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Abstract: Fibroblast growth factors (FGFs) play pivotal roles in cell migration and proliferation. However, the identity of

the FGF that plays a dominant role in kidney cell proliferation remains unclear. Therefore, in this study, we investigated

the dominant FGF among all FGFs. To this end, RNA-sequencing, qRT-PCR, western blotting, and ChIP assays were

performed. FGF9 showed the highest expression among all FGFs, and its overexpression significantly promoted

proliferation in the mouse kidney cell line C57BL/6 and increased JNK and AKT phosphorylation levels. Further,

RNA-seq analysis identified 365 upregulated and 276 downregulated genes in FGF9-overexpressed cells. These

differentially expressed genes were classified primarily into 20 biological pathways and were enriched in 31 gene

ontology terms. qRT-PCR revealed that the expression of WNT and NF-κB signaling genes, as well as ANXA4

expression patterns, correlated with the RNA-seq data, while FGF9-overexpressed cells accumulated more β-catenin, a

key WNT signaling protein, compared to control cells. Moreover, downregulation of the gene that encodes β-catenin

or ANXA4 inhibited C57BL/6 cell proliferation. Additionally, the expression of ANXA4 was lower in CTNNB1-

knockdown cells than in the control group. Additionally, the ChIP assay revealed that a transcription factor complex

containing TCF4 and β-catenin directly binds to the ANXA4 promoter. Taken together, these results suggest a role of

FGF9 in the regulation of kidney cell migration. These findings may prove useful in the development of future therapies.

Introduction

The kidneys are very important organs both morphologically
and functionally as they serve to maintain salt, water, and
acid-base homeostasis, as well as to secrete waste products
in the form of urine (Márquez et al., 2002). However, the
intricate structure of the nephron is required for the kidney
to carry out its function. Hence, kidney growth and
maturation require the completion of nephrogenesis and
further terminal differentiation (Nigam Sk and Brenner,
1996). Moreover, cell proliferation is a key process in organ
development, and although previous studies have focused on
morphological analysis during kidney development and the
role of cell proliferation in nephron diseases (Márquez et al.,
2002; Song and Yosypiv, 2012; Lee et al., 2015), reports
detailing the underlying mechanisms associated with kidney
cell proliferation, remain limited. Nevertheless, the studies
that have been performed in this field have reported that

hepatic nuclear factor-alpha (HNFα) regulates 14
downstream genes associated with kidney cell proliferation
(Grigo et al., 2008). Furthermore, although upregulation of
fibroblast growth factor (FGF)9 and FGF1 was detected in
adult rat kidney cortical and outer medullary tissues
(Cancilla et al., 2001), the function of these proteins in
kidney cell proliferation during development is unclear.

The FGF family of proteins comprises 23 members in
mammalian genomes (Mohammadi et al., 2005); these are
involved in regulating mammalian metabolism and
development. Specifically, the role of FGFs has been
characterized in embryogenesis, somitogenesis, body plan
formation, gastrulation, skin wound healing, and
organogenesis (Feldman et al., 1995; Goldfarb, 1996; Martin,
1998; Sun et al., 1999; Dubrulle and Pourquié, 2004;
Kanazawa et al., 2010). FGF1, specifically, has been shown
to participate in blood sugar homeostasis via regulating
insulin sensitivity (Suh et al., 2014). Meanwhile, bFGF/FGF2
promotes skin fibroblast migration by activation of the
PI3K-RAC1-JNK signaling pathway (Kanazawa et al., 2010).
Additionally, FGF21 has been reported to be highly sensitive
to starvation stress or drug administration while also playing
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a key role in glucose homeostasis, as well as in the protection of
the liver and heart from injury (Lin et al., 2013; Liang et al.,
2014; Lin et al., 2014). In addition, FGF9 protects against
fibrosis during cardiac fibroblast malformation (Sun et al.,
2019); meanwhile, abnormal activation of FGF9 during the
development of the anorectum in rat embryos results in
anorectal (Liu et al., 2019). Still further, FGF23-klotho
protects against early chronic kidney disease in Type 2
diabetes (Ribeiro et al., 2019). However, the function of FGFs
in kidney cell proliferation remains unclear.

A previous study using RNA-seq based transcriptome
dissection reported that diverse pathway genes are under the
control of bFGF, including WNT, hedgehog, and inflammatory
response signaling genes in skin fibroblasts (Xuan et al., 2016).
Consequently, WNT/β-catenin signaling plays a key role in
fibroblast migration and proliferation (Wang et al., 2017).
Additionally, the canonical WNT pathway, β-catenin-TCF/LEF-1
signaling, is reportedly activated by hepatocyte growth factor/
scatter factor (HGF/SF), epidermal growth factor (EGF),
insulin-like growth factor (IGF)-1, insulin, and IGF-2 (Muller et
al., 2002; Lu et al., 2003; Deval et al., 2006; Heo et al., 2012).
Furthermore, PI3K-activates PKB/AKT to phosphorylate GSK-
3β at the Ser9 residue, thereby inhibiting GSK-3β activity and
subsequently activating the β-catenin-TCF/LEF-1 axis in insulin
signaling (Cross et al., 1995; Weston and Davis, 2001). EGF
stimulation also triggers the translocation of β-catenin to the
nucleus to promote its transactivation irrespective of the
stability and phosphorylation of β-catenin (by GSK-3β)
(Lu et al., 2003). In addition, EGF-ERK2 increases β-catenin
transactivation and enhances α-catenin phosphorylation at
Ser641 by CK2 to promote tumor cell invasion (Ji et al., 2009).
Meanwhile, β-catenin has been reported to promote cell
proliferation in renal cancer cells (Yang et al., 2017).
Furthermore, a whole-genome aimed at identifying the
sequences bound by the β-catenin-TCF/LEF transcription factor
complex revealed that the TCF/LEF transcription regulation
complex binds to the cis-element sequences T/A

C/GAAAG
present at downstream target gene promoters (Schuijers et al.,
2014). These findings indicate that diverse mechanisms
modulate β-catenin activity (Lu and Hunter, 2004).

In the present study, the dominantly expressed FGFs
were analyzed in kidney cells, and their associated
regulatory mechanisms were characterized using molecular
and biochemical assays. Consequently, this study identified
the role of FGF9 in kidney cell proliferation and provided
useful information for further exploration of the FGF-
regulated cell proliferation mechanism.

Materials and Methods

Mouse kidney cell line culture
The C57BL/6 mouse kidney cell line was obtained from
American Type Cell Collection (ATCC, Manassas, VA) and
was grown in Dulbecco’s Modified Eagle’s medium
(DMEM) containing 5.5 mM glucose, 1% penicillin-
streptomycin, and 10% fetal bovine serum.

Cell proliferation analysis
Cell proliferation was measured using the Cell Counting Kit-8
(CCK-8, Dojindo Bio., Japan) following the manufacturer’s

instruction. Briefly, the cells (2.6 × 104 cells/well, 100 mL)
were digested with trypsin and subsequently transferred to 96-
well plates, with five parallel wells assigned for each treatment.

Overexpression of FGF9 and silencing of CTNNB1 and ANXA4
in C57BL/6 mouse kidney cells
The FGF9 open reading frame was amplified from the cDNA of
C57BL/6 mouse kidney cells by PCR and cloned into the
pcDNA3.1 (+) (Cat. No. V79020; Thermo Fisher Scientific,
Inc., Waltham, USA) expression vector to create FGF9
overexpression plasmids. The primer information for CTNNB1
silencing is shown as follow: FGF9 CF: ATGGCTCCCTTAGG
TGAAGTTGG, FGF9 CR: TCAACTTTGGCTTAG
AATATCCTTATA. The negative control siRNA (ON-
TARGETplus si CONTROL non-targeting pool, D-001810) and
CTNNB1 siRNA duplex (ON-TARGET plus SMART pool, L-
004018) were obtained from Dharmacon RNA Technologies
(Chicago, IL, USA). RNAs (shRNAs) targeting ANXA4
(shANXA4F: CGCGTccccCCGATGAAGACGCCATTATttcaa-
gagaATAATGGCGTCTTCATCGGtttttGGAAAT; shANXA4R:
cgatTTCCaaaaaCCGA TGAAGACGCCATTATtctcttgaaAT-
AATGGCGTCTTCATCGGGGGGA) and negative control
non-specific shRNA (NC shRNA) were synthesized by
Songon Biotech Co. (Shanghai, China; Liu et al., 2017).
Fibroblasts that reached 30%–50% confluence were used for
transfection with 2 µg of the FGF9 overexpression plasmid
or 30 nM of the siRNA duplex using Lipofectamine 2000
(Invitrogen) and Opti-MEM� I Reduced Serum Medium
(Gibco), according to the manufacturer’s instructions.

RNA-sequencing assay
Total RNA extracted from C57BL/6 mouse kidney cells, with
or without FGF9-overexpression, was used for RNA-
sequencing experiments. The RNA-seq experiments and
further data analyses were performed by Songon Biotech
Co., Ltd. (Shanghai, China), and data were deposited in a
personal computer, which will be released upon request.

GO and KEGG enrichment analyses
Differentially expressed genes were analyzed further based on
statistical outcomes by assessing their association with
biological processes using the gene ontology (GO) database
(Consortium, 2006). Fisher’s exact test was performed to
enrich the GO category. The false discovery rate (FDR) was
further calculated to correct the P-value, with a smaller FDR
indicating a smaller error in judging the P-value (Dupuy
et al., 2007). The enrichment of GO terms among
differentially expressed probe sets was identified using the
one-tailed Fisher’s exact test (Dunnick et al., 2012). KEGG,
Biocarta, and Reactome were employed to analyze pathway
enrichment for differentially expressed genes. Fisher’s exact
test was followed by Benjamini–Hochberg (BH) multiple
testing correction to select the significant pathways, and the
threshold of significance was defined by P-value and FDR
(Draghici et al., 2007).

ChIP assay
Chromatin immunoprecipitation (ChIP) assay was performed
using a chromatin immunoprecipitation assay kit (Cat No. 17-
295, Millipore, Billerica, MA), according to the manufacturer’s
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instructions. Approximately 1 µg of anti-β-catenin antibody
(Abcam, ab32572) or 1 µg of anti-TCF4 antibody (Cell Signaling
Technology, 2566) was added to the reaction solution to
immunoprecipitate DNA fragments. The resulting
immunoprecipitated (IP) DNA was compared with the DNA
precipitated with anti-mouse IgG antibody (Abcam, ab190475)
using quantitative PCR (qPCR) with SYBR Green (cat. no.
4472908) for F1, F2, or F3 regions; Thermo Fisher Scientific,
Inc.), according to the manufacturer’s protocol. ChIP-PCR was
performed with an initial denaturation at 95°C for 3 min,
followed by 40 cycles of denaturation for 30 s at 95°C, annealing
for 30 s at 58°C, and extension at 72°C for 30 s, followed by a
final extension at 72°C for 5 min. GAPDH was used as a
reference gene to normalize the data. The primer sequences for
qRT-PCR are listed as follow: F1 (F: ATCTTGAGGGAGACT-
TGGACA, R: CTCTGGATGAATACCTGTGGC), F2 (F: CTC-
TGAGTGAGTCGCGAGGTTAT, R: G AGTTGGTCTCCAAT-
GTTGTTTG), and F3 (F: TGTGATT CAAGAGCTCGAGAC,
R: AAGCTCGAATGACGTA CGTTC).

Total RNA extraction, cDNA synthesis, and qRT-PCR
Approximately 2 µg of total RNA from C57BL/6 mouse
kidney cells was reverse-transcribed using the GoScript
Reverse Transcription Kit (Reverse Transcription System,
Promega) as per the manufacturer’s methods. Gene
expression was quantified as described previously via qRT-
PCR assay (Xuan et al., 2016). The primers information are
listed as follow: GAPDH (F: GCCAAGGTCATCCA-
TGACAACT, R:GAGGGGCCATCCACAGTCTT), FGF1 (F:
TGCTCTACTGCAGCAACG, R: C TAGTCAGAAGACAC-
CGG), FGFR2 (F: CAAGAAC GGCGGCTTCTTC, R: GGA-
AGAAACAGTATGGCCT) FGR3 (F: CAAGCTCTACT-
GCGCTACC, R: GTCCAC CTGTATGCAGCT), FGF4 (F:
TACTGCAACGTGG GCATC, R: GGAAGTGGGTTACC-
TTCA), FGF5 (F: GAAGTAGCGCGACGTTTTC, R:
GGCTTAACACA CTGGCTTC), FGG6 (F: CTCTACTG-
CAACGTGGG C,R:GGAAGTGAGTGACAGTCA), FGF7
(F: AGAC TGTTCTGTCGCACC, R: CCGCTGTGTGTC-
CATTT AG), FGF8 (F: ACCTACCAGCTCTACAGCC, R:
GG CGGGTAGTTGAGGAACT), FGF9 (F: CTGCAGGA
CTGGATTTCATTT, R: GTTCAGGTACTTTGTCA GGG),
FGF10 (F: TGTCCGCTGGAGAAGGCTGT TC, R:CTAT-
GTTTGGATCGTCATGG), FGF11 (F: ATCGTCACCAAA-
CTGTTCTG, R: CAGGAACAC TGTGGAGAGAA), FGF12
(F: TCAGCCAGCAGG GATATTTC, R: CACGACTTT-
GCCTCCATTCA), FGF13 (F: TAACCTCATCCCTG-
TGGG, R: GAGAA CTCCGTGAGATCG), FGF14 (F:
CAACCTCATCC CAGTGGGA, R: GGGACTGTTTCACC-
AACATC), FGF15 (F: ACTCCGCTGGTCCCTATGTC, R:
CTAC ATCCTCCACCATCCT), FGF16 (F: GCTTCCACC
TTGAGATCTTC, R: GAGATCTCTGGACATGGAG)
FGF17(F:CCAGCTCTACAGCCGGAC, R: GGGGC GGA-
GCCCACAAAT), FGF18 (F: CCAGCTCTATA GCAGGAC,
R: GCTTGGTGACTGTGGTGT), FGF 19 (F: AACTTTAT-
CCCCATATTTCACC, R: GAAG CTGGGACTCTTCACT),
FGF20 (F: TCAGAGAA ATTGACTTCTG, R: GTGTA-
CATCAGTAGGTCTT), FGF21 (F: GATGACGACCAA-
GACACTG, R: CGGC CCTGTAAAGGCTCT), FGF22 (F:
GCCTCTTCTC CTCCACTC, R: CGAGACCAAGAC-
TGGCAG). FG F23 (F: ACAGCCAGGACCAGCTATC,

R: CTCGCGAGAGCAGGATACA), ANXA4 (F: ACCAGC-
AGCAATATGGACGG, R: TTCGGTTCCGGGAACAGAG),
CTNNB1 (F: TCGCCAGGATGATCCCAGC, R: GC CCA-
TCCATGAGGTCCTG), SMO (F: ACCTATGCC TGGCAC-
ACTTC, R: AGGAAGTAGCCTCCCACGAT, PTCH (F:
CAAACTCCTGGTGCAAACCG, R: CCGGGATTCTCAG-
CCTTGTT), and GLI1 (F: CCAGAGTTCAAGAGCCTGG.
R: CC TCGCTCCATAAGGCTCAG).

Western blot analysis
Protein was extracted from cells using a lysis solution (7 M
urea, 2 M thiourea, 40 mM Trizma base, 2% CHAPS, 1%
protease inhibitor, and 40 mM dithiothreitol (DTT)). The
cell lysates were centrifuged at 15,000 × g for 15 min, and
the supernatants were harvested for total protein
concentration measurement via the Bradford protein assay
(Bio-Rad, Richmond, CA, USA). Next, 20 µg of protein
from each sample was resolved using the SDS-PAGE and
subsequently transferred onto Immobilon-P Transfer
Membranes (MILLIPORE JAPAN, Tokyo, Japan). The
membranes were incubated in 1× TBS containing 0.05%
Tween-20 and 5% milk for 2 h and incubated further with
the primary antibodies at 25°C for 1 h. Anti-GAPDH
(1:2500, Abcam, ab9485), anti-phospho-SAPK/JNK
(Thr183/Tyr185) antibody (1:1000, Cell Signaling
Technology, 4668), anti-JNK1 + JNK2 + JNK3 antibody
(1:1000, Abcam, ab179461), anti-phospho-AKT (Ser473)
antibody (1:2000, Cell Signaling Technology, 4060), anti-p-
IκBα antibody (1:500, Santa Cruz Biotechnology, sc-8404),
anti-β-catenin antibody (1:1000, Cell Signaling Technology,
8480), anti-AKT antibody (1:1000, Cell Signaling
Technology, 4691), anti-β-catenin antibody (1:2000, Abcam,
ab32572), and anti-ANXA4 antibody (1:2000, Abcam,
ab256456) were used as primary antibodies. After
incubation, the membranes were washed with 1× TBS twice
and incubated for 1 h with an anti-mouse or anti-rabbit
HRP-linked secondary antibody (1:2000, Cell Signaling
Technology). Antigen-antibody complexes were detected
with an electrochemiluminescence (ECL) kit (GE
healthcare). The protein band density was quantified using
the ImageJ software (National Institute of Health, Bethesda,
MD, USA), and the relative levels were normalized to
GAPDH levels.

Statistical analysis
Prism 5 (GraphPad Software, San Diego, CA) software was
used for statistical analysis. Student’s t-test was used to
analyze significant differences between two groups.

Results

Expression patterns of FGFs in C57BL/6 mouse kidney cells
qRT-PCR was performed to evaluate the expression levels of
23 FGF family member genes in C57BL/6 mouse kidney
cells. The results indicate that FGF1, 5, 7, 8, 9, 10, 11, 12, 16,
and 17 exhibited the highest expression levels among the 23
FGFs. Among these, FGF9 exhibited the highest expression,
followed by FGF1. Meanwhile, FGF2, FGF6, FGF13, FGF14,
FGF19, FGF20, FGF21, and FGF23 were found to be rarely
expressed in the kidney cells (Fig. 1).
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Overexpression of FGF9 promotes kidney cell proliferation
As FGF9 was the predominantly expressed FGF in kidney
cells, its function was further investigated via overexpression
in C57BL/6 mouse kidney cells. The qRT-PCR results
indicate that the FGF9 expression levels, but not those of
FGF1 or FGF21, were higher in the overexpressed cells
compared to those in the non-transfected control cells
(Fig. 2A). Using the FGF9-overexpressed cells, the
proliferation rate was examined by CCK-8, and cell density
measurement showed that FGF9 overexpression significantly
promoted the proliferation of C57BL/6 cells (Fig. 2B). Next,
AKT and JNK levels in the control and FGF9
overexpressing cells were analyzed. Western blotting results

indicate that FGF9 overexpression induced phosphorylation

of AKT and JNK without affecting the total AKT or JNK

levels (Figs. 2C and 2D).

Screening the FGF9-regulating transcriptome
To screen FGF9-regulating genes and pathways, RNA-seq
based transcriptome analysis was performed by using the
FGF9-overexpressing and control C57BL/6 mouse kidney
cells. The RNA-seq results indicate that a total of 641 genes
were differentially expressed following the overexpression of
FGF9 (1.5-fold change; P < 0.05). Among these, 365
downregulated genes and 276 upregulated genes were
identified (Fig. 3A). Further, qRT-PCR revealed that the

FIGURE 1. FGF expression patterns
in kidney cells.
The expression levels of FGFs were
analyzed in a kidney cell line by
qRT-PCR and normalized against
GAPDH. The mean ± SE indicates
the error of three replicates, and the
experiments were repeated at least
three times.

FIGURE 2. FGF9 overexpression
activates cell proliferation and induces
AKT and JNK phosphorylation.
(A) qRT-PCR was used to detect
FGF9, FGF1, and FGF21 expression
levels in control and FGF9-
overexpressed C57BL/6 cells. The
mean ± SE indicates the error of
three replicates and the experiments
were repeated at least three times.
(B) Cell density was analyzed using
the MTT assay after 3 days of FGF9
overexpression. The mean ± SE
indicates the error of three replicates.
(C) t-AKT, p-AKT, t-JNK, and p-
JNK levels were assessed by
immunoblotting. GAPDH was used
as an internal control. The molecular
weights of each band are presented,
and corresponding bands are
indicated by arrowheads. (D)
Calculated band density, presented
in (C). Data represent the mean ± SE
(N = 3). *P < 0.05, significant
differences between control and
FGF9 overexpressed group.
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expression of WNT pathway genes (SMO, CTNNB1, and
PTCH), hedgehog pathway genes (GLI1), and ANXA4 was
upregulated upon FGF9 overexpression, which was
consistent with the RNA-seq data (Fig. 3B). The
differentially expressed genes were further analyzed for their
association with biological process GO terms. GO analysis
indicated that 31 terms were enriched for these differentially
expressed genes (P < 0.01) and that they were involved in
diverse biological processes, including multicellular
organismal development, nucleosome assembly, DNA-
template transcription, and positive regulation of interleukin
(IL)-10 secretion (Fig. 4A). In addition, out of the 641
differentially expressed genes, 102 were classified into known
pathways (P < 0.05). Pathway analysis using the KEGG
database was then performed to classify the differentially
expressed genes. The dendrograms, a portion of which are

presented in Fig. 4B, demonstrate the significance of the
seven up- and nine downregulated pathways, including
WNT, NF-κB, and hedgehog signaling pathways.

β-catenin knockdown inhibits kidney cell proliferation
As FGF9 overexpression activated the expression of WNT
pathway genes (SMO, CTNNB1, and PTCH), the expression
of the key WNT signaling transcription factor, i.e., β-catenin
was analyzed by western blot analysis. In agreement with
the qRT-PCR results, β-catenin accumulated to a greater
extent in the FGF9-overexpressing cells as compared to that
in the control cells (Figs. 5A and 5B). Further, the role of β-
catenin in kidney cell proliferation was examined using a
specific shRNA against β-catenin (CTNNB1) and NC siRNA
(control) in C57BL/6 cells (Fig. 5C). Moreover, to verify the
qPCR results, Western blot analysis was performed to

FIGURE 3. Heatmap and gene expression analysis.
(A) Heatmap represents differentially expressed genes following FGF9 overexpression. (B) qRT-PCR was performed to analyze SMO,
CTNNB1, PTCH, GLI1, and ANXA4 expression in the control and FGF9 overexpressed C57BL/6 cells. The mean ± SE indicates the error
of three replicates. Significant differences between the control and FGF9 overexpressed group are shown (*P < 0.05).

FIGURE 4. GO and KEGG analyses of FGF9-regulating genes.
The differentially expressed genes upon overexpression of FGF9 were classified based on GO terms KEGG terms. (A) The differentially
expressed genes are classified mainly into 21 GO terms, including Response to stress, MAPK cascade, and cell division. (B) The
differentially expressed genes are enriched to 15 KEGG pathways, including TNF B signaling, Hepatitis B, and ABC transporters.
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analyze β-catenin protein levels. The results indicate that β-
catenin level was higher in FGF9 OX than that in the
control, while it was significantly lower in CTNNB1 siRNA
than in NC siRNA transfected cells (Fig. 5D). In addition,
CTNNB1 knockdown significantly inhibited kidney cell
proliferation (Fig. 5E).

ANXA4 positively regulates kidney cell proliferation
downstream of CTNNB1
ANXA4 was induced by FGF9 overexpression; therefore, its
expression level was examined in CTNNB1 knockdown cells.
The qRT-PCR results show that CTNNB1 suppression
reduced ANXA4 expression (Fig. 6A). Moreover, as ANXA4
was previously reported to play a role in the proliferation of
hepatocellular carcinoma cells (Liu et al., 2017), its function
in kidney cell proliferation was further examined. The NC
shRNA and specific shRNA were confirmed to significantly
downregulate the expression of ANXA4 at transcript
(Fig. 6B) and protein levels (Fig. 6C), whereas ANXA4
knockdown significantly inhibited kidney cell proliferation
(Fig. 6D). As the β-catenin complex functions as a
transcription activator to regulate downstream gene
expression, the potential binding between the transcription
factor complex, containing TCF4 and β-catenin, to the

ANXA4 promoter region was investigated. The TCF4 or β-
catenin antibody immunoprecipitation and subsequent
ChIP-PCR showed that the TCF4 and β-catenin complex
bound to F2, not the F1 or F3 regions, in the ANXA4
promoter (Fig. 6E).

Discussion

The kidney is a highly complex organ that is integral to the
maintenance of salt, water, and acid-base balance, while also
serving as a filter to secrete waste products from the body
(Márquez et al., 2002). Although the role that cell
proliferation plays in general tissue maturation is well-
characterized, the underlying mechanism associated with
kidney cell proliferation remains largely unknown.
Meanwhile, considering that studies have reported
upregulation of FGF9 and FGF1 in adult rat kidney cortical
and outer medullary tissues (Cancilla et al., 2001), we
sought to verify the expression patterns of FGFs and to
characterize the function of the predominately expressed
FGF in kidney cell proliferation. FGFs play a key role in
diverse biological processes, including protection against
diabetes-induced complications, cell migration and
proliferation, and sugar metabolism, as well as skin wound

FIGURE 5. β-catenin expression and CTNNB1-induced suppression of cell proliferation.
(A) Detection of β-catenin and GAPDH levels in the control and FGF9-overexpressed C57BL/6 cells via western blotting. (B) Analysis of
density for each band shown in (A). The mean ± SE indicates the error of three replicates. Significant differences between the control and
FGF9-overexpressed C57BL/6 cells are shown (*P < 0.05). (C) The qRT-PCR analysis quantified CTNNB1 expression level in the NC
siRNA (control) and cells with CTNNB1 suppression. The mean ± SE indicates the error of three replicates. Significant differences between
the control and cells with CTNNB1 suppression are shown (*P < 0.05). (D) β-catenin level analyzed in control and FGF9OX or NC siRNA and
CTNNB1 siRNA-transfected C57BL/6 cells. GAPDH was used as the loading control. (E) Cell proliferation rate was calculated by MTT assay in
the control and cells with CTNNB1 suppression. The mean ± SE indicates the error of three replicates. *P < 0.05, significant differences between
the control and cells with CTNNB1 suppression.
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repair. Specifically, FGF9 was reported to protect against
fibrosis in cardiac fibroblasts (Sun et al., 2019), whereas its
abnormal activation during anorectal development in rat
embryos resulted in anorectal malformations (Liu et al.,
2019). FGF9 was also shown to alter the Wallerian
degeneration process by accelerating macrophage infiltration
(Lv et al., 2019). Additionally, FGF9 has been identified as a
potential novel biomarker for the diagnosis of prostate
cancer (Cui et al., 2019), suggesting that it has multiple
functions in different tissues. So far, FGF23 and its partner
klotho function in combination to protect against early
chronic kidney disease in Type 2 diabetes. However, the
function of FGF9 in kidney cells has not been analyzed.

Using C57BL/6 mouse kidney cells, 23 FGFs were
examined for their expression patterns. The results suggest
that in this cell line, FGF1 and FGF9 are the two
predominant members based on their transcription levels,
with FGF9 exhibiting the highest expression among the 23
FGFs. As compared to these two FGFs, the other FGFs
either showed low expression levels or negligible expression.

However, extensive analyses have also found that FGF21 is
significantly induced by wounding, drugs, and starvation
(Lin et al., 2013; Liang et al., 2014; Lin et al., 2014; Song et
al., 2016a; Song et al., 2016b), thereby implicating it in the
protection of the liver and heart from injury, in glucose
homeostasis, and skin wound healing. Hence, other FGFs
might also become activated under certain conditions in
kidney cells.

Further, FGF9 overexpression promotes C57BL/6 cell
proliferation and activates JNK and AKT similar to bFGF
stimuli (Xuan et al., 2016), suggesting that FGF9, and
potentially other FGFs, may activate similar downstream
signaling events. To further elucidate the FGF9 regulatory
mechanism, RNA-seq analysis was performed using FGF9-
overexpressing C57BL/6 mouse kidney cells. The expression
of many genes was altered upon the activation of FGF9-
mediated signaling, including 365 downregulated genes and
276 upregulated genes. These genes were enriched in 31 GO
terms, including positive regulation of IL-10 secretion,
nucleosome assembly, DNA-template transcription, and

FIGURE 6. β-catenin complex directly activates ANXA4 expression.
(A) ANXA4 expression level analyzed in cells transfected with NC siRNA and shRNA-mediated CTNNB1. The mean ± SE indicates the error of
three replicates. Significant differences between the NC siRNA and cells with CTNNB1 knockdown by shRNA (*P < 0.05). (B) ANXA4
expression was analyzed in NC siRNA and cells with ANXA4 knockdown by shRNA. The mean ± SE indicates the error of three
replicates. Significant differences between the control and cells with ANXA4 suppression are shown (*P < 0.05). (C) ANXA4 protein
abundance quantified in cells with NC siRNA and in cells with CTNNB1 knockdown or NC shRNA and cells with ANXA4 knockdown
transformed C57BL/6 cells. GAPDH was used as the loading control. (D) Cell proliferation in NC shRNA and cells with ANXA4
knockdown. The mean ± SE indicates the error of three replicates. Significant differences between the NC shRNA and cells with ANXA4
knockdown groups are shown (*P < 0.05). (E) Schematic diagram indicating the PCR amplified region (F1, F2, and F3) within 1.5 kb of
the ANXA4 promoter. ChIP-PCR was performed to analyze the binding of TCF4 or β-catenin transcription factor complex to the F1, F2,
and F3 regions in the ANXA4 promoter. The mean ± SE indicates the error of three replicates. Significant differences between the IgG and
β-catenin Ab or TCF4 Ab immunoprecipitation groups are shown (*P < 0.05). IgG, immunoglobin; Ab, antibody.
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multicellular organismal development. Additionally, KEGG
analysis showed that 16 pathways were significantly enriched,
including WNT, NF-κB, and hedgehog signaling pathways.
These findings imply that FGF9 might regulate inflammatory
responses by modulating NF-κB signaling. Hence, further
studies to investigate the role of FGF9 in protecting the
kidney under disease conditions will be of significant interest.

Wnt signaling is involved in cell differentiation, survival
and proliferation (Gordon and Nusse, 2006), while hedgehog
signaling plays important roles in the development of
invertebrate and vertebrate organisms and acts as the key
regulator in diverse cellular processes (Bushman, 2007).
Wnt pathway genes (SMO, CTNNB1, and PTCH) and the
hedgehog pathway gene (GLI1) are the key players and
significantly respond to FGF9 overexpression. Further
analysis following the knockdown of CTNNB1, a master
regulator of WNT signaling, inhibited C57BL/6 mouse
kidney cell proliferation. Interestingly, CTNNB1 suppression
reduced the expression of ANXA4, which was induced by
FGF9 overexpression. ANXA4 was previously reported to
play a role in the proliferation of hepatocellular carcinoma
cells (Liu et al., 2017), while its suppression inhibited
C57BL/6 mouse kidney cell proliferation, suggesting that β-
catenin may partially regulate ANXA4 to regulate C57BL/6
cell proliferation.

β-catenin-TCF/LEF forms a transcription factor complex
that binds to the putative cis-elements (T/A

C/GAAAG) present
in the promoter region of downstream genes to regulate diverse
biological processes (Schuijers et al., 2014). The ChIP assay
using β-catenin antibody further revealed that this transcription
complex binds to the ANXA4 promoter. Additionally, TCF4, a
member of the β-catenin complex that binds to DNA
sequences, was also confirmed to directly bind the promoter
region of ANXA4. This result further confirmed that β-catenin
functions upstream to control ANXA4 transcription, by which
C57BL/6 cell proliferation was modulated. Our findings provide
evidence that the predominant expression of FGF9 in kidney
cells might be important for cell activation and proliferation and
that the FGF9-β-catenin-ANXA4 pathway may be involved in
this process. Therefore, this study expands the current
understanding of FGF9 signaling and describes a new regulatory
mechanism for understanding kidney cell proliferation.

In conclusion, this study employed the C57BL/6 mouse
kidney cell line to identify the predominantly expressed
FGFs in kidney cells. Our results found FGF9 to be the most
dominantly expressed, while FGF9 overexpression resulted
in the promotion of cell proliferation. We also demonstrated
that FGF9-overexpressing cells accumulate more β-catenin
than control cells, while CTNNB1 or ANXA4 knockdown
inhibited cell proliferation. Hence, our results revealed that
FGF9 promotes cell proliferation via the activation of
ANXA4, which serves to broaden our understanding of the
FGF regulatory mechanism and provides scope for further
exploration of FGF-regulated cell proliferation.

Conclusion

FGFs play a significant role in a broad spectrum of biological
processes like cell migration and proliferation. However, their
expression patterns in kidney cell proliferation remain poorly

understood. In the current study, we used the C57BL/6 mouse
kidney cell line to identify the dominantly expressed FGFs in
kidney cells. Our results revealed FGF9 to be the most
dominantly expressed, while FGF9 overexpression resulted in
the promotion of cell proliferation. RNA-seq based
transcriptome analysis revealed differentially expressed genes in
FGF9 overexpressed cells. The results of qRT-PCR were
consistent with the RNA-seq data. We also demonstrated that
the FGF9 overexpressed cells accumulated more β-catenin than
the control cells, while the suppression of β-catenin or ANXA4
resulted in inhibition of cell proliferation. In summary, our
results showed FGF9 to be the most dominantly expressed in
the kidney cells. It was shown to promote cell proliferation via
activation of ANXA4. Our results extend the understanding of
the FGF regulatory mechanism and provide scope for further
exploration of FGF-regulated cell proliferation.
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