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Abstract: Auxin signaling and its components (Auxin/Indole-3-Acetic Acid (Aux/IAA)) are critical for plant growth and

development. Here, we performed a genome-wide annotation and identified twenty-one Aux/IAA genes in strawberry

(Fragaria vesca). Most FveIAAs were located on chromosomes 1, 2, 4, 5, and 6, while no FveIAAs were found in

chromosomes 3 and 7. Phylogenetic analysis divided these genes into nine subfamilies. Most FveIAAs contained the

DNA-binding and Aux/IAA domains, as well as motifs I–IV. There were 2–6 exons in the FveIAA genes based on the

gene structure analysis. Also, we found that four pairs of FveIAA genes underwent segment duplications. Moreover,

four pairs of orthologous genes were observed between strawberry and Arabidopsis. Cis-element analysis in the

promoter region indicated that FveIAAs may be involved in light, phytohormones, stress responses, and growth

processes. Prediction of protein-protein interaction revealed that 17 of 21 FveIAA proteins were involved in the

auxin-related signaling pathways. Additionally, FveIAAs showed tissue-specific expression and responded to IAA

treatment. Thus, this systematic annotation of the FveIAA family would provide a fundamental basis for further

functional and evolutionary analysis and to understanding the role of FveIAAs in strawberry growth and development.

Introduction

Auxin, a plant hormone, modulates plant growth and
development by regulating the expression of Gretchen
Hagen 3 (GH3), Auxin Response Factor (ARF), Indole-3-
acetic Acid (Aux/IAA), and Small Auxin Up RNA (SAUR)
gene families (Abbas et al., 2016; Aloni et al., 2006; Esmon
et al., 2006; Mattsson et al., 2003; Mishra et al., 2009;
Tiryaki, 2009). In the presence of cycloheximide, a
translational inhibitor, auxin induces the expression of
Aux/IAA genes. The degradation of Aux/IAA protein
through the 26S proteasome pathway is induced by the
auxin transport inhibitor response 1 (TIR1), which regulates
the expression of auxin-responsive genes by releasing ARFs
(Farcot et al., 2015; Hu et al., 2015b).

There are four conserved domains present in Aux/IAA
genes with domain I containing a leucine repeat motif
(LXLXLX) as a potent transcriptional repressor; domain II

inducing Aux/IAA protein degradation; domain III
constituting a βαα-DNA recognition motif; domain IV
representing an acidic region (Liscum and Reed, 2002).
Domains III and IV are also known to induce the
homodimerization and heterodimerization between the
ARFs and the Aux/IAA proteins (Mano and Nemoto, 2012).
ARFs modulate the expression of auxin- responsive genes by
specifically binding to the AuxRE (TGTCTC) sequence in
their promoter region (Kim et al., 1997; Ulmasov et al.,
1997). Aux/IAA proteins suppress the activity of ARF by
interacting with the DNA-bound ARF partner protein
through domains III and IV. Additionally, Aux/IAA
proteins are directed towards the nucleus via two
localization signals (Retzer et al., 2014; Wu et al., 2012).
Genomic analyses have identified Aux/IAA gene family in
the following plants: 29 in Arabidopsis, 31 in rice (Oryza
sativa), 26 in tomato (Solanum lycopersicon), 27 in
cucumber (Cucumis sativus), and 34 in maize (Zea mays)
and other species, including Medicago truncatula, Populus
trichocarpa, Vitis vinifera, etc. (Audran-Delalande et al.,
2012; Cakir et al., 2013; Dreher et al., 2006; Gan et al., 2013;
Jain et al., 2006; Kalluri et al., 2007; Wang et al., 2010;
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Wu et al., 2012). Studies on the functional analysis of IAAs in
plant growth and development revealed the role of iaa3/shy2,
iaa7/axr2, iaa14/slr, iaa17/axr3, iaa28 in lateral root
formation in Arabidopsis (Fukaki et al., 2002; Knox et al.,
2003; Mai et al., 2011; Timpte et al., 1994). In rice, three
Aux/IAA members: OsIAA1, OsIAA11, and OsIAA23, were
involved in regulating root development (Ni et al., 2011;
Thakur et al., 2001; Zhu et al., 2012). In tomato, the under-
expression of Sl-IAA9 affected leaf morphogenesis and the
fruit set process (Wang et al., 2005). The downregulation of
Sl-IAA15 resulted in reduced apical dominance, a lower
trichome number, dark green leaves, and increased lateral
root formation (Deng et al., 2012). Also, reduced fertilization
and altered fruit development were observed due to the
silencing of the Sl-IAA27 gene (Bassa et al., 2012). Another
study revealed the role of the Sl-IAA17 transcriptional
repressor in controlling fruit size by regulating
endoreduplication-related cell expansion (Su et al., 2014).

Strawberry, a delicious and healthy food, constitutes an
important fruit crop worldwide. Fragaria vesca is diploid
(2n = 14), has a small genome size (<240 Mb), a relatively
short reproductive cycle (14–15 weeks), and its genome
sequence is available; thus, it is considered a model plant for
studying transformation (Shulaev et al., 2011). Strawberry
fruits are non-climacteric as they do not undergo ethylene-
induced ripening. Previous studies have confirmed the role
of auxin in the fruit set, development, and ripening in
strawberry (Kang et al., 2013; Nitsch, 1950); however, its
molecular regulation mechanisms remain unclear.

Past studies on plant genome sequences have enabled the
genome-wide analyses of several multigenic protein families.
Here, we used the public databases to conduct the genome-
wide analyses of the strawberry Aux/IAA family, including
genomic organization, the conserved protein domains,
comparative phylogenetic analyses, prediction of protein
structural motifs, putative cis-regulatory elements within
promoters, subcellular location, and protein-protein
interactions (PPI). We studied the expression of the Aux/
IAA members in different organs at different developmental
stages of the fruit and the expression of FveIAAs post-IAA
treatment. Thus, this systematic annotation of the FveIAA
family would provide a fundamental basis for the functional
and evolutionary analysis, and to understand the role of the
FveIAAs in strawberry growth and development.

Materials and Methods

Aux/IAA genes in Fragaria vesca
The strawberry genome and proteome were downloaded from
Phytozome V12 (Goodstein et al., 2012) to perform
exhaustive data mining of the FveIAA family. The IAA
protein sets from A. thaliana were obtained from The
Arabidopsis Information Resource (TAIR) (Swarbreck et al.,
2008). Default parameters and cutoff value 0.01 was used
for the hidden Markov Model (HMM) profiles to identify
the Aux/IAA genes from the F. vesca genome (Eddy, 1998).
The presence of conserved domains in the candidate
Aux/IAA genes was evaluated using PFAM V32 and
SMART tools (Finn et al., 2016; Schultz et al., 1998). NCBI
CDD was used to examine the uniqueness of the obtained

sequences for the Aux/IAA domains. ProtParam software
was used to determine the molecular weight (MW) and the
isoelectric point (pI) and of the FveIAA proteins. The
annotated Aux/IAAs of strawberry were labeled as ‘FveIAA’
followed by a number representing their chromosomal orders.

In silico characterization of FveIAAs
Based on the strawberry genome database, we mapped all
FveIAA genes to strawberry chromosomes using Circos (An
et al., 2015). The chromosomal location of the FveIAA
family was visualized using MapChart V2.1 (Voorrips,
2002). The gene structure of FveIAA genes was extracted
from Phytozome and visualized using GSDS V2.0 (Hu et al.,
2015a). MEME V5.1 and PFAM were used to detect the
conserved motifs and functional domains, respectively
(Bailey et al., 2009; Finn et al., 2016). A Multiple
Collinearity Scan toolkit (MCScanX) with default
parameters was used to study the gene duplication events
(Wang et al., 2013). A syntenic analysis map was built using
Dual System Plotter to study the relationship between the
orthologous Aux/IAA genes obtained from strawberry and
other organisms. STRING V11.0 with a threshold of 0.7 was
used to construct the PPI network (Szklarczyk et al., 2017).
The promotors (1500 to 1 bp before ATG) of the FveIAA
genes were obtained from Phytozome, and the cis-elements
were predicted by PlantCARE (Lescot et al., 2002), and
subcellular localization of FveIAAs was predicted by WoLF
PSORT (Horton et al., 2007).

Phylogeny of FveIAAs and AtIAAs
ClustalW and DNAMAN were used for multiple sequence
alignment of the complete FveIAA and AtIAA protein
sequences. The neighbor-joining (NJ) phylogenetic tree was
built using MEGA V7.0 (Kumar et al., 2016), with a poison
model and 1000 bootstrap replications. FveIAA protein
sequences from Arabidopsis (Dreher et al., 2006) were
obtained from Phytozome (Goodstein et al., 2012).

Plant growth condition and hormonal treatments
The strawberry (F. vesca f. semperflorens) plants were procured
from Xi’an University, Xi’an, China. The plants were grown in a
greenhouse at a temperature of 20°C–25°C with a 14-h light/
10-h dark cycle and relative humidity of 70%–85%. During the
first week after anthesis, more than 100 small green (SG) fruits
on 50 strawberry plants were labeled. Fruits were collected on
days 7, 14, 25 days post fertilization, at three different stages:
SG, BG (Big green), and R (Red), respectively. At each stage,
sampling of uniformly sized fruits (N = 10) was done in
triplicates. Small cubes of the receptacle (pulp) (0.5–0.8 cm3)
were flash-frozen in liquid nitrogen and stored at −80°C.
The other tissues were collected from healthy strawberry plants
(N = 10) at the flowering stage and analyzed in triplicates. The
newly growing and fully expanded leaves were used for the
IAA treatments. The branch containing three-piece leaves were
cut from the strawberry plants and dipped in 10 μM IAA
(pH 6.6) solution. The branches treated with H2O served as
the control. The samples were collected 0, 1, 6, and 12 h after
treatment. For each treatment, 24 branches were sampled from
12 different plants. All samples were flash-frozen in liquid
nitrogen and stored at −80°C for RNA extraction.
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RNA isolation and qRT-PCR analysis
TRIZOL Reagent was used to isolate total RNAs from the
frozen samples (100–200 mg), followed by treatment with
Turbo DNA-free TM kit to eliminate DNA contamination.
After reverse transcription into cDNA, qRT-PCR was
performed with the reaction mixture (20 μL) containing 1 μL
forward/reverse specific primer (10 μM), 1 μL cDNA
(30 ng/μL), and 10 μL SYBR Green Master Mix on an ABI
Quant Studio tm 6 Flex Real-Time PCR System. The cycle
parameters included 95°C for 3 min; 40 cycles at 95°C for
20 s, 58°C for 30 s, and 72°C for 30 s; 71 cycles increasing
from 60°C to 95°C at 0.5°C per cycle for 30 s. FvActin
(GenBank accession no. AB116565.1) was used as the
internal reference to calculate the relative fold differences,
and the data were analyzed using a previously described
comparative CT method (2−ΔΔCt) (Su et al., 2015). A P-value
< 0.05 was regarded as statistically significant. NCBI primer
blast was used to design the primers for qRT-PCR (Suppl.
Tab. S1) using F. vesca mRNA as the reference database.

Results

Identification of Aux/IAA family genes in the strawberry
genome
We identified and characterized 21 Aux/IAA genes in the
F. vesca genome, which were labeled FveIAA1-21 based on
their chromosomal localization. In-depth analysis of each

predicted FveIAA, including chromosomal localization, gene
length, deduced protein length, MW, pI, and exon numbers,
was performed (Tab. 1). The FveIAA genes encode 181
(FveIAA16) to 370 amino acids (aa) (FveIAA3) with
corresponding MWs of 20.45 to 39.84 kDa. The pI ranged
from 5.23 (FveIAA5) to 8.61 (FveIAA10), indicating that
different Aux/IAA proteins might function under different
pH conditions. Sixteen FveIAAs were located in the nucleus,
except FveIAA10, FveIAA11, FveIAA16, and FveIAA18,
which were located in the chloroplasts; FveIAA12 was
located in the mitochondria (Suppl. Tab. S2).

Chromosomal location and duplications of FveIAA genes
The 21 identified FveIAA genes were distributed across five
chromosomes, mainly on chromosomes 1, 2, 4, 5, and 6, but
were not found on chromosomes 3 and 7 (Fig. 1). These
genes did not show random distribution on the
chromosome due to gene clusters and hot regions. The
unequal distribution of FveIAA genes suggested genetic
variation during the evolutionary process (Li et al., 2020a, Li
et al., 2019; Li et al., 2015). Thus, the segmental duplication
and tandem duplication events were investigated to explore
potential gene duplication within the strawberry genome.
Four duplicated gene pairs (FveIAA2 and FveIAA4, FveIAA3
and FveIAA15, FveIAA7 and FveIAA11, FveIAA8 and
FveIAA20) of FveIAAs, all occurring on different
chromosomes with a possibility of segmental duplication,

TABLE 1

Aux/IAA gene family in strawberry

Gene name Phytozome ID Chr Localization Strand ORF (bp) Length (aa) WT (kDa) PI Exon No.

FveIAA1 mrna30941.1 1 1791848..1792687 F 699 232 26.22 6.21 5

FveIAA2 mrna31097.1 1 2494206..2494918 R 645 214 24.41 6.65 3

FveIAA3 mrna05555.1 1 15821563..15824821 R 1113 370 39.84 8.09 5

FveIAA4 mrna11624.1 2 9274779..9280831 F 708 235 27.02 6.04 4

FveIAA5 mrna08191.1 2 12260178..12260861 R 570 189 21.07 5.23 2

FveIAA6 mrna08194.1 2 12276543..12278218 F 753 250 27.03 7.55 5

FveIAA7 mrna08336.1 2 13518189..13520450 F 894 297 31.7 6.92 5

FveIAA8 mrna09007.1 2 20679865..20681061 F 873 290 34.24 8.79 4

FveIAA9 mrna32593.1 4 2279826..2280730 R 600 199 22.01 6.44 3

FveIAA10 mrna32595.1 4 2289754..2311425 F 717 238 26.52 8.61 5

FveIAA11 mrna27891.1 4 9607509..9609398 F 903 300 32.23 8.58 5

FveIAA12 mrna22779.1 4 20538272..20539079 F 639 212 23.53 8.44 4

FveIAA13 mrna03675.1 4 24854998..24861311 F 558 185 21.01 5.37 4

FveIAA14 mrna11861.1 5 21765417..21772896 F 906 301 32.14 8.07 5

FveIAA15 mrna26830.1 5 22395720..22397029 F 1068 355 38.85 5.41 5

FveIAA16 mrna16569.1 6 19898725..19899389 R 546 181 20.45 7.58 2

FveIAA17 mrna16571.1 6 19906315..19908136 F 747 248 27.15 7.59 5

FveIAA18 mrna05990.1 6 24020846..24022932 F 588 195 21.59 5.99 3

FveIAA19 mrna05993.1 6 24039962..24041070 F 594 197 21.85 7.56 4

FveIAA20 mrna25723.1 6 25163315..25165808 R 1029 342 37.74 8.4 5

FveIAA21 mrna25817.1 6 25615441..25617695 R 1017 338 37.07 8.57 5
All FveIAAs are listed. Abbreviations: pI, isoelectric point; aa, amino acid; Chr, chromosome; MW, molecular weight. In column Strand, R represent the reverse
strand and F represents the forward strand.
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were observed in F. vesca (Fig. 2A). We hypothesized that
apart from expanding the FveIAA gene family size, these
segmental gene duplications also increased their functional
diversity. We constructed a comparative syntenic map of F.
vesca and Arabidopsis to further explore the phylogenetic
mechanism of the F. vesca IAA gene family. A syntenic
relationship was discovered between four FveIAA genes and
Arabidopsis (Fig. 2B), indicating the importance of these
genes from the Aux/IAA gene family during the
evolutionary process.

Multiple sequence alignment and conserved domains
Protein motif analysis by PFAM and sequence alignment
revealed that 20 FveIAAs had four characteristic conserved
domains: I–III and IX (Fig. 3).The domain I of most
FveIAA proteins had a highly conserved LXLXLX motif,
which served as a protein transcriptional repressor except
FveIAA12, which was a non-canonical Aux/IAA protein
missing domain I, also found in tomato and Medicago
truncatula, indicating that these proteins may play
specialized roles while mediating auxin response during
plant growth and development. Most FveIAA proteins
exhibited two distinct types of nuclear localization signals
(NLS): A typical NLS (at the end of domain IV) and a
bipartite NLS (between domains I and II).

The phylogeny of FveIAAs and AtIAAs
A phylogenetic NJ tree was built based on the complete
sequence alignment of 21 FveIAAs and 29 AtIAAs
to explore the phylogenetic relationship between the
Aux/IAA proteins of F. vesca and A. thaliana (Suppl. Tabs. S3

and S4). Based on the phylogenetic distribution, IAA
proteins were classified into nine major groups (labeled 1 to
9) with well-supported bootstrap values (Fig. 4). Also, we
analyzed the identity of the predicted Aux/IAA protein
sequences between Arabidopsis and strawberry predicted
based on the orthologs between these two species. We found
no organism-specific group from the tree. In the common
clades, there was an unequal distribution of the IAAs from
the two organisms. For instance, Group 4 contained one
FveIAA and four AtIAAs. Also, there was an unequal
distribution of the FveIAAs in the nine groups. Groups 1–6,
8, and 9 included twenty FveIAA members (largest), which
were located in the nucleus and the chloroplast, while
Group 7 contained one gene (FveIAA12), which was located
in the mitochondria (Suppl. Tab. S2).

Conserved motifs and exon-intronic structures
We performed phylogenic and conserved motif analysis of the
FveIAAs to explore the relationship between motifs and
evolution and to identify the conserved regions (Fig. 5A).
Twenty-one FveIAAs containing 2–10 conserved motifs
were detected (Fig. 5B and Suppl. Fig. S1). Motifs 1 and 2
were common in all 21 FveIAAs, indicating that they were
essential for basic functions of FveIAAs, while the other
eight motifs were more or less missing from the FveIAAs.
structure analysis showed that the gene structure of most of
the FveIAA genes was identical to the AtIAAs, which
included 3–5 exons and 2–4 introns, except for FveIAA15
(six exons and five introns) and FveIAA5 and FveIAA16
(each containing two exons and one intron) (Fig. 5C).
Exon-intron structure analysis provides critical insights into

FIGURE 1. Chromosomal localization of FveIAA genes.
The serial number of the chromosome is indicated at the head of each chromosome. Twenty-one FveIAA genes were unevenly located on five
chromosomes and were mapped based on the F. vesca genome database using MapChart v2.2. The length of chromosomes is on the scale (Mb).
The localization of each gene was written on the left of each position while the name on the right.
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the process of evolution of gene families. Motif composition,
arrangements, and gene structures were consistent with the
phylogenetic tree (Fig. 5).

Cis-element analysis and subcellular localization prediction
The interaction between cis-elements and the corresponding
trans-acting factors is known to promote gene regulation.
PlantCARE was used to determine the probable cis-
regulatory elements within the promoter region of the
FveIAA genes to understand possible regulatory patterns of
the FveIAAs. We found that all 21 FveIAAs promoter
sequences contained several light-responsive elements,

indicating that FveIAAs played a critical role in strawberry
morphogenesis. Additionally, we found hormonal
response-related cis-regulatory elements, such as auxin,
methyl jasmonate (MeJA), salicylic acid (SA), abscisic
acid (ABA), and gibberellins (GA), as well as stress-
responsive elements, including anaerobic induction,
defense, drought, and low temperature in the promoter
region of most FveIAA genes (Fig. 6). Some of the FveIAA
genes contained tissue-specific elements (endosperm,
meristem, and seed-specific activation) and circadian
control elements.

FIGURE 2. Segmentally duplicated
gene pairs in F. vesca.
(A) The synteny relationships of
FveIAA genes were displayed using
Circos software. The seven
chromosomes of F. vesca have been
drawn as colored bars. There were
four segment duplications gene pairs
and no tandem duplications. The
length of chromosomes is on the
scale (Mb). (B) The collinear
correlation of the Aux/IAA is
displayed between A. thaliana and
F. vesca. The green color represents
F. vesca chromosomes (Fv01-07))
and the red color represents A.
thaliana chromosomes (At01–
AT05). Gray lines in the
background indicate the collinear
blocks between A. thaliana and F.
vesca, while the red lines indicate
the syntenic Aux/IAA gene pairs
between A. thaliana and F. vesca.
The length of chromosomes is on
the scale (Mb).
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Prediction of PPI networks of FveIAA family
A complete interaction network of the FveIAA family and its
interacting proteins were predicted using the STRING tool to
investigate the functions of the FveIAAs. Seventeen FveIAAs
were identified in the interaction network except FveIAA4,
FveIAA5, FveIAA6, and FveIAA20 (Fig. 7). Protein-protein
relationship analysis revealed that most FveIAAs interacted
with each other indicating collaborative functioning, such as
in FveIAA1, FveIAA13, and FveIAA19. Also, the direct
interaction between FveIAAs and the nodal proteins
suggested the possibility of occasional indirect interaction
between the FveIAAs, such as XP_004293901.1, a common
core protein, induced indirect interaction between
FveIAA19, FveIAA1, FveIAA15, FveIAA17, and FveIAA7
(Fig. 7). Functional annotation revealed that most of the
common interacting proteins in the PPI network were
involved in auxin-related signaling pathways (Suppl. Tab. S5).

Expression analyses of the Aux/IAA genes in F. vesca organs
We investigated the spatial-specific expression pattern of the
21 FveIAAs in different organs, including stems, roots,
flowers, leaves, and fruits, to investigate the physiological
function of FveIAAs (Fig. 8). All the FveIAAs were detected
in different organs, except for FveIAA21, whose expression
was downregulated in all organs. All the FveIAAs showed

FIGURE 3. Multiple sequence alignment of the FveIAA gene family.
Multiple alignments of the FveIAAs were done using ClustalW. The red frame shows domains I–IV of the FveIAA proteins. Colorized shading
represents identical and conserved amino acid residues, respectively. The thin black double lines mark the LXLXLX motifs. *marks the two NLSs.

FIGURE 4. Phylogenetic relationships of IAA proteins between A.
thaliana and F. vesca.
MEGA 7.0 software was used to build this NJ phylogenetic tree with
1000 bootstrap replicates. Different colors represent different groups
of FveIAAs and AtIAAs. Black colored dots and stars indicate F. vesca
and A. thaliana.
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tissue-specific expression patterns in F. vesca. Most FveIAAs
showed high stem-specific mRNA expression compared
with other organs, except FveIAA4, FveIAA5, FveIAA13, and
FveIAA18 whose expression level were upregulated in the
fruit; FveIAA2, FveIAA9, FveIAA10, and FveIAA17 which
showed root-specific expressions; FveIAA3, FveIAA11, and
FveIAA16 also showed flower-specific expression; FveIAA1,
FveIAA19, and FveIAA14, which showed leaf-specific
expression. Transcriptional analysis of the FveIAAs showed
tissue-specific expression in F. versa, suggesting that FveIAA
genes might play distinct roles in different organs during
strawberry development.

Auxin inducibility of FveIAAs
We detected the expression pattern of FveIAAs in leaves at 1,
6, and 12 h of post-IAA treatment using qRT-PCR to test the
responsiveness to exogenous auxin stimuli (Fig. 9). We found
that except for FveIAA21, which was downregulated in all
organs, all other genes were auxin-responsive. Exogenous
auxin upregulated the expression of most FveIAA genes
after 1 h and 6 h; however, the expression was restored to
near pre-stress levels after 12 h in FveIAA2, FveIAA3,
FveIAA5, FveIAA7, FveIAA8, FveIAA14, FveIAA16 and
FveIAA18. Also, elevated expression of FveIAA4, FveIAA10,
FveIAA13, FveIAA17 and FveIAA20 was observed at all time

points, including 12 h after treatment. In contrast, the
expression of FveIAA9, FveIAA11, and FveIAA15 were
downregulated by auxin at every time point. Thus, the
complexity of auxin-regulated gene expression was reflected
in the diverse pattern of expression of the FveIAA genes
post-treatment with auxin.

Discussion

Auxin, a plant hormone, is critical for plant growth and
development (Liu et al., 2017; Mano and Nemoto, 2012;
Tiryaki, 2009). Aux/IAAs regulate the transcription of
auxin-responsive genes that are involved in variable aspects
of plant growth and development (Golan et al., 2013;
Liscum and Reed, 2002; Luo et al., 2018). Therefore, to
elucidate the function of strawberry IAAs in stimulating
specific auxin responses, we performed a genome-wide
comprehensive survey of the Aux/IAA gene family in
strawberry. In this study, 21 strawberry IAA genes were
identified and labeled based on their chromosomal location.
Fewer duplication resulted in fewer FveIAA genes compared
with other species, such as Arabidopsis, tomato, rice, and
maize (Audran-Delalande et al., 2012; Dreher et al., 2006;
Jain et al., 2006; Wang et al., 2010) (Suppl. Tab. S6). Next,
we assessed the conserved structural domains of the

FIGURE 5. Phylogeny, motifs, and exon-intronic structures of FveIAAs.
(A) Unrooted NJ phylogeny of FveIAAs. The phylogeny was constructed based on full-length FveIAAs amino acid sequences with MEGA V7.0
(bootstrap = 1000, Poisson model) with a length corresponding to the number of substitutions per site. (B) MEME was used to determine the
conserved motifs of FveIAAs. Variable color codes, labeled 1–10 at the bottom, represent different motifs and their positions. The scale bar
represents the length of the respective amino acid sequence (Suppl. Fig. S1). (C) The structures of FveIAA genes generated from the GSDS.
Exons (yellow box); UTR (green); introns (black lines); scale bar represents the length of the respective DNA sequences.
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strawberry Aux/IAA proteins. The amino acid sequence
analysis revealed four highly conserved domains between
the FveIAA gene family and Arabidopsis, suggesting the
possibility of similar functions.

Previous studies have suggested that phylogenetic
analysis not only helps elucidate phylogenetic relationships
but also predicts putative functions of various genes, which
helps in the selection of candidate genes (Horton et al.,
2007; Xu et al., 2018; Zhai et al., 2014). Here, the F. vesca
Aux/IAA gene family members were divided into nine
groups based on their sequence similarity. The phylogenetic
tree between strawberry and Arabidopsis showed that all the
FveIAAs had orthologs in Arabidopsis (Fig. 2). Comparative
genome analysis of the Aux/IAA genes in F. vesca and
Arabidopsis confirmed gene duplication (segmental
duplication) in at least four pairs of FveIAA genes and the
absence of tandem duplications. Segmental and tandem
duplication events are critical for the expansion of the gene

families (He et al., 2019; Kramer et al., 2004; Li et al., 2020b;
Zhu et al., 2014). Typically, angiosperm evolution is
associated with the whole-genome duplication events
leading to the expansion of gene families (Kawai et al., 2014;
Yamada et al., 2019). Also, the cis-element analysis
confirmed the presence of cis-regulatory elements associated
with hormone response, tissue-specific, and stress response
on most of the strawberry Aux/IAA gene promoter sequences.

Plants are frequently exposed to abiotic and biological
stresses, such as cold, desiccation, salinity, and hormones
during the developmental stages (Kim et al., 2015; Ku et al.,
2018; Mishra and Richa, 2016). One study reported that
Aux/IAA as transcriptional regulators might promote Auxin
signal transposition directly (Mano and Nemoto, 2012). We
analyzed the promoter cis-elements of the FveIAA genes
family and found that several hormone-responsive stress
elements were present in the promoter region. Thus, we
analyzed the expression of the FveIAA genes in the

FIGURE 6. Putative cis-regulatory elements in the promoter region of FveIAA genes.
The promotors (1500 to 1 bp prior to the start codon ATG) of the FveIAA genes were obtained from Phytozome, and the cis-elements were
predicted by PlantCARE. +: The presence of the cis-element; −: The absence of the cis-element.
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strawberry seedlings post-IAA treatment and found that most
of the FveIAA genes were responsive to IAA treatment, despite
the absence of corresponding cis-elements in some of the
genes, indicating the possibility of indirect regulation of
these genes. The results also substantiated the involvement
of FveIAA in auxin signaling pathways.

Expression patterns of FveIAAs were investigated in
different organs using real-time PCR to study their
physiological functions, especially fruit development (Fig. 8).
Some FveIAA genes showed organ-specific expression

patterns, indicating their differential roles during strawberry
development. FveIAA3, FveIAA4, FveIAA5, FveIAA11,
FveIAA13, FveIAA16, and FveIAA18 showed preferential
expression in flower and/or fruit, suggesting their
importance in improving fruit-related agronomic traits in
strawberry. Interestingly, during the fruit development and
ripening stage, we observed a rapid increase in the
transcription levels of FveIAA4 and FveIAA5 from the SG to
the BG stage and maintained a high expression throughout
the fruit ripening. While FveIAA13 and FveIAA18 showed

FIGURE 7. Putative interaction network of FveIAA proteins in F. vesca.
PPI networks of all the FveIAAs and their interacting proteins. Edge confidence was taken >0.7. Network nodes indicate proteins; colored nodes
indicate query proteins and first shell of interactors. In the network, interacting proteins were termed in black, while FveIAAs were termed in red.
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the highest expression levels in the R stage (fruit maturity
period). Previous studies have demonstrated the involvement
of several Aux/IAA genes in the fruit developmental processes
(Pattison et al., 2014); however, there is a scarcity of
information on the regulation of fruit ripening regulation by
Aux/IAA proteins, which needs to be further studied (Luo et
al., 2018; Ori, 2019). Here, fruit-specific expression pattern
and response to auxin indicated a novel role of these genes in
regulating fruit development and ripening in strawberry.
FveIAA21 exhibited a downregulated expression, which
indicated it might have a different role during plant growth
and development. Most FveIAA family genes showed higher
expression in stem compared with other organs, indicating
that Aux/IAAs could be vital for stem development.

Thus, we identified twenty-one putative candidate
Aux/IAA genes in F. vesca in this study. FveIAAs were

localized across five chromosomes of F. vesca and were
divided into nine groups. All members had high homology
and conserved domains, but they were different in a way.
The study of the synteny analysis and phylogenetic
relationships between F. vesca and Arabidopsis provided
valuable information about the evolutionary characteristics
of FveIAA genes. Protein motif architecture and PPI
analysis indicated that FveIAA genes played a role in gene
regulation and protein interaction net. Thus, FveIAA genes
probably played an important role during strawberry
development via the auxin signal transduction pathway.
Based on tissue-specific expression and IAA treatment
response, FveIAA4, FveIAA5, FveIAA13, and FveIAA18
were involved in fruit formation and ripening. These
results would help decipher the biological roles of the
Aux/IAA family in F. vesca.

FIGURE 8. Heatmap of transcription profiling individual FveIAA genes in different organs.
The Omicshare website provided the log2 transformation of the relative expression data. The relative mRNA level of individual FveIAAs was
normalized to FvActin in different tissues, including stem, root, flower, leaf, small green fruit (SG), big green fruit (BG), and red fruit (R). Blue
blocks and red blocks represent downregulated and upregulated transcription levels, respectively.
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