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009

9× 9 95.82% 95.84% 95.86% 95.88% 95.84% 95.82% 95.80% 95.79% 95.77%
11× 11 95.83% 95.85% 95.87% 95.89% 95.86% 95.84% 95.83% 95.82% 95.81%

From Tab. 5, it can be concluded that the two values (0.0003 and 0.0004) of L2RF enhance
the resulting average classification accuracy by about 0.05%, or in other words increase the number
of correctly recognized characters by approximately 10 characters. Hence we select the value of
0.0004, which gave the highest average accuracy for the 11× 11 filter case.

4.4.4 Testing the Effects of Changing the Rotation Angle Augmentation Range
In this experiment we tested the 9 × 9 and 11 × 11 filters with different rotation angle

augmentation ranges starting from [−5◦ to 5◦] up to [−25◦ to 25◦] with a step of (−5◦, 5◦) degrees
where the resultant accuracy in each case is shown in Tab. 6.

From Tab. 6, it appears that the best rotation angle augmentation range is [−5◦ 5◦]. The
6-block residual solution with 11× 11 first CF and drop-out layer is referred to as Res6BF11.

Table 6: The classification accuracy vs. the rotation angle augmentation range

Angle-range No augmentation −5◦:5◦ −10◦:10◦ −15◦:15◦ −20◦:20◦ −25◦:25◦

Filter size
9× 9 95.83% 95.88% 95.80% 95.75% 95.65% 95.40%
11× 11 95.84% 95.89% 95.81% 95.77% 95.67% 95.43%

4.4.5 Testing the Effect of Changing the Final Addition Layer into a Depth Concatenation Layer
Although changing the addition layer into a concatenation layer is a structural variation

that should be done first with other structural variations, it has been delayed because it is a
foreign variation where the modified model will no longer be a pure residual network. It is known
that information is propagated through the residual network from block to block by keeping the
original information and the mapped one in each level throughout the addition operation such
that the output of the final block can be considered as the sum of all the outputs of the previous
blocks (if we neglect the non-linear effects of the ReLU layers) as in (3). If we replace the final
addition layer with a depth concatenation layer, we present the information of the penultimate
residual block and the mapped information out of the final block in separate channels (FMs)
instead of merging them through addition in the same channels (FMs). Although this type of
information merging when implemented in the whole network proved superior in the previously
developed DenseNet [27] when applied to the ImageNet, it did not show such superiority when
tested without modifications on the EMNIST Letters dataset.

CMC, 2021, vol.68, no.1 17

To illustrate the difference, we rewrite the recursive formula (3) in case of a Dense block of
N modules as follows:

DenseOut(N)=
{
FN(DenseOut(N− 1))‖DenseOut(N− 1) N> 0

Input0 N= 0
(4)

where the operator ‘‖’ means depth concatenation of the left and right operands.

Although DenseNet is one of the important advanced architectures of the DCNN, we didn’t
refer to it in the start of this research because its available ready-made models are considered
heavyweight when compared with GoogLeNet and ResNet18.

A 1-channel version of DenseNet-BC-121 after being trained on the EMNIST Letters for 30
epochs with 0.1 drop factor every 6 epochs yielded an accuracy of 95.62% on the test set. It took
about 111.7 hours of training compared to 4.15 hours for the ResNet18 and 10.04 hours for the
GoogleNet that yielded accuracies of 95.50% and 95.63%, respectively as shown in Tab. 1.

This is because unlike the ImageNet, the images of the characters in the EMNIST dataset
have single scale and mainly appear as a whole (not partially), and hence no need to give the
representations in the earlier layers (or blocks) separate channels in the final layers (or blocks),
which will increase the redundant information at the input of the final block.

Hence, we exchanged the addition layer with depth concatenation layer only in the final block
and recorded the resulting accuracy after making the different types of parameter tuning, as
done before.

Based on many experiments, we found that the best parameters are all the same as given
in the previous subsections except the L2RF value, which is changed to 0.0005 to get the
highest accuracy.

The resulting output of the final dense block, which is preceded by 5 residual blocks
(Dense1Res5Out) can be represented by the following formula:

Dense1Res5Out(N)=FN(ResOut(N− 1))‖ResOut(N− 1) (5)

where ResOut(N− 1) is defined in (3).

In the general case if there are R residual modules and D dense final modules we call this
architecture DenseDResR. This is the reason that we referred to our final model defined in (5)
by Dense1Res5.

After repeating the training of the new network architecture fifteen times and recording the
accuracies of the generated models on the Letters test set, we got the accuracy values listed
in Tab. 7.

Table 7: The accuracy of the fifteen trained models when each is used to classify the letters test set

Model# 1 2 3 4 5
Accuracy (%) 95.88 95.93 95.87 95.94 95.94
Model# 6 7 8 9 10
Accuracy (%) 95.90 95.91 95.94 95.92 95.90
Model# 11 12 13 14 15
Accuracy (%) 95.87 95.97 95.92 95.88 95.90

18 CMC, 2021, vol.68, no.1

Hence, we conclude that the accuracy of the proposed model has a mean value of 95.91%
with a standard deviation (STD) of 0.0003. For instance, we have replaced the last two blocks
(D = 2, R = 4) with two depth concatenation blocks, but we didn’t gain the same improvement
where the resultant accuracy was about 95.80%. We have also changed all addition layers to depth
concatenation layers (D= 6, R= 0), which resulted in an average accuracy of 95.75%.

4.5 Aggregation of Different Instances of the Proposed Model
By selecting m models randomly out of the 15 models generated in the previous experiment

we estimate the accuracy of the aggregated models based on the average of the class probabilities
of the m models.

By performing 1000 random permutations for each value of m starting from 2 up to 9 and
calculating the mean and standard deviation in each case, we got the results shown in Tab. 8 and
plotted in Fig. 6.

Since our goal is to maximize the mean and minimize the STD of the classification accuracy
without increasing the training and testing time too much, we will allow m to be increased as
long as there are sensed improvements in the mean or in the STD to some extent.

From Tab. 8 and Fig. 6, we observe that the mean reaches its maximum at m = 5 (95.98%)
and remains constant after that, while the STD has a value of 2.65×10−4 at m= 5 and decreases
slightly after that, only decreasing by a factor of 0.79 when m changes from 5 to 9, so we decided
to select an ensemble of 5 models to be used in the four cases in this research (full and reduced
training sets of the Letters and Balanced dataset sections). Using an ensemble of 9 models is a
good option because it will decrease STD by a factor of 0.79 but will increase both the training
and testing times linearly by a factor of 9/5 and also increase the required memory for storing the
probability matrices by the same factor without gaining improvement in the mean of the accuracy.

Table 8: The mean and standard deviation of the classification accuracy of the Letters test set vs.
the number of aggregated models (m)

m 2 3 4 5 6 7 8 9

Mean (%) 95.96 95.97 95.97 95.98 95.98 95.98 95.98 95.98
STD 0.00036 0.00033 0.0003 0.000265 0.000262 0.00024 0.00023 0.00021

0

0.0001

0.0002

0.0003

0.0004

95.96%

95.96%

95.97%

95.97%

95.98%

95.98%

95.99%

0 1 2 3 4 5 6 7 8 9 10

S
T

D

M
ea

n

Number of Models (m)

Mean and STD of the Ensemble Accuracy versus the Number of Models (m)

Mean STD

Figure 6: Mean and STD of the ensemble accuracy vs. the number of models (m)

CMC, 2021, vol.68, no.1 19

5 The Final Experiments

In this section, the final experiments are performed on the Balanced dataset section, and the
results of both dataset sections are summarized when using a single model or an ensemble under
the best conditions of the proposed models (Res6BF11 and Dense1Res5), which have a drop-out
probability of 0.7 and a regularization factor of 0.0004 for Res6BF11 and 0.0005 for Dense1Res5
and using [−5◦ 5◦] and [−4◦ 4◦] ranges for rotation and shear augmentations, respectively.

Then, the same experiments are repeated on both dataset sections but with training on a
reduced dataset having 200 samples per class instead of 4800 samples per class in the Letters
dataset and 2400 samples per class in the Balanced dataset respectively.

5.1 Experiments on the Balanced Dataset Section
In this subsection, the proposed models are applied to the Balanced dataset section, but an

extra experiment will be carried out to test the effect of doubling the number of CFs (NF= 128)
in all the residual blocks of the model.

When we applied the Res6BF11 and Dense1Res5 models to the Balanced dataset section, we
got an average accuracy of 90.75% and 90.82%, respectively but when we doubled the number of
CFs (NF= 128), we got an average accuracy of 90.90% and 91.00%, respectively. This enhance-
ment gained by doubling the number of CFs was not observed on the Letters dataset section. This
might be due to having more classes in the Balanced section (47) than in the Letters section (26).
Finally, the training of the model Dense1Res5 (NF = 128) was performed fifteen times on the
Balanced dataset, and the generated versions were used to classify the test set. Tab. 9 displays the
results of the fifteen experiments.

Table 9: The accuracy of fifteen versions of Dense1Res5 (NF= 128) when each is used to classify
the balanced test set

Model# 1 2 3 4 5
Accuracy (%) 91.04 90.91 91.01 90.89 90.97
Model# 6 7 8 9 10
Accuracy (%) 90.97 91.01 90.96 90.95 91.08
Model# 11 12 13 14 15
Accuracy (%) 91.01 91.06 91.11 91.01 90.96

From Tab. 9, the mean is 91.00% and STD is 5.9× 10−4.

Tab. 10 gives the results of the aggregation of m models out of the fifteen versions. From
Tab. 10, the mean when using 5 models is 91.06% and STD is 4.5× 10−4.

Table 10: The mean and standard deviation of the classification accuracy of the balanced test set
vs. the number of aggregated models (m)

m 2 3 4 5 6 7 8 9

Mean (%) 91.04 91.05 91.06 91.06 91.06 91.07 91.07 91.07
STD 0.00053 0.00051 0.00047 0.00045 0.00044 0.00041 0.00039 0.00036

20 CMC, 2021, vol.68, no.1

5.2 Testing the Proposed Models on the Reduced Training Dataset of the EMNIST Letters Section
We trained the Res6BF11 and Dense1Res5 models on the reduced training letters dataset

section but with rotation angle augmentation range of [−10◦ 10◦] and initial learning rate of 0.1,
which is divided by 0.1 every 17 epochs for a total of 52 epochs. Then, we used the generated
models to classify the test dataset section. We got an average accuracy of 93.42% and 93.56% for
the Res6BF11 and Dense1Res5 models (with NF= 64), respectively.

For Res6BF11 and Dense1Res5 models with NF= 128, we used a mini-batch size of 64 and
got an average accuracy of 93.77% and 93.82%, respectively.

Tab. 11 shows the resultant accuracies of fifteen experiments done with the Dense1Res5 model
(NF= 128), which have a mean value of 93.82% (STD= 6.0× 10−4). When we used an ensemble
of 5 models out of the Dense1Res5 fifteen versions, we got a mean accuracy of 93.94% (STD=
3.78× 10−4).

Table 11: The accuracy of fifteen versions of Dense1Res5 model (NF = 128) trained on the
reduced Letters set when each is used to classify the Letters test set

Model# 1 2 3 4 5
Accuracy (%) 93.76 93.80 93.74 93.75 93.77
Model# 6 7 8 9 10
Accuracy (%) 93.80 93.87 93.81 93.94 93.84
Model# 11 12 13 14 15
Accuracy (%) 93.79 93.82 93.85 93.82 93.94

5.3 Testing the Proposed Models on the Reduced Training Dataset of the EMNIST Balanced Section
We trained the Res6BF11 and Dense1Res5 models on the reduced training dataset section

using a rotation angle augmentation range of [−10 +10] and NF = 128 (with mini-batch size
of 64). Then, we used the generated models to classify the test dataset section. We got an average
accuracy of 88.49% and 88.69% for Res6BF11 and Dense1Res5 models, respectively. Tab. 12
shows the resultant accuracies of fifteen experiments done with the Dense1Res5 (NF= 128) model
which has a mean value of 88.69% (STD= 7.8× 10−4).

Table 12: The accuracy of fifteen versions of Dense1Res5 model (NF = 128) trained on the
reduced balanced set when each is used to classify the Balanced test set

Model# 1 2 3 4 5
Accuracy (%) 88.84 88.65 88.65 88.78 88.79
Model# 6 7 8 9 10
Accuracy (%) 88.67 88.61 88.71 88.64 88.57
Model# 11 12 13 14 15
Accuracy (%) 88.80 88.68 88.61 88.66 88.71

When we used an ensemble of 5 models of the fifteen Dense1Res5 versions, we got a mean
accuracy of 88.83% (STD= 4.7× 10−4).

CMC, 2021, vol.68, no.1 21

6 Comparisons with State-of-the-Art Results

Tab. 13 summarizes the results for the full data set and the reduced one giving the accuracies
of the proposed solutions (Res6BF11 and Dense1Res5 for NF= 64 and NF= 128) in conjunction
with the base classifier (OPIUM), the basic ResNet model [9], and the highest results (bold style)
of the state-of-the-art techniques mentioned in the literature review. Our ensemble accuracies (bold
underlined) are calculated only for the best single model solution (bold italics) in each case.

Table 13: Classification accuracy of the proposed models and the state-of-the-art systems for the
full and reduced training sets of the Letters and Balanced dataset sections

Model Letters
(Full) (%)

Balanced
(Full) (%)

Letters
(reduced) (%)

Balanced
(reduced) (%)

OPIUM (Base) [1] 85.15 78.02
Basic ResNet [9] 94.44
Genetic DCNN [9] 95.58
TextCaps [12] 95.36 90.46 92.79 87.82
DCNN (6 conv+ 2 dense) [15] 90.59
Res6BF11 (NF= 64) 95.89 90.75 93.42 88.37
Dense1Res5 (NF= 64) 95.91 90.82 93.56 88.50
Res6BF11 (NF= 128) 95.87 90.90 93.77 88.49
Dense1Res5 (NF= 128) 95.88 91.00 93.82 88.69
Ensemble of 5 Dense1Res5 (NF= 64) 95.98
Ensemble of 5 Dense1Res5 (NF= 128) 91.06 93.94 88.83

Based on Tab. 13 and considering the results of the Letters dataset, we have increased the
accuracy from the highest published value 95.58% to 95.98%, which is equivalent to decreasing the
error rate by 9% using five Dense1Res5 (NF= 64) models each having about 1.69 M parameters.

Considering the Balanced dataset, we have increased the accuracy from the highest pub-
lished value 90.59% to 91.06% which is equivalent to decreasing the error rate by 5% using five
Dense1Res5 (NF= 128) models each having about 6.7 M parameters.

Considering the reduced training set of the Letters and Balanced datasets, we have increased
the accuracies by 1.15% and 1.01%, respectively, over the TextCaps model published results, which
is equivalent to decreasing the error rate by 15.95% and 8.29%, respectively.

Based on the testing done by [9] using the basic architecture of ResNet [18] on the Letters
dataset, we have increased the accuracy of the basic ResNet architecture from 94.44% to 95.91%
using a single instance of the Dense1Res5 (NF = 64) model. In the case of using an ensemble
of 5 Dense1Res5 (NF = 64) models, the enhancement will be clearer with a 1.54% increase in
the achieved accuracy (95.98%), which corresponds to a 27.7% improvement in the error rate.
This improvement in the basic architecture is our significant contribution due to the distinguished
optimization of the residual solution.

Although the enhancements due to the replacement of the addition layer with the depth
concatenation layer appear to be very small in the results of the full Letters dataset test (0.01%
(NF = 128) and 0.02% (NF = 64)), it is relatively higher in the results of the full Balanced
dataset test (0.07% (NF = 64) and 0.10% (NF = 128)). The situation is better in the case of

22 CMC, 2021, vol.68, no.1

the reduced training sets with an enhancement of 0.14% (NF = 64) and 0.05% (NF = 128) for
the Letters dataset and enhancement of 0.13% (NF = 64) and 0.20% for the Balanced dataset.
These relatively small enhancements will be appreciated if we consider the achievements done
in the last three years where, as stated in the literature review, an enhancement of 0.14% had
been achieved after approximately 30 months in the classification accuracy of the Letters dataset.
Another convincing example is the use of a committee of 20 CNNs to achieve an enhancement
of 0.14% in the classification accuracy of the EMINST-Letters dataset [10]. It should be noted
that the greater the accuracy, the more difficult the improvement will be. Therefore, to be fair
we have to calculate the percentage of improvement in the error rate when comparing different
improvements at different accuracy levels. Thus, the 0.14% accuracy enhancement achieved in 30
months (in the classification accuracy of the Letters dataset) corresponds to a 3.07% improvement
in the error rate, which is one-third of our improvement in the error rate (9%).

When we compare our work with the base model as done in most of the mentioned
researches, we conclude that the accuracy has been increased by 10.83% and 13.04% for the Letters
and Balanced datasets, respectively.

To allow reproducibility of the results and prevent any missing information in the proposed
model, the MATLAB code that defines the layer graph of the Dense1Res5 model is listed in
Appendix A.

7 Conclusions and Future Work

In this research, the recognition accuracy of the EMNIST dataset using deep residual CNN
has been improved by the following solution dimensions:

• Data dimension: the dataset images have been adapted with the residual CNN using the
proper zero paddings and scaling and then proper rotation and shear angle augmentation
have been performed to increase the trained model’s generalization.

• Structure dimension: the architecture of the residual solution has been enhanced by the
selection of the optimum number of residual blocks, the optimum size of the receptive
field of the first CF, the replacement of the first max-pooling layer with an average pooling
layer, and the addition of the drop-out layer before the fully connected layer. A novel
enhancement of the architecture has been achieved by replacing the final addition layer
with a depth concatenation layer. Furthermore, doubling up the number of filters in all
convolutional layers has brought enhancements in the subsequent accuracy, particularly in
the Balanced dataset.

• Training hyperparameter dimension: the hyperparameters (learning rate, L2 regularization
factor, mini-batch size, and the number of epochs in the training process) have been
optimized for each proposed model in the four dataset cases (full Letters and Balanced
datasets and their reduced versions).

• Aggregation of several models: by averaging the class probabilities of 5 versions of each
proposed model the overall accuracy has been improved.

The improvements done to the residual solution starting with image scaling and data aug-
mentation and ending with the hyperparameter optimization, resulted in a 26.43% improvement
in the error rate in the classification of the EMNIST letters test set, relative to the basic
residual architecture.

After using an ensemble of 5 versions of each proposed model, the improvements in the
error rates relative to the stat-of-the-arts error rates become approximately 9%/5% for the full

CMC, 2021, vol.68, no.1 23

Letters/Balanced datasets and 16%/8% for the reduced training sets of the Letters/Balanced
datasets, respectively.

The mentioned improvements in the residual DCNN model allowed the modified model to
outperform the state-of-the-art models such as the TextCaps model in the classification of the
handwritten characters when using either a huge training dataset or a reduced one.

On the basis of the experiments conducted in this work, we have also reached the following
general conclusions for ResNet18 or similar architectures when being utilized in handwritten
character image classification tasks:

• There is an optimal resolution of the input layer, in which the original image takes an
optimal proportion that gives the maximum accuracy for a certain network architecture.

• Using rotation angle augmentation range of [−5◦ +5◦] increases the final accuracy in the
case of the full sets, that is doubled to [−10◦ +10◦] in the case of the reduced sets, to
fill the gabs left due to unused samples by using a higher number of training epochs with
slower learning rate changes.

• There is an optimal number (Nopt) of residual blocks after which the accuracy does not
improve or slightly decreases.

• Using (Nopt-1) blocks with a drop-out layer results in higher accuracy than using (Nopt)
blocks even if a drop-out layer is used.

• Finalizing the residual net with a depth concatenated block generates a more accurate
model than using a pure residual network when dealing with handwritten characters that
have an approximately single scale and appear mostly in full shapes.

With regards to the architectures of DCNN, we have come up with a novel architecture which
combined the residual network with the dense network in a sequential manner and offered a
recursive definition for the original architectures and the new one, termed DenseDResR that could
be evaluated in the future works with varying values of D and R on other dataset variants. We
also gave an explanation why depth concatenation was beneficial in the final block only in the
case of the EMNIST dataset based on the existence of full shapes of the characters in almost
one scale in all the data set images. Other problems which give a decision of the presence of a
class based on different scales of its shape or the partial existence of its shape such as ImageNet
are expected to have a large D and small R where the lower abstractions of a shape (part of
a circle for example) affect the final decision of the network and hence take a proportion in
the final feature representation or abstraction. We think that using a large D irrelevant to the
classification problem under consideration will introduce redundancy in the final and possibly in
the intermediate layers of a network that will increase the memory requirements and the training
time without having significant improvements in the resultant accuracy.

Acknowledgement: The authors acknowledge Prof. Abdullah Basuhail who supervises the Thesis
of Mr. Hadi and did the proofreading of this paper.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

24 CMC, 2021, vol.68, no.1

References
[1] G. Cohen, S. Afshar, J. Tapson and A. Van Schaik, “EMNIST: Extending MNIST to handwritten

letters,” in Proc. IJCNN 2017, Anchorage, AK, USA, pp. 2921–2926, 2017.
[2] Y. LeCun, C. Cortes and C. BURGES, “The MNIST database of handwritten digits,” 2012. [Online].

Available: http://yann.lecun.com/exdb/mnist/.
[3] A. Baldominos, Y. Saez and P. Isasi, “A survey of handwritten character recognition with MNIST and

EMNIST,” Applied Sciences, vol. 9, no. 15, pp. 31692019.
[4] A. van Schaik and J. Tapson, “Online and adaptive pseudoinverse solutions for ELM weights,”

Neurocomputing, vol. 149, pp. 233–238, 2015.
[5] Y. Peng and H. Yin, “Markov random field based convolutional neural networks for image classifica-

tion,” Proc. IDEAL, vol. 10585, pp. 387–396, 2017.
[6] P. Ghadekar, S. Ingole and D. Sonone, “Handwritten digit and letter recognition using hybrid DWT-

DCT with KNN and SVM classifier,” in Proc. ICCUBEA, Pune, India, pp. 1–6, 2018.
[7] R. Wiyatno and J. Orchard, “Style memory: Making a classifier network generative,” in Proc.

(ICCI*CC), Berkeley, CA, USA, pp. 16–21, 2018.
[8] E. Dufourq and B. A. Bassett, “Eden: Evolutionary deep networks for efficient machine learning,”

in Proc. (PRASA-RobMech), Bloemfontein, South Africa, pp. 110–115, 2017.
[9] B. Ma, X. Li, Y. Xia and Y. Zhang, “Autonomous deep learning: A genetic DCNN designer for image

classification,” Neurocomputing, vol. 379, pp. 152–161, 2020.
[10] A. Baldominos, Y. Saez and P. Isasi, “Hybridizing evolutionary computation and deep neural net-

works: An approach to handwriting recognition using committees and transfer learning,” Complexity,
vol. 2019, pp. 1–16, 2019.

[11] P. Cavalin and L. Oliveira, “Confusion matrix-based building of hierarchical classification,” in Proc.
Iberoamerican Congress on Pattern Recognition, CIARP, Madrid, Spain, pp. 271–278, 2018.

[12] V. Jayasundara, S. Jayasekara, H. Jayasekara, J. Rajasegaran, S. Seneviratne et al., “Textcaps: Hand-
written character recognition with very small datasets,” in Proc. WACV , Waikoloa Village, HI, USA,
pp. 254–262, 2019.

[13] S. Sabour, N. Frosst and G. E. Hinton, “Dynamic routing between capsules,” in Advances in Neural
Information Processing Systems, NIPS 2017. Long Beach, CA, USA: NEURAL INFORMATION
PROCESSING SYSTEMS (NIPS), pp. 3856–3866, 2017.

[14] K. S. Younis, “Arabic handwritten character recognition based on deep convolutional neural networks,”
Jordanian Journal of Computers and Information Technology, vol. 3, no. 3, pp. 186–200, 2017.

[15] A. Shawon, M. J. U. Rahman, F. Mahmud and M. A. Zaman, “Bangla handwritten digit recognition
using deep CNN for large and unbiased dataset,” in Proc. ICBSLP, Sylhet, Bangladesh, pp. 1–6, 2018.

[16] A. Khan, A. Sohail, U. Zahoora and A. S. Qureshi, “A survey of the recent architectures of deep
convolutional neural networks,” Artificial Intelligence Review, vol. 53, no. 8, pp. 5455–5516, 2020.

[17] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed et al., “Going deeper with convolutions,” in Proc.
CVPR, Boston, MA, USA, pp. 1–9, 2015.

[18] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition,” in Proc. CVPR,
Las Vegas, NV, USA, pp. 770–778, 2016.

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal
covariate shift,” arXiv preprint, arXiv:1502.03167, 2015.

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, “Dropout: A simple way
to prevent neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[21] X. Lin, Y. L. Ma, L. Z. Ma and R. L. Zhang, “A survey for image resizing,” Journal of Zhejiang
University SCIENCE C, vol. 15, no. 9, pp. 697–716, 2014.

[22] A. Poznanski and L. Wolf , “CNN-N-Gram for handwriting word recognition,” in Proc. CVPR, Las
Vegas, NV, USA, pp. 2305–2314, 2016.

http://yann.lecun.com/exdb/mnist/

CMC, 2021, vol.68, no.1 25

[23] Y. Yan, T. Yang, Z. Li, Q. Lin and Y. Yang, “A unified analysis of stochastic momentum methods for
deep learning,” arXiv preprint, arXiv:1808.07576, 2018.

[24] Z. L. Ke, H. Y. Cheng and C. L. Yang, “LIRS: Enabling efficient machine learning on NVM-based
storage via a lightweight implementation of random shuffling,” arXiv preprint, arXiv:1810.04509, 2018.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint,
arXiv:1412.6980, 2014.

[26] P. Murugan and S. Durairaj, “Regularization and optimization strategies in deep convolutional neural
network,” arXiv preprint, arXiv:1712.04711, 2017.

[27] G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, “Densely connected convolutional
networks,” in Proc. CVPR, Honolulu, HI, USA, pp. 4700–4708, 2017.

26 CMC, 2021, vol.68, no.1

Appendix A. Dense1Res5 Lgraph Creation Code

% Script for creating the layers for a deep-learning network with: Number of layers: 57, Number
of connections: 62
% Running this script will create the layers in the workspace variable lgraph.
% Create the layer graph variable to contain the network’s layers.
lgraph = layerGraph();
NF= 64; % define the base number of filters
% Add the Layer Branches, Add the branches of the network to the layer graph, Each branch is
a linear array of layers.
tempLayers = [
imageInputLayer([224,224,1],“Name”, “data”, “Normalization”, “none”)
batchNormalizationLayer(“Name”, “bn_conv1_1_2”)
convolution2dLayer([11,11], NF, “Name”, “conv1_1”, “BiasLearnRateFactor”, 0, “Padding”, [5 5
5 5], “Stride”, [2 2])
batchNormalizationLayer(“Name”, “bn_conv1_1_1”)
reluLayer(“Name”, “conv1_relu”)
averagePooling2dLayer([3,3], “Name”, “avgpool2d”, “Padding”, [1 1 1 1], “Stride”, [2 2])];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
convolution2dLayer([3,3], NF, “Name”, “res2a_branch2a”, “BiasLearnRateFactor”, 0, “Padding”,
[1 1 1 1])
batchNormalizationLayer(“Name”, “bn2a_branch2a”)
reluLayer(“Name”, “res2a_branch2a_relu”)
convolution2dLayer([3,3], NF, “Name”, “res2a_branch2b”, “BiasLearnRateFactor”, 0, “Padding”,
[1 1 1 1])
batchNormalizationLayer(“Name”, “bn2a_branch2b”)];
lgraph = addLayers(lgraph, tempLayers);
tempLayers = [additionLayer(2, “Name”, “res2a”)
reluLayer(“Name”, “res2a_relu”)];
lgraph = addLayers(lgraph, tempLayers);
tempLayers = [
convolution2dLayer([3,3], NF, “Name”, “res2b_branch2a”, “BiasLearnRateFactor”, 0, “Padding”,
[1 1 1 1])
batchNormalizationLayer(“Name”, “bn2b_branch2a”)
reluLayer(“Name”, “res2b_branch2a_relu”)
convolution2dLayer([3,3], NF, “Name”, “res2b_branch2b”, “BiasLearnRateFactor”, 0, “Padding”,
[1 1 1 1])
batchNormalizationLayer(“Name”, “bn2b_branch2b”)];
lgraph = addLayers(lgraph, tempLayers);
tempLayers = [additionLayer(2, “Name”, “res2b”)
reluLayer(“Name”, “res2b_relu”)];
lgraph = addLayers(lgraph, tempLayers);
tempLayers = [
convolution2dLayer([1,1], 2∗NF, “Name”, “res3a_branch1”, “BiasLearnRateFactor”, 0, “Stride”,
[2 2])
batchNormalizationLayer(“Name”, “bn3a_branch1”)];

CMC, 2021, vol.68, no.1 27

lgraph = addLayers(lgraph, tempLayers);
tempLayers = [
convolution2dLayer([3,3], 2∗NF, “Name”, “res3a_branch2a”, “BiasLearnRateFactor”, 0,
“Padding”, [1 1 1 1], “Stride”, [2 2])
batchNormalizationLayer(“Name”, “bn3a_branch2a”); reluLayer(“Name”, “res3a_branch2a_relu”)
convolution2dLayer([3,3],2∗NF, “Name”, “res3a_branch2b”, “BiasLearnRateFactor”, 0,
“Padding”, [1 1 1 1])
batchNormalizationLayer(“Name”, “bn3a_branch2b”)];
lgraph = addLayers(lgraph, tempLayers);
tempLayers = [additionLayer(2, “Name”, “res3a”)
reluLayer(“Name”, “res3a_relu”)];
lgraph = addLayers(lgraph, tempLayers);
tempLayers = [
convolution2dLayer([3,3], 2∗NF, “Name”, “res3b_branch2a”, “BiasLearnRateFactor”, 0,
“Padding”, [1 1 1 1])
batchNormalizationLayer(“Name”, “bn3b_branch2a”)
reluLayer(“Name”, “res3b_branch2a_relu”)
convolution2dLayer([3,3], 2∗NF, “Name”, “res3b_branch2b”, “BiasLearnRateFactor”, 0,
“Padding”, [1 1 1 1])
batchNormalizationLayer(“Name”, “bn3b_branch2b”)];
lgraph = addLayers(lgraph, tempLayers);
tempLayers = [additionLayer(2, “Name”, “res3b”)
reluLayer(“Name”, “res3b_relu”)];
lgraph = addLayers(lgraph, tempLayers);
tempLayers = [
convolution2dLayer([1,1], 4∗NF, “Name”, “res4a_branch1”, “BiasLearnRateFactor”, 0, “Stride”,
[2 2])
batchNormalizationLayer(“Name”, “bn4a_branch1”)];
lgraph = addLayers(lgraph, tempLayers);
tempLayers =
convolution2dLayer([3,3], 4∗NF, “Name”, “res4a_branch2a”, “BiasLearnRateFactor”, 0,
“Padding”, [1 1 1 1], “Stride”, [2 2])
batchNormalizationLayer(“Name”, “bn4a_branch2a”)
reluLayer(“Name”, “res4a_branch2a_relu”)
convolution2dLayer([3,3], 4∗NF, “Name”, “res4a_branch2b”, “BiasLearnRateFactor”, 0,
“Padding”, [1 1 1 1])
batchNormalizationLayer(“Name”, “bn4a_branch2b”)];
lgraph = addLayers(lgraph, tempLayers);
tempLayers = [additionLayer(2, “Name”, “res4a”)
reluLayer(“Name”, “res4a_relu”)];
lgraph = addLayers(lgraph, tempLayers);
tempLayers = [
convolution2dLayer([3,3], 4∗NF, “Name”, “res4b_branch2a”, “BiasLearnRateFactor”, 0,
“Padding”, [1 1 1 1])
batchNormalizationLayer(“Name”, “bn4b_branch2a”)
reluLayer(“Name”, “res4b_branch2a_relu”)
convolution2dLayer([3,3], 4∗NF, “Name”, “res4b_branch2b”, “BiasLearnRateFactor”, 0,

28 CMC, 2021, vol.68, no.1

“Padding”, [1 1 1 1])
batchNormalizationLayer(“Name”, “bn4b_branch2b”)];
lgraph = addLayers(lgraph, tempLayers);
tempLayers = [depthConcatenationLayer(2, “Name”, “depthcat”)
reluLayer(“Name”, “res5a_relu”)
averagePooling2dLayer([14,14], “Name”, “avgpool2d_2”, “Stride”, [14 14])
dropoutLayer(0.7, “Name”, “dropout”)
fullyConnectedLayer(26, “Name”, “fc”, “BiasLearnRateFactor”, 2, “WeightLearnRateFactor”, 2)
softmaxLayer(“Name”, “prob”); classificationLayer(“Name”, “classoutput”)];
lgraph = addLayers(lgraph, tempLayers);
lgraph = connectLayers(lgraph, “avgpool2d”, “res2a_branch2a”);
lgraph = connectLayers(lgraph, “avgpool2d”, “res2a/in2”);
lgraph = connectLayers(lgraph, “bn2a_branch2b”, “res2a/in1”);
lgraph = connectLayers(lgraph, “res2a_relu”, “res2b_branch2a”);
lgraph = connectLayers(lgraph, “res2a_relu”, “res2b/in2”);
lgraph = connectLayers(lgraph, “bn2b_branch2b”, “res2b/in1”);
lgraph = connectLayers(lgraph, “res2b_relu”, “res3a_branch1”);
lgraph = connectLayers(lgraph, “res2b_relu”, “res3a_branch2a”);
lgraph = connectLayers(lgraph, “bn3a_branch1”, “res3a/in2”);
lgraph = connectLayers(lgraph, “bn3a_branch2b”, “res3a/in1”);
lgraph = connectLayers(lgraph, “res3a_relu”, “res3b_branch2a”);
lgraph = connectLayers(lgraph, “res3a_relu”, “res3b/in2”);
lgraph = connectLayers(lgraph, “bn3b_branch2b”, “res3b/in1”);
lgraph = connectLayers(lgraph, “res3b_relu”, “res4a_branch1”);
lgraph = connectLayers(lgraph, “res3b_relu”, “res4a_branch2a”);
lgraph = connectLayers(lgraph, “bn4a_branch1”, “res4a/in2”);
lgraph = connectLayers(lgraph, “bn4a_branch2b”, “res4a/in1”);
lgraph = connectLayers(lgraph, “res4a_relu”, “res4b_branch2a”);
lgraph = connectLayers(lgraph, “res4a_relu”, “depthcat/in2”);
lgraph = connectLayers(lgraph, “bn4b_branch2b”, “depthcat/in1”);
% Clean Up Helper Variable
clear tempLayers;

