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Abstract: Protruded from cytomembrane, primary cilium is a widespread cell organelle that can be found in almost all cell

types in Mammalia. Because of its comprehensive requirement in various cellular activities and various functions in

different organs, primary cilium has been a valuable research area of human pathology research since the turn of the

millennium. And the potential application of the interaction between primary cilia and cell cycle regulation may be

the most promising direction as many primary cilium-caused diseases are found to be caused by cell cycle

dysregulation resulted from primary cilia defects. Therefore, a deep understanding of the interaction between primary

cilia and the cell cycle is in great need. Hence in this review, we mainly described how the interaction between

primary cilia and cell cycle proceeds and demonstrated three hypotheses raised from much different research. These

hypotheses include (1) Primary cilium as a cellular signaling hub to regulate the cell cycle, (2) Primary cilium as a

reservoir of cell cycle regulation-related factors, and (3) Primary cilium as a cell cycle checkpoint or a brake.

Nonetheless, we also call for more attention on research of interaction between cell cycle and primary cilia and tried

to point out some possible research directions for those who are interested.

Abbreviation
DNA: DeoxyriboNucleic Acid
PDGF: Platelet Derived Growth Factor
TGF-β: Transforming Growth Factor-β
Mtor: Mammalian Target of Rapamycin
GPCRs: G Protein-Coupled Receptors
PTCH1: Patched 1
PDGFR: Platelet-Derived Growth Factor Receptors
5-HTr6: 5-Hydroxytryptamine (serotonin) Receptor 6
SSTR3: Somatostatin Receptor 3
MCHR1: Melanin-Concentrating Hormone Receptor 1
MSC: Mesenchymal Stem Cell
PKD: Polycystic Kidney Disease
cAMP: Cyclic Adenosine Monophosphate
STAT: Signal Transducer and Activator of

Transcription
RTK: Receptor Protein Tyrosine Kinase
SHP2: Src Homology Phosphotyrosyl Phosphatase 2
PI3K: Phosphatidyl Inositol 3-OH kinase
Mek1/2: MAPK Kinase ½
MAPK: Mitogen-Activated Protein Kinase

Erk1/2: Extracellular Signal-Regulated Kinase ½
CDK1: Cyclin-Dependent Kinases 1
CDK2: Cyclin-Dependent Kinases 2
HEF1: Human Enhancer of Filamentation 1
HDAC6: Histone Deacetylase 6
SuFu: Suppressor of Fused
E2F1: E2 Promoter Binding Factor 1
IFT: Intraflagellar Transport
BBS: Bardet-Biedl Syndrome
ALMS: Alstrom Syndrome
WNT: Wingless/Integrated
NLS: Nuclear Localization Sequence
Jbn: Jouberin
NDE1: Nuclear distribution protein nudE

homolog 1
Nek2: NIMA Related Kinase 2
NIMA: Never in Mitosis Gene A
DYNLT1: Dynein Light Chain Tctex-Type 1
IGF: Insulin-Like Growth Factors
LC8: Light Chain 8
ESCs: Embryo Stem Cells
CPAP: Centrosomal-P4.1-Associated Protein
NPCs: Non-Parenchymal Cells
MB: Medulloblastoma

*Address correspondence to: Xiao Huang, xh220@zju.edu.cn
Received: 25 August 2020; Accepted: 21 December 2020

BIOCELL echT PressScience
2021 45(4): 823-833

Doi: 10.32604/biocell.2021.013864 www.techscience.com/journal/biocell

This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

mailto:xh220@zju.edu.cn
http://dx.doi.org/10.32604/biocell.2021.013864


Introduction

Cilium is a widespread organelle that is mainly consisted of
microtubules and locating on the cytomembrane. Its
discovery can be traced back to almost 350 years ago by
Anthony van Leeuwenhoek (May-Simera et al., 2017). The
related research on cilia has already started since the
nineteenth century, but there is no significant breakthrough
because of the limitations on experimental technologies. Not
until the invention and wide application of the electron
microscope did scientists begin to figure out the structure
and function of the cilium.

Cilia can be divided into two major categories: motile-
cilia (or so-called secondary cilia or flagella) and primary-
cilia. Motile-cilia, as the name suggests, are capable of
wobbling and thus can be found in many bio-tracts with
transportation functions, such as the digestive and
reproductive tracts. While primary cilia are unable to
spontaneously move and thus have been considered as a
vestigial version of motile-cilia in higher animal cells. Most
of the research has been only focusing on motile cilia for a
long period of time. However, since a bunch of unexpected
functions of primary cilia was uncovered in the 1990s
(Wheatley, 1995), more and more focus has begun to shift
to primary cilia. And this passion reached a new level after
the turn of the millennium when researchers noticed the
correlation between primary cilia and a wide range of
human diseases.

Primary cilia were firstly named by Sorokin (1968). And
it widely exists in almost all vertebrate cells (Bangs et al.,
2015). Primary cilia now have been discovered to have
multiple biological functions such as biosensor, cellular
signaling transducing hub, differentiation regulator and cell
cycle controller et al. Take one for instance, as the bio-
sensor, primary cilia have an essential role in olfaction
(Tadenev et al., 2011) and optesthesia (Ramamurthy and
Cayouette, 2009). Their defects usually lead to a wide range
of diseases which are defined as “Ciliopathy” (Reiter and
Leroux, 2017).

The structure of primary cilia has been very clear. They
have the classical 9+0 structure, which contains nine doublet
microtubules but without the central pair of singlet
microtubules that often appear inside motile cilia. Primary
cilia are unable to move by themselves since molecular
motors, and axonemal dyneins are missing (Satir and
Christensen, 2007). In general, the structure of primary cilia
can be divided into four parts: Basal body, transition zone,
axoneme, and the ciliary membrane (Elliott and Brugmann,
2019). However, it is worth noting that there is a special type
of primary cilia, nodel cilia, which are capable of oscillating
and playing an important role in the determination of the left
and right body axes during embryonic development.

Cell cycle regulation is the most important factor
influencing cell proliferation, and different cell cycle
checkpoints strictly regulate the cell cycle process to ensure
normal cell proliferation. In addition to the replication of
genetic material during the cell cycle, cell proliferation also
involves the replication of centrioles to form a spindle,
which is responsible for evenly distributing the replicated
genetic material to the daughter cells. As centrioles are also

indispensable components for ciliation, it is supposed to
have a dynamic and reciprocal interaction between primary
cilia and cell cycle as shown in Fig. 1. Tucker and colleagues
firstly found the mutually exclusive relation between
ciliation and cell proliferation (Tucker et al., 1979). And
further research unveiled more this kind of mutually
exclusive connections (Breslin et al., 2014). The cell cycle is
artificially divided into four phases: G1 (G0), S, G2 and M
for research purposes. In most cells, primary cilia start to
form during the G1 phase or the early stage of the G0 phase
(Nigg and Stearns, 2011). At this point, mitosis just right
finishes, and the mother centriole (the older centriole in two
centrioles in the daughter cell) is released from the
centrosome, an essential component in the spindle
apparatus. The released centriole next relocates to the
cytoplasmic membrane. Then it recruits appendages to form
a basal body, which is the base of the primary cilium
(Kobayashi and Dynlacht, 2011). Throughout the whole G0
phase, the primary cilia play important roles to regulate
cellular activities. However, this quiescent state begins to
transform when the cell prepares to re-enter into a new cell
cycle at G0/G1 phase. Firstly, primary cilia initiate their
disassembly during G1/S transition under the manipulation
of specific proteins (like Aurora-A). Then the mother
centriole in the basal body is released. Just like the reverse
version of ciliogenesis, the released centriole next relocates
to the nucleus and forms the centrosome at the G2/M phase
to facilitate the even distribution of genetic material into

FIGURE 1. A dynamic and reciprocal interaction between primary
cilia and cell cycle.
Most cells initiate their ciliogenesis at G1/G0 phase. And at the G1/S
transition, they initiate ciliary resorption, and the basal body would
release centriole to the cytoplasm. Relocated centrioles become
centrosome and help the DNA material evenly distribute into two
daughter cells. In each daughter cell, the older centriole would
move to the cytomembrane and transform to the basal body again,
waiting for the next cell cycle.
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two daughter cells during mitosis (M phase) (Liang et al.,
2016) (Plotnikova et al., 2009). And after mitosis, the cell
enters the G1 phase again and waits for the next cell cycle.

Thus, it is almost an instinct to propose an intimate
relationship between the cell cycle and primary cilia as they
share a common component. Therefore, what kind of
pivotal connection between the cell cycle and cilia becomes
an issue worth pondering. Up to now, no reciprocal relation
between motile-cilia and cell cycle regulation has ever been
reported because motile cilia usually emerge in limited
highly specialized cell types, which exit from the cell cycle
and undergo no proliferation, to perform specific functions.
So, in this review, we only focus on the interaction between
primary cilia and cell cycle regulation based on the universal
presence of primary cilia.

In addition to these obviously mutually exclusive
functions of centriole in both cell statuses, many other
studies have also shown more aspects of the connection
between cilia and cell-cycle at the beginning of this century
(Quarmby and Parker, 2005) and unraveled more intricate
interactions between cilia and cell cycle. For example,
research also revealed a suppressing effect of primary cilia
on cell proliferation in zebrafish embryos; longer primary
cilia suppress cell proliferation (Kim et al., 2011). And
proliferating tumor cells are considered to be cilium-free.
However, a recent study has found a great proportion of
tumor cells, such as HeLa and MG63, having primary cilia
(Kowal and Falk, 2015). This discovery makes the possible
role that primary cilia may play during tumorigenesis or
tumor cell maintenance even more obscure but also more
intriguing. It should point out that there could be a more
sophisticated interaction between cilia and the cell cycle
than we usually thought as only the mutually exclusive
relation, which also leads more scientists to focus on a deep
story about their interaction.

However, the exact mechanism of this interaction is still
obscure after decades of research. So, in this review, we
summarize the latest literature about the relationship between
primary cilia and cell cycle control and put forward three
major hypotheses of how the interaction between cilia and cell
cycle proceeds. In the end, we also raise up possible problems
and research directions to share with research communities
and trigger new promotion on this long-ignored area.

Primary cilium as cellular signal hub to regulate cell cycle
Primary cilia were first discovered as an important bridge of
signal transduction between the extracellular environment
and intracellular activities in 2003 (Huangfu et al., 2003).
After that, more signaling pathways have been found to
have primary cilia as their signaling hubs or transfer stations
(Pala et al., 2017). Downstream cellular activities based on
primary cilia-related signaling networks include cell
differentiation, proliferation, survival, metabolism,
migration, and cell cycle regulation. Thus, impairment of
primary cilia can cause defects in signal transduction
between the extracellular environment and intercellular
signals. And that defects usually result in physiological
imperfections (Pruski et al., 2019). It is worth mentioning
that many physiological imperfections were caused by cell
cycle regulation defects resulted from cilia-related signaling

pathway impairments. Under normal physiological
conditions, cellular proliferation is under strict regulation
through cilia-involved signaling pathways. Therefore the
imperfection of cilia-involved signaling pathways caused by
defects of cilia might lead to cell cycle dysregulation and
then lead to ciliopathies and cancers (Nishimura et al.,
2019). While a lot of signaling pathways have been found to
be primary cilia-related, many of these signaling pathways
lack sufficient research. Therefore, in order to make a
general impression about the hypothesis on cilia and cell
cycle-related signaling pathways only three relatively in-
depth researched primary cilia receptors are demonstrated
below. The basic information of other cilia-related signaling
pathways is shown in Tab. 1.

The general content of three typical cilia-related
signaling pathways is shown in the figure above. (1)
Polycystin1/2 regulate gene expression by increasing the
intracellular Ca2+ concentration to promote the interaction
between Ga2+ and Calmodulins. (2) Hedgehog signaling
(PTCH1) has Gli2 as a transcription factor to do this job.
(3) PDGFR initiates cell cycle-related gene expression by
recruiting SH2/PTB domain-containing adaptors.

In the table above, it is clearly demonstrated that most of
the cilia-related signaling pathways are involved in cell
proliferation. And any defects of these signaling pathways or
cilia are capable of triggering diseases caused by
dysregulation of cell cycle regulation, such as tumors, PKD,
or cysts (Pala et al., 2017; Wheway et al., 2018; Labour et
al., 2016; Tian et al., 2019; Siebel and Lendahl, 2017;
Ibraghimov-Beskrovnaya and Natoli, 2011; Liu et al., 2019;
Aspera-Werz et al., 2019).

Polycystin1/2 receptor complex mediated Ca2+ pathway
PKD is a common kidney disease characterized mainly by the
growth of large and fluid-filled cysts (Bergmann, 2019). It is
already known that PKD is caused at least in part by the
dysregulated renal cell proliferation. Polycystin1/2 encoded
by PKD1 and PKD2 (Cornec-Le Gall et al., 2019)
respectively is the essential mediator of this process. These
two receptors are locating in primary cilia in a form of
complex to act as a type of mechanical sensor and ion
channel, which in response to extracellular stimuli pump
extracellular Ca2+ into the cytoplasm. The elevated
intracellular Ca2+ lets the Ca2+ reservoir release more Ca2+

(Nauli et al., 2003). For example, in mouse embryonic renal
cells, the fluid flow or so-called mechanical stimuli directly
act on polycystin-1, and which then triggers polycystin-2 to
pump extracellular Ca2+ into the primary cilia of the renal
cells. Elevated intracellular Ca2+ level further stimulates the
endoplasmic reticulum membrane to release more Ca2+.
Combined with the released Ca2+, the downstream
Calmodulins are then activated and keep the renal cell
proliferate in a low and normal mitotic index. High-level
Ca2+ promotes cyclic nucleotide catabolism and makes less
cAMP, which suppresses cell proliferation as feedback
(Nauli et al., 2003) (illustrated in Fig. 2). If polycystin-1 or
polycystin-2 lose their functions resulting from ciliary
defects and lead to no extracellular stimuli detection, it will
cause low Ca2+ concentration and decrease of cyclic
nucleotide catabolism inside renal cells. And those two
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alterations together cause activation of Ca2+ inhibitable adenyl
cyclase 5/6 and accumulation of cAMP levels, which might
promote cell cycle progress pathways (Delling et al., 2013).
As a result, renal cells proliferate in a higher mitotic index
and finally lead to cystic tissue (Lee et al., 2011). Certainly,
another Ca2+-independent gene expression regulation
mechanism is also possible, by which polycystin-1
undergoes proteolytic cleavage and its cytoplasmic tail
translocate to the nucleus and interact with P100 or STAT
to affect downstream gene expression (Low et al., 2006).

PDGF/PDGFR related RTK pathway
PDGFR (Platelet-Derived Growth Factor Receptor) is a widely
expressed RTK family receptor locating on primary cilia and
reported to transmit extracellular information into the
nucleus and regulate the cell proliferation in fibroblast cells
(Christensen et al., 2008; Schneider et al., 2005). Autocrine
activation of PDGF signaling is involved in certain tumors
like gliomas, sarcomas, and leukemia (Andrae et al., 2008).
The ligands firstly bind to PDGFR on cilia which let the

intracellular tyrosine residues be autophosphorylated.
Conformation change allows the recruitment of SH2/PTB
domain-containing adaptors, such as SHP2 (Src Homology
Phosphotyrosyl Phosphatase 2) and PI3K (Phosphatidyl
Inositol 3-OH kinase) to bind. Subsequently, through the
Ras-Mek1/2-Erk1/2 pathway, CDK1 and CDK2 are
activated to promote cell cycle re-entry (see Fig. 2). This
pathway will only be activated when the cell is in the
ciliated quiescent status (Schneider et al., 2005). So, it is
clear that primary cilia play its essential role in the PDGF
signaling pathway. It is noteworthy that this pathway has
crosstalk with the HEF1/Aurora A/HDAC6 pathway
(Nielsen et al., 2015), which is a very important cilia status
regulator. In summary, as an essential cell cycle control
signaling pathway, the fulfilling of functions of the PDGF
signaling pathway heavily relies on normal primary cilia.

Hedgehog signaling
Hedgehog signaling is an essential developmental pathway. It is
also a crucial regulator of cell cycle regulation (Agathocleous et
al., 2007; Lupu et al., 2018) and is involved in several diseases
caused by abnormal cell cycle regulation. Thus Hedgehog has
become a hot spot of tumorigenesis and cancer therapy
research (Skoda et al., 2018). The primary cilium is the major
site where Hedgehog signaling transduction happens.

Mutual repulsive phenomena between Ptc1 and Smo on
the cilium defines different activity states of Hedgehog
signaling. In the absence of ligands, the Ptc1 receptor is
located on the primary cilia and repress Smo to transport
onto cilium. Gli transcription factors, the downstream
executant, are thus trapped at the tip of the primary cilium
and suppressed by Suppressor of Fused (SuFu). When
ligands bind on, Ptc is transferred to the cytomembrane,
which lets Smo move onto the ciliary membrane to repress
SuFu, removing repression on Gli. Gli activation finally
initiates transcription of proliferation-related genes such as
Cyclin D, Cyclin E, and E2F1 (Kasper et al., 2006).

It is worth emphasizing that the role of primary cilia in
the Hedgehog pathway is far beyond the fact that primary
cilia are the location of the receptors. The exact influence of
primary cilia on Hedgehog signaling is complicated.
Whether these act positively or negatively is context-
dependent and also determined by appropriate coordination
of ciliary proteins (Wong and Reiter, 2008; Dhekne et al.,

FIGURE 2. Details of three typical cilia-related signaling pathways.

TABLE 1

Multiple cilia-related signaling pathways and their basic information

Signaling Pathways Receptors on Cilia Physiological Roles Ciliopathies or Diseases

Hedgehog PTCH1 Proliferation Tumor

PDGF PDGFR Proliferation Tumor

Ga2+ pathway Polycystin1/2 Proliferation Polycystic Kidney Disease

TGF-β TGFβ1/2 MSC* Recruitment Orthopedic disease

mTOR Growth Factor Receptors Cell growth & Proliferation Renal cysts, Cancer

GPCRs 5-HTr6, SSTR3, MCHR1 Ciliary length Developmental defects

Notch Notch3 Proliferation Cadasil
Note: *Mesenchymal stem cell.
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2018; Kilander et al., 2018), especially the Intraflagellar
Transport (IFT) family. Cilium enclosed space is relatively
independent of the cytoplasm. The material and information
exchange between them is carried out by the IFT System
(Lechtreck, 2015). For the Hedgehog signaling pathway, the
Gli2 move from the tip of cilia and then is released to the
cytoplasm to help relocate β-catenin (Liem et al., 2012) is
also IFT dependent (see Fig. 2). Thus, IFT defects can
interfere with Hedgehog signaling function in cell cycle
regulation (Wu et al., 2017). And this is a different situation
compared with the PDGFR pathway and PKD-related
pathway, whose signaling transductions are not IFT-
dependent. So, from this point of perspective, Hedgehog
might be the most “ciliary pathway” among all the other
signaling pathways related to primary cilia.

In summary, primary cilia are associated with numerous
pathways that are well known to form complex signaling
networks (Christensen et al., 2017). And any defects of these
complex signaling networks are about to cause a wide
arrange of human diseases, such as cancers, ciliopathies, and
obesity et al. Among them, the relationship between cancer
and primary cilia is the most noticeable. Unregulated cell
proliferation is one of the major characters of cancer cells.
And as discussed above, primary cilium is a signal hub and
many primary cilia mediated signaling pathways are cell
cycle regulation-related. Except for the Hedgehog pathway,
PDGF pathway, Ga2+ pathway mentioned above, more
pathways are listed in Tab. 1. Therefore, any defects of
primary cilia can give rise to cell cycle regulation defects
then lead to cancer. It has been observed that many cancer
cells are either non-ciliated (Cao and Zhong, 2016) or those
ciliated cancer cells have abnormal primary cilia (Yasar et
al., 2017). This phenomenon suggests that the ciliary loss or
abnormality may cause cancers. Thus, in Tab. 1, it is
intuitive to see that the diseases resulted from primary cilia
mediated signal defects are mostly cancers or tumors.
Furthermore, some primary cilia-mediated signaling
pathway defects only induce mild cell cycle dysregulation as
the mentioned PKD and many other ciliopathies with cyst
(Tsang et al., 2018). In addition, defects of primary cilia
mediated pathways also cause obesity. Obesity is a common
character of Bardet-Biedl Syndrome (BBS) and Alstrom
Syndrome (ALMS), which are both ciliopathies (Vaisse et
al., 2017). This phenomenon indicates a potential intimacy
between obesity (energy homeostasis of cells) and primary
cilia. However, the molecular mechanism about how exactly
defects in primary cilia interact with the energy homeostasis
of cells is still unknown. Based on the recent literature, the
interaction can be divided into two categories as far: Leptin-
dependent and leptin-independent (Vaisse et al., 2017; Volta
and Gerdes, 2017). These two pathways are different in
molecule details from each other, but both of them are
depending on the role of primary cilia as the signaling hubs
in cells as many receptors of cellular energy homeostasis
related signaling pathways are located in primary cilia, such
as lepRb, Sstr3, 5HT6 and Npy2r et al. Therefore, any
defects happening to primary cilia can damage the energy
homeostasis and cause obesity in individual level.

Generally speaking, the multiplicity of the ciliary receptors
system opens up a whole realm of possibilities for the primary

cilium to coordinate the cross-talking between different
signaling pathways, which in a concerted action, balances the
biological output. And therefore, comprehensively regulates
the physiological activities of cells, more than just cell cycle
re-entry. Recent research shows that in keratinocytes, corneal
epithelia and neuroepithelia, primary cilia are able to regulate
cell proliferation and differentiation by regulating the Notch
signaling pathway (Wheway et al., 2018). Although the
mechanism is still intriguing, the implication of coordination
from different pathways illustrates again the complicacy.

Primary cilium as a reservoir of cell cycle regulation factors
Primary cilia is a cell cycle regulation related factor reservoir
structurally and compositionally separated from
cytomembrane and cytoplasm (Satir and Christensen, 2007).
When cilia experience physiological resorption or
pathological structure damage, transcription factors or
signaling pathway members originally stored inside primary
cilia might be released to the cytoplasm and even end up
being inside the nucleus. Gene expression profile regulating
the cell cycle control may be changed. This mechanism is
usually described as the “Reservoir Hypothesis” (Kim and
Tsiokas, 2011) (see Fig. 3). Jouberin (Jbn) (Lancaster et al.,
2011) and Gli2 (Han et al., 2009) are two typical cases of
this hypothesis.

Jbn is encoded by AHI1, mutations of which mainly
contribute to the Joubert Syndrome (Dixon-Salazar et al.,
2004). The β-catenin is the core component of the canonical
WNT pathway. Extracellular signals received by Wnt
receptors (Frizzled, Lrp) are transmitted into the nucleus to
regulate the downstream cellular activities including cell
cycle re-entry, during which the nuclear localization of
β-catenin is the most critical step. However, β-catenin itself
has no nuclear localization sequence (NLS) responsible for
this trans-localization. Jouberin (Jbn) is one kind of protein
facilitating β-catenin’s re-localization and accumulation
inside the nucleus (Lancaster et al., 2009). Jbn usually
locates inside of primary cilia (Lancaster et al., 2011).
However, this isolation status can be broken up under some
conditions and the molecules are transferred out by the
ciliary IFT system (Lancaster et al., 2009; Lancaster et al.,
2011). So when cells are in quiescent status, primary cilia
act as a negative regulator of Wnt signal to keep Jbn inside
and away from β-catenin (Lancaster et al., 2011). While
when the primary cilia experience resorption, Jbn may be
released to the cytoplasm but in an IFT-independent way
and promote Wnt-signaling by transferring more β-catenin
into the nucleus. Then β-catenin makes proliferation-related
genes express and finally leads to cell cycle re-entry
(shown in Fig. 3).

As mentioned above, activation of Hedgehog signaling
leads to the release of Gli factors to the cytoplasm, which
are originally restricted inside primary cilium by SuFu in
quiescent cells. Thus, those sequestered Gli factors (such as
Gli2) use primary cilium as the reservoir. Under normal
conditions, Gli2 could be released to the cytoplasm by
Hedgehog ligands binding on Ptc1 to relieve Smo’s
repression on SuFu. However, in some cases when primary
cilia experience resorption (Han et al., 2009; Wong et al.,
2009; Zhao et al., 2017), Gli2 could also be released to the

CELL CYCLE REGULATION BY PRIMARY CILIUM 827



cytoplasm, which makes the higher concentration of
cytoplasmic Gli2. Excess Gli2 will be transferred into the
nucleus and activate cell cycle promotion genes, leading to
cell cycle dysregulation, which causes ciliopathies or tumors.

In conclusion, Jbn and Gli2 are originally sequestered
inside primary cilia. When primary cilia are experiencing
abnormal resorption or collapse, Jbn and Gli2 would be
released into the cytoplasm and over-activate cell cycle-
related signaling pathways. This hypothesis is different from
the one that primary cilia are the cellular signal hub. Because
there are no extracellular stimuli nor complete signal
transduction involved. And this field calls for more attention.

Primary cilium as a cell cycle checkpoint or brake
Cell cycle checkpoints determine whether and when do cells
enter the cell cycle. Many cellular events have been
considered as checkpoints during the cell cycle. In fact,
many characters of the interaction between primary cilia
and cell cycle meet the features of being considered as a cell
cycle checkpoint. First, when proteins promoting
ciliogenesis such as NDE1 (Kim et al., 2011) and Tctex-1 (Li
et al., 2011) are overexpressed, cells will experience cell cycle
arrest. Second, when proteins suppressing the ciliogenesis
such as Aurora-A and trichoplein are inhibited, the cell will
experience cell cycle arrest as well (Zhu et al., 2017). And
third, manipulating IFT proteins to make cell compulsorily
experience ciliogenesis or ciliary resorption can reverse the
effects by all the molecules. These three facts imply a
similarity of primary cilia with the pattern of general
checkpoint. Therefore, primary cilia might work as a

physical checkpoint before cell cycle re-entry (Goto et al.,
2017). This is the checkpoint hypothesis. In other words, by
manipulating the length of primary cilia or the timing of
ciliogenesis, researchers are able to delay the cell cycle re-
entry or initiate it in advance (Hsiao et al., 2018). Many
proteins functioning as ciliary regulators have been involved
in this hypothesis. Such as Nde1, Tctex-1, Aurora-A-HEF1,
Kif24 (Kim et al., 2015), Pifo (Kinzel et al., 2010), and
IFT88 and IFT27 (Qin et al., 2007; Robert et al., 2007).

1. Aurora-A
Aurora/Ipl1-related kinases are evolutionally conserved

serine/threonine kinases (Marumoto et al., 2005). And it is a
key regulator during oncogenesis and a potential cancer
therapeutic molecule (Katayama et al., 2003; Yan et al.,
2016). Aurora-A influences the cell cycle by making the
balance between ciliary resorption and ciliary disassembly
towards disassembly (Izawa et al., 2015; Kasahara et al.,
2018). After ciliary disassembly caused by Aurora-A, the cell
would initiate its cell cycle re-entry process. Furthermore,
Aurora-A is also capable of suppressing ciliogenesis during
cell mitosis (Goto et al., 2017; Inaba et al., 2016). This
demonstrates the dual function of Aurora-A in regulating
mitosis. And it is a clear truth that being ciliated or not is a
key feature before the cell cycle re-entry.

2. Nek2
Nek2 is an S/G phase kinase, which consists of two

subtypes, Nek2A and Nek2b (Pfleger and Kirschner, 2000;
Hames et al., 2001), and it has been found to function as an
oncogene in many cancers (Cappello et al., 2014; Zhou
et al., 2013; Hayward et al., 2004). There are researches

FIGURE 3. Primary cilium as a reservoir of cell cycle regulatory factors.
The left picture shows the primary cilia under normal physiological conditions. Its structure and function are complete, and transcription
factors (Gli2 and Jbn) are sequestered inside primary cilia. Their transmission is under strict regulation (the IFT system is responsible for this
regulation, shown in the blue arrow inside primary cilia in the left). However, if the structure is defective, sequestered factors would release
from the primary cilia without any regulation (without the IFT system being involved in the right model) and cause dysregulated
transcription factor transmission. And finally, it would lead to violent cell proliferation. This violent cell proliferation is responsible for
many ciliopathies and tumors.
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demonstrating Nek2 as a suppressing factor of ciliogenesis
(Spalluto et al., 2012; Kim et al., 2015), in which Nek2 and
Kif24 work together to suppress ciliogenesis and promote
ciliary disassembly and, next, cells are allowed to initiate cell
cycle re-entry (Kobayashi et al., 2011). This phenomenon is
consistent with the one described Aurora-A that when cilia
are removed, cells would initiate the cell cycle re-entry.

3. Tctex-1
Tctex-1, also known as DYNLT1, is a dynein light chain

protein. It is mostly discovered in neural precursor cells and
plays an important role in neuron differentiation. When
precursor cells lose its ability to proliferate, it begins to
differentiate (Gauthier-Fisher et al., 2009). This fact suggests
a possible interaction between Tctex-1 and cell cycle re-
entry. And later research found that only in ciliated cells
does Tctex-1 have an impact on G1/S transition (Li et al.,
2011), demonstrating an essential role of cilia in the cell
cycle. A further mechanism was uncovered that Thr96
Phosphorylated Tctex-1 can cause cilia resorption by IGF-1
and promote cell cycle re-entry (Yeh et al., 2013). However,
only in ciliated cells can Tctex-1 be phosphorylated in
Thr94 (Li et al., 2011). So phosphorylated Tctex-1 promotes
ciliary resorption in a cilia-dependent way and leads to cell
cycle re-entry. In summary, primary cilium is a cell cycle
checkpoint and functions through Tctex-1.

4. Nde1
Nde1, interacting with dynein light chain LC8, can

negatively regulate the ciliary length. It expresses at a high
level during the M phase while at a low level during the G0
phase. And depletion of Nde1 leads to longer primary cilia
delay in G0/G1 transition (Kim et al., 2011). Those two
facts together suggest a connection between Nde1 and cell
cycle regulation through cilia length. By knockdown Nde1
in zebrafish embryos, cells are found with longer primary
cilia but with a lower mitosis index (Kim et al., 2011). So,
Nde1 regulates cell cycle re-entry timing by controlling the
length of primary cilia.

What is worth emphasizing here is that primary cilia play
an essential role as the so-called checkpoint of mitosis not
because of the dual functions of those proteins in both
ciliogenesis/resorption and cell cycle re-entry and also not
simply because both mitosis and ciliogenesis require the
involvement of centriole. The quintessence of this
hypothesis here is that cilia are considered as a checkpoint
before and during cell cycle re-entry, just like other
checkpoint parameters: Cell size, environmental nutrition,
and DNA integrity. This feature is well demonstrated in
Tctex-1 and Nde1: The presence or the length of cilia both
influence the timing of cell cycle re-entry, just like the
biological effects of other cellular checkpoint factors. Take
DAN reparation, for instance, damaged DNA material
without appropriate reparation leads to proliferation arrest
(Karimian et al., 2016). And initiating ciliogenesis during
mitosis also leads to proliferation arrest. Moreover, almost
all the mentioned molecules (Aurora A, Nek1, Tctex-1, and
Nde1) are oncogenesis-related. This supports the
“checkpoint hypothesis” in an indirect way. Because many
other cell cycle checkpoints related factors are also
oncogenesis-related. It is easy to understand. These
checkpoints molecules are ciliogenesis or ciliary resorption

related. If they lost their functions, cells might be able to re-
enter the cell cycle without appreciating regulation. Thus, all
these proteins naturally can be considered as proto-
oncogenes and tumor suppressor genes and should be
brought to the light and considered as potentially promising
cancer treatment targets.

Primary cilia and embryonic stem cell maintaining and
differentiation
Regulating differentiation can be considered as a special form
of cell cycle regulation. Because when a cell specializes, it loses
the ability to divide while the cell non-specialized keeps its
ability to divide. Primary cilia can also be discovered in
embryonic stem cells (ESCs). Combining the following facts:
most of the differentiated cells lost their ability to divide and
primary cilia regulate the cell cycle, it is logical to assume
that primary cilia may regulate cell differentiation as well.
Literally, there is increasing evidence indicating that primary
cilia may play an important role in ESCs maintaining and
differentiation or the so-called asymmetric division
(asymmetric division decide the fate of the daughter cells).
Take Tctex-1, for instance, as mentioned above, it is an
important neuron differentiation factor. And the possible
mechanism of Tctex-1 promoting differentiation is
suppressing Tctex-1 to keep cells ciliated. And these ciliated
cells would lose their ability to divide and begin to
differentiate. CPAP works the same way. In in vitro
experiments, when CPAP is mutated, it fails to negatively
regulate cilia length. This causes long cilia, retarded ciliary
disassembly, and delayed cell cycle re-entry, and further
leads to premature differentiation of NPCs (Gabriel et al.,
2016). This is the first way of cilia regulating cell fate.
Second, many embryonic stem cell makers are discovered
on primary cilia in ESCs, including Oct4, Sox2, and Nanog.
These factors are essential for stem cell maintenance. So this
fact indicates a possibly critical role that primary cilia may
play in ESCs maintaining (Vestergaard et al., 2014), but the
mechanism is not known yet. Third, as the signaling hubs in
cells, many signaling pathways are primary cilia-dependent.
And these primary cilia-dependent signaling pathways are
playing a significant role in not only cell cycle re-entry
regulation but also ESCs maintaining or differentiation;
these signaling pathways include PDGFR (Pébay et al.,
2005), Hedgehog (Hunkapiller et al., 2011), and Wnt/β-
catenin (Sato et al., 2003), and so on. Thus, by regulating
the signal transduction, primary cilia become a key part of
the cell differentiation manipulation center. In summary,
Primary cilia regulate ESCs, both stem maintaining and
differentiation, in three different ways.

Conclusion

In this review, three hypotheses were demonstrated in detail:
(1) Primary cilium as a cellular signaling hub to regulate the
expression of cell cycle control-related genes, (2) Primary
cilium as a reservoir of cell cycle regulation-related
transcription factors, (3) Primary cilium as a cell cycle brake
or checking-point. However, this forgotten field has not
been given enough attention. In terms of the first
hypothesis, no further interaction has been uncovered so
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far. It is not clear whether primary cilia can regulate signaling
pathways in a way more than just the scaffold of signaling,
whether there is molecular cross-talking among different
signaling pathways through or coordinated by primary cilia,
and whether primary cilia can regulate signal strength and
select downstream targets so to have different impacts on
cell cycle. All these problems are attractive and need more
attention. In the second hypothesis, the research of the
molecular mechanism of Medulloblastoma genesis (MB) is
the major resource on the information of Gli2 as a cilia-
sequestered factor inside primary cilia so far. But there still
is no direct evidence to prove that Gli2 or Jbn literally
function in a way that perfectly matches the pattern of the
hypothesis. And Medulloblastoma is still a promising
information resource for future research so far. In the third
hypothesis, it is clear to see the potential of primary cilia as
a brake of cell cycle control. And these molecules mentioned
above are all possible counterparts of other mature
proliferation brake components such as p53 and p21. All
those proteins (Aurora-A, Nek2, Tctex1, and Nde1) are
promising targets for tumor treatment and require deeper
research (Chen et al., 2020). And making cilia-free tumor
cells ciliated may be a good way to suppress tumor spread
and finally leads to complete cure. And as almost all human
cells are ciliated, we would not see any potential of negative
side effects. In the end, we briefly described the relation
between primary cilia and stem cell maintaining/
differentiation, which is similar to the pattern of interaction
between the cell cycle and primary cilia. Therefore, there
may be a more sophisticated interaction among these three
cellular activities (ciliation, proliferation, and stem cell
maintaining/differentiation).

From something being thought of as a vestigial structure
in cells to a cellular organelle being considered as one of the
most valuable research fields, the research on primary cilia
has encountered its highlight moment in the 21st century,
but the light is not bright enough yet. Many promising
fields are quite away from the research spotlight, such as the
interaction among primary cilia, cell cycle regulation, and
tumorigenesis. Therefore, we sincerely hope that all this
obscure can be clarified in future researches. And all
potentials can become realities.
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