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Abstract: Tomato (Solanum lycopersicum L.) belonging to the family Solanaceae is the second most consumed and

cultivated vegetable globally. Since the ancient time of its domestication, thousands of cultivated tomato varieties have

been developed targeting an array of aspects. Among which breeding for yield and yield-related traits are mostly

focused. Cultivated tomato is extremely genetically poor and hence it is a victim for several biotic and abiotic stresses.

Among the biotic stresses, the impact of viral diseases is critical all over tomato cultivating areas. Improvement of

tomato still largely rely on conventional methods worldwide while molecular approaches, particularly Marker Assisted

Selection (MAS) has become popular across the globe as a fast, low cost and precise tool which is essential in present

day plant breeding. In this review paper, breeding tomato for high yield and viral disease resistance, particularly to

tomato yellow leaf curl virus disease (TYLCVD) using conventional and molecular approaches will be discussed.

Lining up of this set of information will be useful to those who are interested in tomato variety development with

high yielding and TYLCVD resistance.

Introduction

Tomato (Solanum lycopersicum L.) is an annual crop that is
considered the second most consumed vegetable in the
world, with production exceeding 180 million tons
cultivated on over 4.8 million hectares (Food, 2018). It
belongs to the Solanaceae family, which consists of about
3000–4000 species with approximately 96 genera across
three subfamilies of economically important crops such as
eggplant, tobacco, petunia, potato, and pepper. The global
tomato industry is valued at more than fifty billion dollars
(Mattoo and Handa, 2017). Tomato market comprises of
fresh market and processing industries. Considering the
volume consumed, tomato contributes significantly to the
dietary intake of essential vitamins and minerals (Willcox et
al., 2003). Tomatoes, both processed and fresh market types,
are a rich source of the dietary antioxidant lycopene, having
the ability to protect cells from cancer (Giovannucci, 1999).
The mountainous regions of the Andes, which comprise of

the current Chile, Ecuador, and Peru, were believed to be
the origin of tomato (Dhaliwal et al., 2020). The wild
relatives and cultivated tomato had a similar karyotype and
chromosome number of 2n = 24 (Foolad, 2007). With the
domestication process started around 600 years ago (Rick,
1978) genetic variability of cultivated tomato is narrowed.
This is because, during the domestication and evolution
process, the cultivated tomato went through several genetic
tailbacks as a result of extreme inbreeding and imposed
selective breeding.

Hence, these events cause a reduction in genetic variation
among the cultivated tomato. Therefore, it is estimated that
the cultivated tomato contains approximately 5% less
genome of the genetic variability of their wild relatives
(Dhaliwal et al., 2020).

At the end of the 19th century (late 1800’s) farmers were
used to the cultivation of open-pollinated cultivars
(Heirlooms), while in the middle of the 20th century
breeding of hybrid cultivars were initiated where ‘Single
Cross’ being the first-ever tomato hybrid cultivar (Bai and
Lindhout, 2007). After the invention of hybrid cultivars in
mid of the 20th century, the whole tomato industry was
dominated by various tomato hybrids. In 1994—1st
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transgenic cultivar ‘Flavr-Savr’TM (Acquaah, 2012) was
released. However, its popularity decreased within a few
years of release due to unfavorable qualities. From the time
of development of heirlooms up to transgenics, the tomato
crop is highly affected by a number of diseases and
environmental factors. Among these, viral diseases are
considerably devastative. In particular, tomato yellow leaf
curl disease (TYLCD) transmitted by Bemisia tabaci is a
major viral disease across the world (Lapidot and
Friedmann, 2002). Graphical plant–virus Interaction of
TYLCV is reported by Prasad et al. (2020). TYLCD is a
global limitation to tomato production and remains one of
the most devastating viral diseases of tomato. Most of the
cultivated tomato is susceptible to this disease showing
symptoms such as flower abortion, severe stunting, leaves
cupping, curling, and yellowing, which can result in up to
100% yield losses (Yan et al., 2018). However, many
accessions of tomato wild relatives have been identified as
TYLCV resistant sources (Yan et al., 2018). Meanwhile,
Firdaus et al. (2012) has reported wild relatives of tomato
with resistance to TYLCV vector (S. pennellii Correll,
S. habrochaites S. Knapp, S. habrochaites f. glabratum,
S. pimpinellifolium L., S. chilense (Dunal) Reiche).
However, TYLCV has become difficult to control due to
several reasons. One major reason is the polyphagous
nature of TYLCV, where this virus-host range from many
commercial crops viz., lisianthus (Eustoma grandiflorum
(Raf.) Shinners), Petunia Juss., common bean (Phaseolus
vulgaris L.), tobacco (Nicotiana tabacum L.), chili pepper
(C. chinense Jacq.), sweet pepper (Capsicum annuum L.)
and tomato (S. lycopersicum), and several common weeds
(Diaz-Pendon et al., 2010). Up to now, introgression
of TYLCV resistant genes from wild relatives to elite lines
of cultivated tomato has paved way for the breeding of
high-yielding tomato cultivars with TYLCV resistance
(Vidavski et al., 2008).

Varietal improvement program of tomato during the
last century is based on several standard breeding
techniques such as hybridization followed by pedigree
selection and backcrossing of preferred characters from
one parent into another that resulted in the generation
of improvement tomato hybrids and varieties with high
yield and quality. Improvement in tomato occurred as a
result of continuous exploitation of germplasm and
incorporation of desirable genes into the genetic
background of elite cultivars. Traditional breeding has not
only developed genotypes with dominant and monogenic
resistance for controlling certain plant pathogens or a
combination of resistance F1 hybrids but has also aided
the acquisition of good agronomic traits such as increase
shelf-life and firmness suitable for long distant shipping,
well-adapted genotypes, uniform ripening, earliness, fruit
setting, and high fertility rate. Hence, the objectives of
this review are to describe the recent methods of
developing a durable high yielding tomato genotype with
resistance to tomato yellow leaf curl virus (TYLCV)
through conventional and molecular approaches and to
comprehensively review the available information on
TYLCV and yield genes, marker-assisted selection, gene
transformation, and QTL analysis.

Breeding Goals of Tomato across the Time

The tomato industry has two main categories, viz. fresh
market and processing tomatoes (Arah et al., 2015), which
makes the breeding objectives to be dynamic and varied
across time. For example, tomato breeding in the 1970s
mainly focused on yield; however, this scenario changed in
the 1980s, where the major goal was focused mainly on
shelf life. During the 1990s, the trend of tomato breeding
was focused on taste, and in the 2000s, much attention has
focused on the nutritional qualities and development of
resistant varieties against pests and diseases (Osei et al.,
2018). Apart from the variability along the time, there is a
considerable variation in tomato breeding goals depend on
the location, need of the community, and available resources
(Acquaah, 2012; Rick, 1988).

The earliest approach in tomato breeding was achieved
along with the domestication process, where farmers
selected tomato cultivars with larger fruit size, lesser rates of
dormancy, and higher rates of self-pollination. With the
characteristic of self-pollination, earlier tomato cultivars
were open-pollinated, and the selection was based on the
uniform fruit shape, color, and size. Hence, these selected
genotypes are referred to as “heirlooms” which were more
or less similar to their parents (Watson, 1996; Bai and
Lindhout, 2007). Towards the mid of the twentieth century,
the new era of tomato breeding was commenced with the
development of hybrid tomato cultivars, over leading the
popularity of heirlooms. Hybrids are cultivars with
combinations of commercially desirable characteristics or
traits. The phenomenon called hybrid vigor or heterosis is
generally associated with an increased yield (Bradshaw,
2016). Apart from hybrid vigor, hybrids are preferred to be
developed by the breeders for uniformity, protection from
unauthorized reproduction, and better resistance to pests
and diseases (Fentik, 2017; Acquaah, 2012). With the
development of the first hybrid tomato cultivar “Single
Cross” (Bai and Lindhout, 2007) in 1946; breeders,
producers, and growers were plagued by the benefits
associated with the hybrid cultivars, and since both the fresh
market and processing tomato industries were dominated by
hybrid varieties (Fufa et al., 2009).

Conventional Methods of Tomato Breeding

Before the development of molecular markers and genetic
engineering tools, tomato breeding mostly depended on
conventional methods. With the domestication, which began
in South America, breeding methods such as selection (Mass
selection) of better cultivars and introduction to the rest of
the world was accomplished by the local farmers (Lin et al.,
2014). The pedigree method is another method used in
tomato breeding where controlled crossing and selection of
superior plants from early generations (F2 generation), and
continued until genetic purity is reached (Kalloo, 2012).
Also, hybridization followed by pedigree selection is one of
the most common methods used in tomato breeding, while
back cross-breeding is used to transfer traits such as disease
resistance to cultivated tomato (Fentik, 2017). Generally,
most of the early conventional breeding programs were
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practiced as combinations of backcross followed by the
pedigree selection, which resulted in more successful
cultivars. Casali and Tigchelaar (1975) proposed the single
seed descendant method specially focused on low heritable
traits. However, these findings showed that a single seed
descendant method was not efficient as compared with the
pedigree selection method.

Among the conventional techniques, hybrid breeding is
the most intensively used technique in the development of
new tomato varieties, hence, almost all commercial
cultivated tomato cultivars are hybrids (van de Wiel et al.,
2010). This hybrid development was achieved using
complementary inbred lines as two parental lines. Hybrid
vigor or heterosis is the phenomenon that adds value to the
hybrids. Generally, due to the hybrid vigor, hybrids are
more superior in many qualities than their parents. Though
the percentage of contribution is not fully defined, over-
dominance and additive effects are attributed to the hybrid
vigor (Birchler et al., 2010; Chen, 2013). These hybrids are
popular and accepted by many growers around the world
for the fact that they allow an easy combination of many
economically important traits such as disease-resistant genes
that are dominant in gene action.

In hybrid production, the removal of anthers from the
female plant (emasculation) is done manually. This tedious
and laborious procedure has been replaced by the discovery
of different techniques. As a solution, a set of nuclear
recessive genes responsible for male sterility has been
studied by Kaul (1991). However, this technique was not
fully practiced or commercialized due to the nonheritable
nature of the male-sterile character. In hybrid production,
combining ability analysis is important for the selection of
the best hybrids derived from crosses between selected
inbred lines and the elite lines (Peralta et al., 2006). Kaushik
and Dhaliwal (2018) reported the screening of best cross
combinations based on multiple trait performance,
including fruit yield and resistance to tomato yellow leaf
curl virus (TYLCV), using diallele analysis. The selected
hybrids can be further evaluated in multi-location replicated
trials to short-list the broadly adapted crosses with lower
genotype × environment interaction. Peirce (1991) revealed
that G × E interaction is strongly significant to the
marketable yield. The effect of G × E for different fruit
quality and plant characteristics have not given consistent
results in all attempts. Even with many advancements of
conventional breeding methods, it is obvious the difficulty
of combining many desirable characteristics together into a
single variety. On the other hand, the gene action of a
quantitative trait is difficult to predict because the ultimate
output or level of expression of traits are governed by
multiple genes and are highly influenced by the
environment (Osei et al., 2018).

Embryo rescue is another method where callus is raised
from the excised embryos and regenerating plants. This
method was reported as the only successful method for the
cross between Tomato (Solanum lycopersicum) and Solanum
peruvianum L. (Poysa, 1990). Similarly, Acquaah (2012)
reported the use of embryo rescue between crosses of the
cultivated tomato and wild species S. peruvianum and S.
chilense to use in gene transfer from wild relatives to the

cultivated tomato. The monosomic line is another method
used in tomato breeding where the production of aneuploid
plants with extra chromosomes from donor species with
desirable genes (Pertuzé et al., 2003). Mutagenesis also plays
a considerable role in tomato breeding, and yet the method
is being used in many countries. Mutations are induced by
exposing plant parts to ionizing radiation viz., X-rays and
gamma-rays or mutagenesis by chemicals viz., EMS (Ethyl
Methyl Sulfonate) and sodium azide (Oladosu et al., 2016).
Rick et al. (1996) found that mutations of some monogenic
traits of tomato were induced by mutagens. Most of the
fruit mutants originated from the early cultivars/lines of S.
lycopersicum out of which major mutations were used in the
improvement of tomato fruit quality (Peralta et al., 2006).
There is a continuous rise in the number of developed
mutant tomatoes (IAEA, 2020).

Although desirable mutants could be transferred to the
elite cultivars by successive backcrosses after about 10
generations, however, most mutants were not used due to
the association of unfavorable traits linked with the gene of
interest (pleiotropic effect) (Young and Tanksley, 1989).
TILLING (Targeting Induced Local Lesions) in genomes
has-facilitated the way to identify an array of new mutants
in tomatoes with still unrevealed gene actions (Comai and
Henikoff, 2006).

Grafting is one of the most focused breeding techniques
practiced in many countries in recent times. Rivard and
Louws (2008) have reported the cultivation of high-quality
heirloom varieties by grafting without the burden of soil-
borne pathogens viz., bacterial wilt. Apart from the well-
known benefit of grafting as a method to control soil-borne
diseases, there are many other benefits viz., tolerance to
drought, heat, and salinity stresses (Singh et al., 2017). Also,
Rouphael et al. (2018) discussed the efficiency of water,
nutrient uptake, photosynthesis, and powerful defense
mechanisms in grafted tomatoes. Flores et al. (2010)
investigated that the rootstock (cv. Radja) was able to induce
both tomato fruit yield and fruit quality traits of the scion.

Marker-Assisted Selection (MAS) as a Tool of Tomato
Breeding

Marker-assisted selection is a DNA based marker used in
plant breeding for three major purposes viz., (i)
Accumulation of favorable alleles by through generations
tracing of either recessive or dominant desirable alleles (ii)
Identification of desirable individuals genotype from
segregated breeding population/lines based on either part of
allelic composition or entire genome (iii) Introgression of
favorable alleles from a donor parent into elite cultivar by
breaking the undesirable linkage loci. The general terms
used in modern molecular breeding techniques include
genome-wide selection (GWS) or genomic selection (GS),
marker-assisted pedigree selection (MAPS), marker-assisted
selection (MAS), marker-assisted backcrossing (MABC) and
marker-assisted recurrent selection (MARS). Among the
solanaceous crops, tomato is one of the most studied based
on genomic and genetic studies. MAS is an indirect method
of selection for the trait based on the genotype of an
associated marker instead of the trait of interest (Osei et al.,
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2018). For the past few decades, MAS is the most popularly
used technique by breeders to develop new cultivars (Banga
and Banga, 1998). Also, MAS is a constructive way for gene
pyramiding or identification of quantitative trait loci (QTL),
especially for low heritability traits (Jacob et al., 2016).

Different categories of linked markers have been
identified in the tomato breeding program following the
simple Mendelian inheritance. These markers were useful to
select the plants or lines with traits of interest. There are
over 1300 markers that have been identified in tomatoes
(Osei et al., 2018). They include morphological (viz., leaf
shape, seedling anthocyanin, and fruit shape), physiological
(viz., days to flowering, self-incompatibility/male sterility),
pest and disease-resistant traits. However, the setback
associated with the genetic markers such as dominance,
epistasis, pleiotropic effects, penetrance, and expressivity
leads to the lowering of selection efficiency of breeding
programs (Peralta et al., 2006). After genetic markers in
1970–1980, a set of isozyme markers was developed as
second-generation markers. These isozyme markers were
low in diversity and hence could not identify closely related
genotypes (Foolad et al., 1993).

Molecular Markers

Molecular MAS has become an essential tool for crop
improvement over the phenotypic selection. MAS is useful
to select genes of interest from the donor or wild relative
(foreground selection) to the recurrent parent and at the
same time can recover the recurrent genome (background
selection) by breaking the linkage drag (Osei et al., 2018).
In this technique, tightly linked molecular markers are
used to select the gene of interest (Usman et al., 2018;
Usman et al., 2017).

With the invention of DNA markers such as RFLPs
(Restricted Fragment Length Polymorphism) and AFLPs
(Amplified Fragment Length Polymorphism), a lot of
constraints associated with genetic linkage maps were
successfully overcome (Foolad, 2007). Then, PCR
(Polymerase Chain Reaction) based markers such as CAPS
(Cleaved Amplified Polymorphic Sequence) and SCAR
(Sequence Characterized Amplified Region) were used as
DNA markers in the marker-assisted selection in molecular
breeding (Bai et al., 2004). Recently developed high-
resolution molecular markers such as SNP (Single
Nucleotide Polymorphism) and InDels (Insertion Deletions)
(Yang et al., 2004; Foolad, 2007) have allowed breeders to
distinguish the differences within and among closely related
species. The latest updates of the newest molecular markers
of tomato can be obtained from the SOL Genomics
Network, 2020 (SGN) website (https://solgenomics.net/
community/links/related_sites.pl, retrieved June 15, 2020).

Linkage maps
Bernatzky and Tanksley (1986) published the first linkage
map of tomato, and since then, several improvements have
been affiliated to the map bringing more usefulness to the
breeders. The density of the tomato molecular linkage map
is being gradually expanded across time with the untiring
effort of scientists in several related disciplines all over the

world. Most of the genes and QTLs responsible for
commercially desirable traits (viz., fruit quality, yield, and
disease resistance) are found in wild relatives, and MAS is
a supporting tool to transfer those genes and QTLs to
cultivated tomato (Tanksley and McCouch, 1997).
However, earlier developed molecular markers such as
RFLPs, CAPS, or AFLPs have not been able to distinguish
between closely related cultivars and close wild relatives.
The discovery of SNP markers would be helpful to mitigate
the limitations associated with such molecular markers.
Major QTL identification of high-resolution fine maps will
facilitate the use of MAS in breeding new cultivars in the
future (Foolad, 2007).

Introgression lines (ILs)
ILs are interspecific lines with a single ‘exotic’ chromosome
segment introgressed from wild relatives and the rest of the
genome of the recipient (Eshed and Zamir, 1995). ILs have
high potential in QTL identification than those interspecific
crosses used in the early days of MAS. So far, several ILs
have developed, including S. habrochaites (Monforte and
Tanksley, 2000), S. lycopersicoides Dunal–Peruvian wolfpeach,
and S. sitiens I.M.Johnst (Canady et al., 2006) and S. pennellii
(Eshed and Zamir, 1995; Tomato Genetics Resource Center,
2020). These ILs or pre-breeding lines facilitate plant breeders
to pyramid many commercially important traits such as high
yield, resistance to pests, diseases, and abiotic stresses
together into a single cultivar (Fridman et al., 2004). Among
the mapping populations, ILs may be useful for developing
NILs (Near Isogenic Lines) for fine mapping and cloning of
genes and QTLs controlling traits like fruit weight (Frary et
al., 2000). Apart from this, IL populations were found to be
used for marker-assisted selection of QTLs responsible for the
yield of tomato (Foolad, 2007; Gur and Zamir, 2004).

Use of in molecular markers in advancement of yield
components of tomato
Fruit size is a highly heritable character that can be achieved
through conventional breeding or phenotypic selection
(Kemble and Gardner, 1992). Besides the high heritability,
tomato fruit size is controlled by multiple genes and highly
influence environmental conditions to greater proportions
(Causse et al., 2004). Molecular markers allow the dissection
of such quantitative traits into discrete QTL which can be
located on a genetic map. Recombinants of QTLs may have
led to big-fruited heirlooms (fruit weight ~1000 g) while
QTLs fw1.1, fw2.1, fw 2.2, fw 3.1 and fw 3.2 and fw 11.3
may have led to medium-sized tomatoes which do not affect
locule number (Foolad, 2007; Grandillo et al., 1999).
Cultivated tomato bears large fruits while the wild relatives
bear small berries (Bauchet and Causse, 2012). The first-ever
map-based cloning of a QTL for fruit size fw2.2 was
conducted on tomato (Frary et al., 2000), and this particular
locus is responsible for most of the variation in fruit size
(Lippman and Tanksley, 2001) (Tab. 1). Very limited
studies have been done on QTL of fruit yield in tomatoes
due to low heritability and the complexity of the character.
In addition, it is difficult to measure or predict fruit yield
which is affected by various complex genetic and
environmental factors (Foolad, 2007).
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Conventional approaches in controlling viral diseases
To date, breeding resistance varieties seem the best approach
for controlling viral diseases. At present, there are many
commercial varieties available with partial resistance to
viruses (Glick et al., 2009). Pico et al. (1999) developed
several tomato advanced breeding lines using the
backcrossing method with S. chillence as the donor parent. In
general, tropics and subtropics are good breeding grounds for
viruses to outbreak. To control the viral outbreak from
growing beyond the economic threshold level, combinations
of management practices and the development of resistant
varieties are a prerequisite. Among these, modified cultural
practices such as crop rotation, use of virus-free planting
materials, use of virus-host resistance and their insect-vectors,
cross-protection, and application of insecticides to physical
and chemical control of vector are important (Tripathi and
Verma, 2017). An efficient environmental and user-friendly
approach of resistant breeding for tomato is the combination
of vector control (by conventional and chemical methods)
and breeding resistant varieties.

Pest resistant traits of tomato as an approach to control virus
transmitting vectors
A study conducted by Mutschler et al. (1996) showed that L.
pennellii accession LA716 secretes acyl sugars by type-IV

glandular trichomes on the leaf surface, which act as
oviposition deterrents for Silverleaf whitefly (i.e., TYLCV
vector). Similarly, retardation in oviposition and the
number of nymphs of whitefly have been observed in
tomato genotypes with high acyl sugar content (Neiva et
al., 2019). Oliveira et al. (2020) have recently reported a
repellence effect and non-preference to oviposition by
whiteflies in tomato genotypes with high zingiberene
content obtained at F2BC2 from an interspecific cross
between S. lycopersicum × S. habrochaites var. hirsutum. In
another study, Lawson et al. (1997) included a pest-
resistant gene into cultivated tomatoes; however, this
attempt failed due to linkage drag showing the complex
gene function. At present, farmers control pests by
applying pesticides, however, more pest-resistant gene
incorporation to tomato cultivars is expected with the
advancement of MAS together with the potential and
applicable conventional breeding approaches (Foolad, 2007).

Disease resistant traits of tomato as an approach to control
virus transmitting vectors
Viral diseases are limiting factors affecting crop productivity,
especially in tomatoes, due to the unavailability of antiviral
control measures (Hanson et al., 2000). Among the top viral
diseases affecting tomato, TBSV (tomato bushy stunt virus),

TABLE 1

Summary of markers associated with important yield-related parameters

QTL/gene Chr Markers Gene action

fw 1.1 01 TG125 Partially Additive

fw 1.2 01 TG273 More recessive

fw 2.1 02 TG337 Partially Additive

fw 2.2 02 TG167-TG151 More recessive

fw 3.1 03 TG 246 More additive

fw 11.3 11 TG384-TG36-TG393 Additive

fl 1.1 01 TG 125 Additive

fl 1.2 01 TG 273-TG 59 Recessive

fl 2.1 02 TG 337-TG 167-TG 151 Recessive

fl 3.1 03 TG 129-TG 246- TG214 More Additive

fl 4.1 04 TG 178 Over dominant

fl 9.1 09 TG 20A Recessive

fl 11.1 11 TG 314 -12 TG 396 More Additive

fd 1.1 01 TG 273 Largely recessive

fd 1.2 01 TG 125 Dominant

fd 2.1 02 TG337-TG167-TG151 Largely recessive

fd 3.1 03 TG129-TG246 Additive

fd 4.1 04 CT 178 Over dominant

fd 7.1 07 TG 20A Largely additive

fd 11.1 11 TG 384-12-TG 393 Additive

Lcn 2.1 02 TG 337 Partially additive

Lcn 2.2 02 TG 167 Partially recessive

Lcn 11.1 11 TG 384-12-TG 393 Partially recessive
Source: Lippman and Tanksley (2001)
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TSWV (tomato spotted wilt virus), and TYLCV (Tomato
Yellow Leaf Curl Virus) were considered the most
destructive (Scholthof et al., 2011). PCR-based markers are
available only for few disease-resistant traits due to the low
polymorphism, which is a limiting factor in exploiting MAS
for resistant breeding in tomatoes. However, the discovery
of SNP markers seems to be helpful to mitigate this
constraint. Major QTL identification using fine maps with
high resolution will facilitate the use of MAS in breeding
new cultivars ahead (Foolad, 2007). Schuch et al. (1991)
showed that breeding of virus and insect-resistant cultivars
is difficult solely by the traditional approach. Agrama and
Scott (2006) have identified resistant genes responsible for
TYLCV and ToMV (tomato mosaic virus) and the tightly
linked markers with the resistant genes.

Apart from the conventional breeding approach, MAS,
transgenic approach, and pathogen-induced resistance is
common attempts of resistant variety development (Saidi
and Warade, 2008). Hamilton et al. (1999) reported the
identification of resistant genes (Cmr) for cucumber mosaic
virus (CMV) in tomato and Patil et al. (2002) identified the
resistant gene (Pot 1) for potyviruses, Bruening and Lyons
(2000) identified three resistant genes ToMV Tm-1, Tm-2,
and Tm-22 while Martin et al. (1993) reported Sw 5 spotted
wilt virus (TSWV) resistant gene in tomato. However, the
use of these resistant genes and QTLs in the development of
virus-resistant tomato cultivars are rarely reported (Foolad,
2007). Apart from the nematode resistance, the Mi gene in
the tomato genome has been reported with the resistant
action against two biotypes of whitefly (B. tabaci) (Osei et
al., 2018). There are many records on R genes and QTLs for
the tomato yellow leaf curl virus, such as qTy 4.1, 6.1, 10.1,
and 11.1 (Prasanna et al., 2015; Kadirvel et al., 2013).

TYLCV—resistant traits
Lapidot and Friedmann (2002) stated that none of the
chemical and physical barriers would help-in controlling
whitefly during a severe outbreak, and the best approach
would be the development of resistant varieties using
classical or genetic engineering to control TYLCV in
tomato. Up to now, there are six Ty genes that act
independently (Gorovits et al., 2017; Dhaliwal et al., 2020)
and have been incorporated into commercial cultivated
tomato by introgression from its wild relatives (Singh et al.,
2019). Kumar et al. (2014) reported the successful
pyramiding of the Ty-2 gene to two TYLCV susceptible
cultivars and the production of crosses with TYLCV
resistance throughout the lifecycle.

Among the TYLCV resistant loci so far identified,
Prasanna et al. (2015) explained that TYLCV disease-
resistant gene Ty-3 contributed a vital role for broad-
spectrum resistance after gene pyramiding, and this would
be utilized in TYLCV prevalence areas as a potential genetic
resource for tomato hybrid breeding programs. Research
done in Guatemala reported that tomato inbred lines with
both Ty-3 and Ty-4 genes had a higher level of resistance to
TYLCVD compared with lines with only Ty-3 (Nakhla et
al., 2004; Vidavski, 2007). Nevame et al. (2018) reported a
new molecular marker for the Ty-3 gene and stated that
tomato hybrid carrying Ty-2 and Ty-3 resistance genes can

mitigate the effect of the virus as compared to a single gene.
Dhaliwal et al. (2020) have reviewed the importance of
possessing TYLCV resistant genes in both parents when
developing an effective resistance in tomato hybrids since Ty
genes contribute partial dominance.

According to Gill et al. (2019), the resistance incurred by
Ty 6 major gene located on chromosome 10 thrives with the
presence of the TYLCV resistant gene Ty 3 and Ty 5. In a
comprehensive study by Yan et al. (2018), 138 out of 708
wild tomato accessions tested using two different
inoculation methods were resistant to TYLCD. In addition,
they identified allelic polymorphism in Ty1/Ty3 gene using
VIGS (virus-induced gene silencing) and allele mining in
few S. chilense accessions. Their findings will pave the way
for tomato breeders to develop new tomato cultivars with
TYLCV resistance. Ammara et al. (2015) developed
transgenic tomato plants with RNAi (RNA interference)
based resistance against TYLCV Oman strain and the
associated beta satellite. Though the developed transgenic
plants were not immune to TYLCD, they conferred the
reduction of disease symptom severity.

Similar efforts of producing TYLCD resistant transgenic
tomato plants expressing TYLCV capsid protein have been
reported by Singh et al. (2019). It has been reported that the
association of TYLCV with the beta satellites of other plant
viruses altering the gene action of already identified resistant
(Ty) genes. A recent finding by Gelbart et al. (2020) has
revealed such association of cotton leaf curl Gezira Beta
satellite with TYLCV, which compromises the gene action
of resistance covered by Ty-1 gene in tomato. In addition to
the major genes and QTLs presented in Tab. 2, Zamir et al.
(1994) mapped two modifier genes in chromosomes 3 and
7, respectively, associated with the action of the Ty-1 gene.
Similarly, Kadirvel et al. (2013) reported that the QTLs 4.1
and 10.1 in chromosomes 4 and 10 contain virus-resistant
candidate genes such as CTV 22 and eukaryotic translation
initiation factor 4E. The majority of findings on the usage of
molecular markers are based on TYLCV resistant markers
as summarized in Tab. 2.

Future direction of tomato cultivar development for high yield
and viral disease—resistant traits
In addition to unexploited knowledge on gene function,
repulsion linkages between clustered resistance loci (Scott,
2004), linkage drag, and low resolution of the linkage maps
are major constraints in TYLCV resistance breeding
(Foolad, 2007). In the future, a combination of traditional or
conventional knowledge together with a re-sequenced
genetic map with high-resolution markers like SNPs and
InDels will be helpful to minimize the present-day
constraints in tomato breeding (Foolad, 2007). More
disease-resistant genes in tomato wild relatives will unveil in
the future, and breeders will be able to develop new
cultivars with multiple disease resistance and higher fruit
quality through breeding by design (Bai et al., 2004). The
transition of tomato breeding from traditional breeding
techniques to the new “omics” era will allow breeders to
expand their knowledge on gene expression and metabolism
of each gene efficiently and effectively (Peleman and van der
Voort, 2003).
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CRISPR (Clustered Regularly Interspaced Short
Palindromic Repeats) technology is a milestone in
molecular breeding where the outcome is quite similar to
that obtained from conventional breeding but with a very
short time (Bortesi and Fischer, 2015). This is a cheap, fast,
and reliable method. Changes in the regulatory region of
genes responsible for tomato yield have been made with
SDN-1 (site-directed nuclease-1) mutant using the use of
CRISPR technology. This makes positive changes to
increase the variation of the regulatory region of the gene
of interest. This has boosted the tomato yield in a short
time. Hence, CRISPR technology is expected to be a
powerful tool to achieve goals in tomato breeding (Gao,

2018). Similar efforts on producing TYLCV resistant
tomato cultivars using CRISPR/ Cas 9 technology have
been made by Tashkandi et al. (2018). The advanced
molecular technologies, tools, strategies, conventional
approaches, and agronomic practices should go hand in
hand to see the success of future tomato variety
development programs irrespective of the breeding goals.
Similarly, no exception for the development of high
yielding and TYLCD resistant tomato varieties. Especially
with the upcoming unpredictable environment conditions
such as extreme climates, pest and disease outbreaks and
their complex interactions could be addressed only by
these integrated approaches.

TABLE 2

Summary of important markers associated with TYLCV resistant /QTLS genes

QTL/gene Chr Gene
action

Markers Marker Reference Remarks

qTy 4.1 04 Recessive SINACI
SLM 4-34

CAPS
SSR

(Kadirvel et al., 2013) Derived resistance from S. chilense
LA2779

qTy 6.1 06 Recessive SLM 6-55/
TES 014

SSR
SSR

(Kadirvel et al., 2013) Derived resistance from S. chilense
LA2779

qTy 6.1 06 Recessive TG 153
CT83

RFLP
RFLP

(Chagué et al., 1997) Derived resistance from S.
pimpinellifolium hirsute

qTy 10.1 10 Recessive SLM 10-80
SLM 10-46

SSR
SSR

(Kadirvel et al., 2013) Derived resistance from S. chilense
LA2779

qTy 11.1 11 Recessive SLM 11-2
SLM 11-17

SSR
SSR

(Kadirvel et al., 2013) Derived resistance from S. chilense
LA2779

Minor qTy 01 Semi
dominant

C2_at4g34700 CAPS (Anbinder et al., 2009) Derived resistance from S. peruvianum

Minor qTy 07 Minor
additive

TG 174 CAPS (Anbinder et al., 2009) Derived resistance from S. peruvianum

Minor qTy 09 Minor
additive

SISUMO CAPS (Anbinder et al., 2009) Derived resistance from S. peruvianum

Minor qTy 11 Dominant C2_at4g22260 CAPS (Anbinder et al., 2009) Derived resistance from S. peruvianum

Ty-1 (close
to Mi locus)

06 Partial
dominant

TG 297
TG 97

RFLP
RFLP

(Kadirvel et al., 2013; Zamir et al.,
1994; Ji et al., 2007a)

Derived resistance from S. chilense
LA1969

Ty-2 11 Dominant TG 393
TG 36
C2-At-1g07960
cLEN -11-F24

RFLP
(PCR)
RFLP
CAPS

(Banerjee, 1990; Hanson et al., 2000;
Hanson et al., 2006; Ji et al., 2009a)

Derived resistance from from S.
habrochites

Ty-3 06 Partial
Dominant/
More
Additive

cLEG-31-P16
C2_At5g41480/
T1079
ACY

CAPS
Indel
based

(Ji et al., 2007a; Ji et al., 2007b;
Nevame et al., 2018)

Derived resistance from S. chilense
LA2779
Resistance from S. pennellii

Ty-4 03 Dominant TO302
C2-At4g17300
C2-At5g60160

SCAR
CAPS

(Kadirvel et al., 2013; Ji et al., 2009b) Lesser resistant. Derived resistance
from S. chilense (LA1932)

Ty-5 04 Partially
Dominant

SINACI CAPS (Anbinder et al., 2009) Lesser resistant. Derived resistance
from S. peruvianum

ty-5 04 Recessive SINACI CAPS (Hutton et al., 2012) Derived from tomato variety LA1938/
Tyking (originated from S.
peruvianum)

Ty-6 10 Partially
Dominant

UF_10.61192 (Gill et al., 2019) Derived resistance from S. chilense
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