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Abstract: Chemotherapy may cause cellular oxidative stress to bone marrow. Oxidative damage of bone marrow

hematopoietic microenvironment is closely related to chronic myelosuppression after chemotherapeutic treatment.

Angelica sinensis polysaccharides (ASP) are major effective ingredients of traditional Chinese medicine Angelica with

multi-target anti-oxidative stress features. In the current study, we investigated the protective roles and mechanisms

of ASP on chemotherapy-induced bone marrow stromal cell (BMSC) damage. The human bone marrow stromal cell

line HS-5 cells were divided into control group, 5-FU group, 5-FU + ASP group, and 5-FU + LiCl group to

investigate the mechanism of ASP to alleviate 5-FU-induced BMSC proliferation inhibition. The results showed that

5-FU inhibits the growth of HS-5 cells in a time and dose-dependent manner; however, ASP partially counteracted

the 5-FU-induced decrease in cell viability, whereas Wnt signaling inhibitor Dkk1 antagonized the effect of ASP on

HS-5 cells. ASP reversed the decrease in total cytoplasmic β-catenin, p-GSK-3β, and CyclinD1 following 5-FU

treatment and modulated nuclear expression of β-catenin, Lef-1, and C-myc proteins. Furthermore, ASP also

enhanced the antioxidant capacity of cells and reduced 5-FU-induced oxidative stress, attenuated FoxO1 expression,

thus weakened its downstream apoptosis-related proteins and G0/G1 checkpoint-associated p27Kip1 expression to

alleviate 5-FU-induced apoptosis and to promote cell cycle progression. All the results above suggest that the

protective role of ASP in 5-FU-treated BMSCs proliferation for the chemotherapy may be related to its activating

Wnt/β-catenin signaling and keeping homeostasis between β-catenin and FoxO1 under oxidative stress. The study

provides a potential therapeutic strategy for alleviating chemotherapeutic damage on BMSCs.

Introduction

Myelosuppression is the major side effect of chemotherapy
(Chabner and Roberts, 2005; Papac, 2001) that may be caused
even by minor doses of chemotherapeutic drugs, leading to
hematopoietic dysfunction, hematopoietic reconstitution
disorders, and other secondary adverse reactions (Dritschilo
and Sherman, 1981; Marsh, 1976). The mechanisms of
myelosuppression can be various, including direct cytotoxicity
to marrow cells, inhibition of bone marrow stem cell or
progenitor cell proliferation, or interference with
hematopoietic growth factor and receptor signaling,
subsequently affecting the downstream differentiation
processes. Chemotherapy-induced cellular damage involved
not only hematopoietic stem cells/progenitors but also stromal

cells in the hematopoietic microenvironment, which may be
the reason for chronic hematopoietic dysfunction (Galotto
et al., 1999; Kemp et al., 2010; Li et al., 2004; Nicolay et al.,
2016; Oliveira et al., 2014; de Lima Prata et al., 2010). As
chemotherapy disrupts the steady-state function of
hematopoietic and stromal cell, disruptions over time may
cause severe bone marrow toxicity and the failure of cancer
treatment. 5-FU, widely used in high-proliferative, tissue-
derived cancers, particularly for colorectal cancer and breast
cancer, exerts its anti-cancer effects through inhibition of
thymidylate synthase (TS) and incorporation of its metabolites
into RNA and DNA (Douillard et al., 2000; Longley et al.,
2003; de Lima Prata et al., 2010). It was reported that the
mechanism of stromal cell proliferation inhibition and
apoptosis after 5-FU treatment is oxidative damage (Somaiah
et al., 2018; Wang et al., 2015). Our previous findings have
confirmed that following oxidative damage of BMSCs 5-FU
may alter bioactive substance and cause stress-induced
premature senescence (SIPS) of hematopoietic cells
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(Xiao et al., 2017). However, the specific underlying mechanism
of 5-FU-induced BMSC proliferation inhibition remains unclear.
Therefore, to explore its related mechanisms to reduce the side
effects of chemotherapy drugs and to screen protective drugs
during chemotherapy is of clinical guidance significance.

Wnt/β-catenin is an evolutionarily highly conserved
signaling pathway that plays a key role in the development
and is involved in cell proliferation, differentiation, apoptosis,
and localization control (Nusse and Clevers, 2017; Petersen
and Reddien, 2009). Particularly, the Wnt pathway involves
various signal feedback that maintains the processes of stem
cell proliferation, differentiation, and self-renewal (Luis et al.,
2011; Richter et al., 2017). The properties of stem cells are
conferred by the interaction of stem cells with their local
microenvironment. Recent studies have evidenced that the
Wnt/β-catenin signaling pathway is closely related to
hematopoietic microenvironment affecting hematopoietic
microenvironment function extensively, participate in BMSC
proliferation, alleviate oxidative stress, and regulate
hematopoietic stem cell self-renewal through stroma-
dependent manner (Kim et al., 2009; Oh, 2010; Schreck et al.,
2014). It is increasingly realized that the microenvironment
keeps the threshold of Wnt signaling in stem cells at a
physiological range. In the current work, it was clarified
herein the roles of Wnt signaling in chemotherapy-induced
stromal suppression and the ameliorative effects of ASP.

The Forkhead transcription factors family, including
FoxO1 (or Fkhr), FoxO3a (or Fkhrl1), FoxO4 (or Afx), and
FoxO6, are critically involved in the regulation of apoptosis,
proliferation, and the control of oxidative stress
(Eijkelenboom and Burgering, 2013). Stress conditions such
as high ROS levels induce FoxO nuclear import and trigger
the shifting of β-catenin from TCF/LEF to FoxO-mediated
transcription (Behrens et al., 1996; Essers et al., 2005). In
the hematopoietic system, activation of FoxO factor is
sufficient to activate a variety of proapoptotic genes and to
trigger apoptosis. Meanwhile, overexpression of FoxO
factors cause a strong inhibition of cell proliferation
(Burgering and Medema, 2003; Ma and Wang, 2012). As
playing a critical role in proliferation and apoptosis, it has
been aware that FoxO factors are closely related to
chemotherapy-induced cell damage; nevertheless, studies are
needed to clarify the relationship of FoxO factors and Wnt
signaling in myelosuppression (Gomes et al., 2008; Greer
and Brunet, 2005).

Angelica of Chinese herb is a commonly used medicine
to enrich the blood, promote blood circulation and treat
menstrual disorders (Dietz et al., 2016; Zhao et al., 2003).
Angelica sinensis polysaccharides (ASP) are major effective
ingredients of Angelica, with significant bioactivities
including anti-oxidation (Lei et al., 2014; Zhuang et al.,
2018), anti-tumor (Tsai et al., 2005; Zhang et al., 2016),
promoting hematopoiesis (Bradley et al., 1999; Liu et al.,
2010a; Wang et al., 2017), and delaying senescence (Lai and
Liu, 2015; Mu et al., 2017) effects. ASP shows antioxidant
activity by suppressing the production of ROS and
regulating several chemical substances associated with
oxidative stress (Ai et al., 2013; Wei et al., 2016). Our
previous work showed marked antioxidative role of ASP in
BMSCs from 5-FU injury in vitro, thus protected

hematopoietic cells against SIPS via alleviating oxidative
stress, preventing oxidative DNA damage, promoting
hematopoietic stimulating factors originated from BMSCs,
and enhancing intercellular communication between stromal
cells and hematopoietic cells (Xiao et al., 2017). On this
basis, we demonstrated herein that ASP alleviated 5-FU-
induced stromal cell proliferation inhibition, apoptosis, and
oxidative stress damage, and the underlying mechanism
may be related to ASP activating Wnt/β-catenin signaling
and keeping homeostasis between β-catenin and FoxO1
under oxidative stress.

Materials and Methods

Reagents
5-fluorouracil was purchased from Sigma-Aldrich Co., St. Louis,
USA. Angelica sinensis polysaccharides are composed of long
chains of several monosaccharide units including fucose,
galactose, glucose, arabinose, rhamnose and xylose, and all the
monosaccharide units are linked via various glycosidic bonds.
In the study, ASP were purchased from Ci Yuan
Biotechnology Co. Ltd., Shanxi, China. All standards were at
least 98% pure, as confirmed by HPLC (Jin et al., 2012; Wei et
al., 2016; Zhang et al., 2014; Zhang et al., 2016). LiCl (purity
>95%) was purchased from Damao Chemical Reagent Factory,
Tianjin, China. Fetal bovine serum (FBS) was purchased from
MRC Company, Australia. Dulbecco’s modified Eagle medium
high-glucose(H-DMEM) was purchased from Gibco Co., NY,
USA. Cell Counting Kit-8 was purchased from Dojindo
Laboratories (Japan). EdU Cell Proliferation Assay Kit was
purchased from RiboBio Co. Ltd., Guangzhou, China. β-
catenin, GSK-3β, p-GSK-3β, Lef-1, Cyclin D1, C-myc, FoxO1,
p-FoxO1, p27Kip1, Bim, Bax, Bcl-2, and caspase-3 antibodies
were purchased from Cell Signaling Technology, Danvers,
USA. Dkk1 was purchased from R&D Systems (USA). Reactive
Oxygen Species Assay Kit and Senescence β-Galactosidase
Staining Kit were purchased from the Beyotime Institute of
Biotechnology, Shanghai, China. Superoxide Dismutase (SOD)
assay kit, Malondialdehyde (MDA) assay kit and Catalase
(CAT) assay kit, were purchased from Nanjing Jiancheng
Bioengineering Institute, Nanjing, China.

Cell culture and groups of experiment
Human bone marrow stromal cell line HS-5 was cultured
in H-DMEM containing 10% fetal bovine serum and
100 U/mL penicillin and 100 μg/mL streptomycin. Cells
were cultured in a humidified atmosphere with 5% CO2 at
37°C. Cells were divided into control group, 5-FU group, 5-
FU + ASP group, and 5-FU+ LiCl group. The control group
was routinely cultured; 5-FU group was treated with 5-FU
on the concentration of 25 μg/mL; 5-FU+ ASP group was
pretreated with ASP on the concentration of 100 μg/mL,
and 25 μg/mL 5-FU was added after 6 h; 5-FU+ LiCl
group was pretreated with LiCl on the concentration of
10 mmol/L, and 25 μg/mL 5-FU was added after 6 h, each
group was cultured for 48 h.

CCK-8 cell viability assay
Cell viability assay and the screening of drug concentration
were performed using the Cell Counting Kit-8. Cells were
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plated in 96-well plates at a density of 5 × 103 cells per well.
The optical density (OD) value at 450 nm was measured
using a microplate reader (Massachusetts, USA). The cell
viability of HS-5 was calculated according to the formula:
Cell viability = [(OD experimental group − OD blank
group)/(OD control group − OD blank group)] × 100%.
Inhibition rate = [(OD control group − OD experimental
group)/(OD control group − OD blank group)] × 100%.

EdU proliferation assay
The HS-5 cells were seeded in 96-well plates at a density of
5 × 103 cells per well and treated as described in groups of
experiment. After 48 h treatment, cells were exposed to
10 μmol/L EdU solution for 24 h. Cells were washed and fixed
in 4% paraformaldehyde at room temperature for 30 min.
After washing, cells were permeabilized in PBS containing
0.5% Triton X-100 for 20 min. Then, cells were washed and
incubated with 1X Apollo� reaction cocktail for 30 min.
Subsequently, cells were stained with Hoechst33342 for 30 min
and observed under a fluorescence microscope (Olympus,
Japan). Counting 200 cells at random, the proliferation rate of
HS-5 cells was defined as the ratio of EdU-positive cells (green
cells) to Hoechst33342-positive cells (blue cells).

Flow cytometry analysis
For cell apoptosis assay, the HS-5 cells were cultured then
treated as described in groups of experiment. After 48 h
treatment, cells were harvested and centrifuged at 1000 rpm
for 5 min. Subsequently, cells were resuspended with 500 µL
PBS solution for each tube. Cell apoptosis was detected by
flow cytometry. For cell cycle assay, the HS-5 cells were
cultured then treated as described in groups of experiment.
After 48 h treatment, cells were harvested and fixed with pre-
cooled 75% ethanol at 4°C for at least 5 h. After
centrifugation, cells were incubated with propidium iodide
(PI) and RNase A at 37°C for 30 min in the dark. Cell cycle
was detected by the flow cytometry. The apoptosis and cell
cycle were analyzed on a FAC-Scan laser flow cytometry (BD
Biosciences, New Jersey, USA). The data were processed by
Cell Quest software (BD Biosciences, New Jersey, USA).

Immunofluorescence staining
Sterile glass slides were put into 24-well plates; the HS-5 cells were
cultured at a density of 5 × 104 cells per well in 24-well plates then
treated as described in groups of experiment. After 48 h treatment,
cells were fixed with 4% paraformaldehyde for 30 min at room
temperature. After washing, cells were permeabilized in PBS
containing 0.5% Triton X-100 for 20 min and then blocked
with 10% goat serum for 1 h. Subsequently, cells were incubated
with monoclonal antibody β-catenin (1:150) overnight at 4°C.
After being washed thrice with PBS solution, cells were
incubated with Cy3-labeled goat-anti-rabbit immunofluorescent
secondary antibody (1:300) at 37°C for 2 h in the dark. The
nuclei were stained with 4’,6-diamidino-2-phenylindole (DIPI)
for the last 5 min. The images were observed and acquired
under the fluorescence microscope.

Immunoblot assay
The HS-5 cells were treated as described in groups of
experiment. After 48 h treatment, cells were incubated with

PIPA lysis buffer containing 1% protease inhibitor and
phosphatase inhibitor for 30 min on ice, and proteins were
isolated after centrifugation. The concentrations of proteins
were detected by the BCA Protein Assay Kit (Beyotime,
China). The protein samples were separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and then transferred to polyvinylidene fluoride
(PVDF) membranes (Millipore, USA). The membranes were
blocked with 5% skim milk for 1 h at room temperature
and subsequently incubated overnight at 4°C with β-catenin,
Cyclin D1, p-GSK-3β, GSK-3β, Lef-1, C-myc, FoxO1, p-
FoxO1, p27Kip1, Bim, Bcl-2, Bax, and caspase-3 primary
antibodies (1:1000). After washing three times with Tris-
Buffered Saline and Tween-20 (TBST), the membranes were
incubated with secondary antibodies for 1 h at room
temperature. The enhanced chemiluminescence (ECL) kit
(Millipore, USA) was used for color development, and
Image Lab 5.2.1 software was used for semi-quantitative
analysis. The relative expression levels of the target proteins
were determined by the ratio of the target protein gray value
to the internal reference protein gray value.

Oxidation-associated biological indicators assay
For the detection of intracellular ROS, the HS-5 cells were seeded
in 6-well plates at a density of 2 × 105 cells per well then treated as
described in groups of experiment. After 48 h treatment, the
cells were washed thrice by serum-free medium and then
incubated with 2’,7’-dichlorodihydrofluorescein diacetate
(DCFH-DA) at 37°C for 20–30 min in the dark. The content of
intracellular ROS was observed and acquired under the
fluorescence microscope. The average optical density per unit
area was analyzed using ImageJ software. For the detection of
MDA content and SOD, CAT activity, the HS-5 cells were
cultured and treated as described in groups of experiment.
After 48 h treatment, cells were harvested, lysed, and
centrifuged to collect the supernatant. MDA, SOD, and CAT
were measured by the corresponding assay kits according to the
manufacturer’s instruction.

Statistical analysis
For all assays, the experiments were performed at least three
times. All the results were analyzed by one-way analysis of
variance (ANOVA) with SPSS 20. 0 statistical software. All
the data were expressed as mean ± standard deviation (SD).
P < 0.05 was considered statistical significance.

Results

5-FU inhibits the growth of HS-5 cells by down-regulating the
Wnt/β-catenin signaling pathway
To assess the effect of 5-FU on proliferation, HS-5 cells were
treated with 5-FU at different concentrations for 72 h. As
shown in Fig. 1A, the inhibition ratio of HS-5 cells
increased simultaneously with the increase of 5-FU
concentration and the extension of treatment time,
suggesting that 5-FU exerted the inhibitory role in HS-5 cell
growth in a dose- and time-dependent manner. Treated
with 25 μg/mL 5-FU for 48 h, the inhibition ratio of HS-5
cells dropped almost 50%, which meant half of the cells
were suppressed to grow (P < 0.05). Thus, 25 μg/mL 5-FU
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treating for 48 h was selected as an optional condition for the
subsequent experiments. Interestingly, in the current study,
we found that the inhibitory effect of 5-FU on HS-5 cell
growth was relative to the Wnt/β-catenin signaling pathway.
Western blot assay demonstrated that 5-FU downregulated
the cytoplasmic levels of p-GSK-3β, total β-catenin, and
Cyclin D1 in HS-5 cells, followed by nuclear protein
expression of β-catenin, Lef-1, and C-myc down-regulation
(Fig. 1B). These results hinted that 5-FU promoted the

ubiquitination degradation of β-catenin mediated by GSK-
3β-complex, inhibited the nuclear translocation of β-catenin,
and downregulated the downstream target genes.

Then the activator and antagonist of the Wnt/β-catenin
signaling pathway were tested to further illustrate the effect
of 5-FU on Wnt/β-catenin signaling. Morphologically, 5, 10,
20 mmol/L of activator LiCl increased the number of HS-5
cells, however, the cellularity in the 40 mmol/L group
significantly dropped concomitant with smaller and loosely

FIGURE 1. 5-FU inhibits HS-5 cells proliferation by regulating Wnt/β-catenin signaling pathway.
(A) Cell Counting Kit-8 (CCK-8) assay was performed to detect the inhibitory effect of 5-FU. (B) Western blot was performed to detect the
effects of 5-FU on the expression of Wnt/β-catenin signaling pathway related proteins in HS-5 cells and the histograms of relative protein
expression are presented. β-actin and Lamin B are probed as loading controls. Data are presented as means ± SD (N = 3/group) (C)
Histologic feature of HS-5 cells treated with Wnt signaling agonist LiCl under inverted microscope (Scale bar = 40 μm). (D) Cell Counting
Kit-8 assay showed the viability HS-5 cell treated with LiCl. HS-5 cell treated with 0 mmol/L LiCl were set as 1.0, and the results of HS-5
cell viability were normalized to the OD value of 0 mmol/L group (E) HS-5 cells were incubated with 50 ng/mL Wnt signaling inhibitor
Dkk1 for 48 h and cell viability was detected by CCK-8. HS-5 cell treated without Dkk1 was used as a control, and the results of HS-5 cell
viability were normalized to the OD value of control group (*P < 0.05 vs. control).
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dispersed shape (Fig. 1C). Also, cell viability was tested by CCK-8
assay. As shown in Fig. 1D, cells treated with 5–20 mmol/L LiCl
for 48 h showed different degrees of proliferation, among which
the proliferation rate of cells peaked up to 150% of the control at
the concentration of 10mmol/L LiCl. In accord with the result by
microscopy, 40 mmol/L LiCl also presented cytotoxicity to HS-5
cells even within 24 h (P < 0.05). Therefore, the pretreatment
with 10 mmol/L LiCl was utilized as a positive control in the
subsequent experiment. Furthermore, Dkk1, an antagonist for
Wnt/β-catenin signaling, was used as a negative control to get
more evidence for the Wnt/β-catenin signaling pathway on cell
viability. 50 ng/mL Dkk1 treated for 48 h, the cells were
dramatically inhibited compared with the control group
revealed by the results of CCK-8 (Fig. 1E). All the results
above indicate that the effect of 5-FU on inhibition of HS-5
cell growth correlates with the suppression of the Wnt
signaling pathway.

Angelica sinensis polysaccharides antagonize growth inhibition
of 5-FU-treated HS-5 cells through the Wnt/β-catenin signaling
pathway
Tested by EdU the proportion of proliferating cells in 5-FU
group was significantly lower than that of the control group;
after pretreatment with ASP and LiCl, the proportion of

EdU positive cells increased markedly compared with 5-FU
group (Figs. 2A and 2B). The results of CCK-8 showed an
obvious reduction after a 48 h-incubation with 5-FU
compared with untreated control cells; however, ASP
pretreatment partially reversed the reduction. Moreover, the
ASP-induced increase in the viability was weakened by
Dkk1 (Fig. 2C). Shown by immunofluorescence assay, the
cytoplasmic and nuclear expression of β-catenin was
decreased obviously after 5-FU treatment, however, ASP
and LiCl pretreatment respectively rescued the expression of
β-catenin and its nuclear translocation (Fig. 3A). Western
blot revealed that ASP and LiCl pretreatment significantly
reversed the 5-FU-induced decrease in cytoplasmic
expression of total β-catenin, p-GSK-3β, and CyclinD1,
meanwhile modulated nuclear expression of β-catenin,
Lef-1, and C-myc proteins (Figs. 3B–3I) (P < 0.05). These
data hint that ASP may activate Wnt signaling, which may
be one mechanism that ASP counteract the inhibiting effect
of 5-FU on HS-5 cell growth.

Angelica sinensis polysaccharides relieve 5-FU-induced
intracellular oxidative stress
To elucidate the mechanism of 5-FU induced damage and
ASP mediated protective effect on HS-5 cell growth, we

FIGURE 2. Angelica sinensis Polysaccharides antagonize the growth inhibitory effect of 5-FU on HS-5 cells via up-regulating Wnt/β-catenin
signaling.
(A) The proliferative HS-5 cells were labeled by 5-ethynyl-20-deoxyuridine (EdU). The green fluorescence presents proliferative cells, the blue
fluorescence presents nuclei (Scale bar = 40 μm). (B) The percentage of proliferating cells (EdU+) was quantitated using ImageJ software. (C)
The viability rate of HS-5 cell was measured by Cell Counting Kit-8. Control group was set as 1.0 (*P < 0.05 vs. control, #P < 0.05 vs. 5-FU, and
**P < 0.05 vs. 5-FU+ASP group).
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assessed the indexes of oxidative damage. Increases in
intracellular ROS and MDA were found in the 5-FU group
compared with the control group, whereas single
pretreatment of ASP or LiCl reversed the increase
dramatically (Figs. 4A and 4C). On the contrary, ASP or LiCl
administration protected the antioxidant enzymes, including
SOD and CAT in HS-5 cells (Figs. 4D–4E) (P < 0.05). These
results demonstrate that 5-FU cause oxidative stress to HS-5
cells, whereas ASP exert a significant anti-oxidative role to
alleviate 5-FU-induced oxidative stress, which may be related
to the activation of Wnt/β-catenin signaling.

Angelica sinensis polysaccharides ameliorate the activation of
FoxO1 induced by 5-FU
FoxOs are transcriptional factors closely related to cellular
survival and oxidative stress, Notably, activated FoxO1 may
impair Wnt signaling via competitive combination with

β-catenin in the nucleus. Western blot results demonstrated
that compared with the control group FoxO1 expression in
the 5-FU group rose concurrently with decreased p-FoxO1
expression. However, ASP or LiCl pretreatment significantly
reduced FoxO1 expression via degradation of FoxO1 by an
increased p-FoxO1 expression (Fig. 5A). It was inferred
antioxidative properties of ASP may play a role in FoxO1
downregulation, which may be another possible mechanism
for ASP upregulation of Wnt/β-catenin signaling. FoxOs
may orchestrate apoptosis and cell cycle arrest. Here, in the
context, the proteins correlating to apoptosis including Bcl-
2, Bim, Bax, caspase-3 and cell cycle inhibitor as p27Kip1

were detected via western blot assay. It revealed that ASP or
LiCl abrogated 5-FU-induced increase in Bim, Bax caspase-3
and p27Kip1 expression, however enhanced anti-apoptotic
protein Bcl-2 expression (Figs. 5B–5F, and 5H) (P < 0.05).
The results were in line with the data of flow cytometric

FIGURE 3. Angelica sinensis Polysaccharides activate Wnt/β-catenin signaling pathway.
(A) Expression of β-catenin in HS-5 cells was detected by the immunofluorescence method. The red fluorescence presents β-catenin protein
expression, the blue fluorescence presents nuclei (Scale bar = 40 μm). (B) The Wnt signaling related protein expression in HS-5 cells were
detected by the Western blot. β-actin and Lamin B were probed as loading controls. (C-I) The histograms of relative protein expression
are presented. Data are presented as means ± SD (N = 3/group) (*P < 0.05 vs. control and #P < 0.05 vs. 5-FU).
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analysis that a 2.2-fold increase in the apoptosis rate was
found in the 5-FU group compared with the control group,
whereas ASP or LiCl significantly decreased apoptotic cell
percentage compared with that in 5-FU group (Fig. 5G)
(P < 0.05). Meanwhile, ASP or LiCl pretreatment weakened
5-FU induced G0/G1 phase retard concurrent with S and
G2/M phase recovery (Fig. 5I). All these data above hinted
that the effects of 5-FU on HS-5 growth inhibition may
relate to the activation of FoxO1 leading to apoptosis or
cycle arrest. The anti-oxidative property of ASP exerts a
protective effect against cycle arrest and apoptosis.

Discussion

Myelosuppression is one of the common side effects of
chemotherapy, characterized by depletion of cells within the
bone marrow (Ai et al., 2013; Testa et al., 1985). In general,
myelosuppression is primarily attributable to the direct
cytotoxicity to bone marrow cells, inhibition of bone marrow
precursor or progenitor cell proliferation, the reduction in HSC
reserves, and impairment in HSC self-renewal. Notably,
because of the reduction of HM cellularity in varying degrees,
the damaged-hematopoietic microenvironment may result in
diminished or delayed hematopoiesis function, immune-related

disorders, as well as long-term damage to the bone
marrow recovery (Crawford et al., 2004; Kuter, 2015). It
has been shown that chemotherapeutic treatment damage
the hematopoietic microenvironment in vitro and in vivo
(Galotto et al., 1999; Hu et al., 2016; Kemp et al., 2010;
Li et al., 2004; Oliveira et al., 2014; de Lima Prata et al.,
2010). As chemotherapy disrupts the steady-state
function of hematopoietic and stromal cells, disruptions
over time may cause severe bone marrow toxicity and
the failure of cancer treatment. To ensure this does
not occur, finding appropriate agents to promote the
recovery process following discontinuation of
chemotherapy and to lessen the bone marrow damage
has a profound significance.

Since it was first synthesized in 1957, 5-FU has remained
one of the most widely used chemotherapeutic agents with
broad-spectrum activity against many solid tumors (Wilson
et al., 2014). 5-FU exerts its anticancer effects through
inhibition of thymidylate synthase (TS) and incorporation
of its metabolites into RNA and DNA, leading to
cytotoxicity and cell death (Longley et al., 2003). Recent
studies have indicated that 5-FU suppressed the proliferation of
HSCs and induced the myelosuppression of mice by down-
regulating the PI3K-AKT signaling pathway (Wang et al., 2015;

FIGURE 4. Angelica sinensis Polysaccharides reduce 5-FU-induced intracellular oxidative stress.
(A) The levels of intracellular reactive oxygen species (ROS) in HS-5 cells were measured by DCFH-DA assay under fluorescence microscope.
(B) The mean fluorescence intensity of ROS is quantified and presented by histograms. (C) The results of MDA content in HS-5 cells are
presented by histograms. (D) The content of SOD in HS-5 cells are presented by histograms. (E) The results of CAT content in HS-5 cells
are presented by histograms. Data were presented as means ± SD (N = 3/group) (*P < 0.05 vs. control and #P < 0.05 vs. 5-FU).
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Zhang et al., 2019). However, the definite mechanism for 5-FU
caused myelosuppression remains unclear. Focused on bone
marrow stromal cells, we provided the evidence that 5-FU
inhibited stromal cell growth and induced apoptosis, which was

related to downregulation of Wnt/β-catenin signaling, also
up-regulation of FoxO1 concomitant with an increase of cellular
oxidative stress. Furthermore, the current work revealed that
anti-oxidative property and role in Wnt signaling regulation

FIGURE 5. Angelica sinensis Polysaccharides ameliorate 5-FU-induced activation of FoxO1.
(A) The protein expression levels of FoxO1 and p-FoxO1 in HS-5 cells were detected by the Western blot. The relative protein expression is
presented by histograms. β-actin is probed as loading control. (B) The protein expression levels of apoptosis in HS-5 cells were detected by the
Western blot. (C–F) The histograms of relative protein expression are presented. β-actin is probed as loading control. (G) Annexin V-FITC/PI
double staining was employed to detect cell apoptosis by flow cytometry and the histogram of apoptosis rate is presented. (H) The protein
expression level of p27Kip1 in HS-5 cells was detected by the Western blot and the histogram of p27 Kip1 protein expression is presented.
(I) Cell cycle was analyzed by flow cytometry and the histograms of phase distribution are presented. Data were presented as means ± SD
(N = 3/group) (*P < 0.05 vs. control and #P < 0.05 vs. 5-FU).
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might be the key mechanisms of ASP to prevent 5-FU-induced
stromal damage.

Stem cells display the defining capacity to self-renew, and
their fate is primarily dictated by extrinsic, short-range signals,
which typically emanated from the stem cell niche (Losick et
al., 2011). The non-hematopoietic cells in the hematopoietic
microenvironment have a functional role in regulating
hematopoiesis and the signaling pathways that regulate HM
may be necessary for the development of functional niches
that regulate hematopoietic stem cells and their progenitors
(Morrison and Spradling, 2008; Zhang et al., 2003). The
Wnt signaling pathway exerts a variety of effects on target
cell developmental processes, including cell proliferation,
apoptosis, and differentiation. The canonical Wnt pathway
affects cellular functions by accumulating β-catenin in the
cytoplasm and eventually translocating into the nucleus.
Within the nucleus, β-catenin binds to T cell factor (TCF)
family/lymphoid enhancer factor (LEF) and regulates cell
proliferation through Wnt downstream target genes
(Clevers, 2006; Moon et al., 2002; Nusse and Clevers, 2017).
It was reported that Wnt/β-catenin signaling regulates HSCs
function in a dosage-dependent manner (Fleming et al.,
2008; Huang et al., 2012; Malhotra and Kincade, 2009;
Mohammed et al., 2016). Various degrees of activation of
the pathway may cause different outcomes, leading to either
enhanced repopulation capacity or exhaustion of the HSCs.
A mild increase in Wnt signaling enhanced HSC function
(Famili et al., 2016; Luis et al., 2011). However, a high Wnt
level in HSCs eventually leads to stem cell exhaustion and
impairment of reconstitution in irradiated recipients
(Kirstetter et al., 2006; Ming et al., 2012; Scheller et al.,
2006). Most importantly, Wnt signaling regulates HSC
reconstruction in a stromal-dependent manner. It was found
that when hematopoietic cells were co-cultured with BMSCs
supplemented with Wnt3a conditioned medium, the
cellularity of Lin−Sca-1+c-kit+ hematopoietic stem cells, was
increased, and the hematopoietic transplantation and
reconstruction capability were enhanced (Kim et al., 2009;
Nemeth et al., 2009). Hence, in the current study, we
focused on the Wnt signaling regulation on BMSCs
following chemotherapy. It was found that 5-FU induced a
decrease in cytoplasmic expression of total β-catenin, p-
GSK-3β, and CyclinD1, meanwhile weakened nuclear
expression of β-catenin, LEF-1, and C-myc proteins, causing
HS-5 cells proliferation inhibition. The results herein are in
line with the other data related to the relationship between
canonical Wnt signaling and cell proliferation, which has
confirmed that Wnt/β-catenin signaling positively stimulates
cell growth via cell cycle regulation (Braunschweig et al.,
2015; Shtutman et al., 1999).

Reactive oxygen species (ROS) are free radicals and
active metabolites of oxygen containing unpaired electrons,
which take a significant role in cell signal transduction and
regulation (Owusu-Ansah and Banerjee, 2009). Chemical
agents, as well as irradiation, can cause persistent ROS
production. This accumulation of ROS may lead to
excessive oxidative stress and DNA damage such as DSBs
(double-strand breaks), which are considered to be the main
potential mechanisms causing cellular damage (Meng et al.,
2003; Wang et al., 2010). A previous study in our group has

demonstrated that 5-FU weakened the antioxidant capacity
of HS-5 cells and caused high sensitivity of cells to ROS,
thus HS-5 cells underwent DSB which eventually resulted in
either apoptosis or senescence (Xiao et al., 2017). Oxidative
stress is also related to cell cycle arrest. DSBs initiate DNA
damage response through sequential stimulation of ATM,
Chk2, and p53 (Sancar et al., 2004). Activation of p53 and
its downstream p21 may induce cell cycle arrest. Meanwhile,
ROS can activate the p38 MAPK pathway (Ito et al., 2006).
Activation of p53 and p38 pathways can converge at p16
and augment of p16 expression may also lead to permanent
cell cycle arrest (Beausejour et al., 2003; Iwasa et al., 2003).
Interestingly, it is reported that β-catenin may be critical for
antagonizing oxidative stress. Exposing β-catenin
knockdown mice to chemotherapeutic agent or radiation
caused a decreased expression of the hydrogen peroxide
(H2O2) detoxifying enzyme catalase and led to the
accumulation of ROS and superoxide (O2

–) free radicals in
cells and an inability to repair DNA damage (Lento et al.,
2014). On the opposite, effector molecules generated from
oxidative DNA damage may also down-regulate the Wnt
pathway by inhibiting transcriptional activity or
participating in post-translational modifications to enhance
ubiquitination degradation (Lin et al., 2008). The evidence
above hints that Wnt signaling is also closely correlated with
oxidative stress. Therefore, in the current study, increased
oxidative stress may be one of the reasons for the
downregulation of Wnt signaling induced by 5-FU
treatment. Whereas, a decrease in β-catenin protein
accompanying reduction of antioxidase SOD and CAT
induced by 5-FU treatment may be another mechanism of
cell proliferation inhibition.

Forkhead box O (FOXO) family are transcription factors,
which promote cell survival by regulating the cell cycle,
apoptosis, and the response to oxidative stress
(Eijkelenboom and Burgering, 2013). The accumulation of
ROS may interrupt 14-3-3 combine to FoxO via JNK (c-Jun
N terminal kinase), permit FoxO entrance into the nucleus,
and induce its transcriptional activation (Morrison, 2009;
Nakae et al., 2008). FoxO can be phosphorylated by the
phosphatidylinositol 3-kinase-Akt pathway (Han et al.,
2015; Zhang et al., 2020). It is of note that FoxO-mediated
transcription requires the binding of β-catenin. FoxOs can
compete with TCF/LEF by directly binding β-catenin,
thereby inhibit Wnt/β-catenin downstream signaling
(Almeida et al., 2007; Behrens et al., 1996; Hoogeboom et
al., 2008; Iyer et al., 2013). It was demonstrated herein,
compared with the control group FoxO1 expression in 5-FU
treated HS-5 cells rose dramatically concurrent with
decreased p-FoxO1 expression. The reason for up-regulation
of FoxO1 may be related to 5-FU triggered oxidative stress,
whereas FoxO1 up-regulation may be another reason for 5-
FU induced decrease in Wnt signaling (Burgering and
Medema, 2003; Danciu et al., 2004; Ma and Wang, 2012).
FoxO transcription factor family regulates the proteins that
are crucial for apoptosis, as well as the proteins involved in
the proliferative status of a cell. FoxO factors may regulate
antiapoptotic and proapoptotic proteins at multiple levels,
finally trigger activation of the effector caspases. Bim
promotes apoptosis by inhibition of antiapoptotic Bcl-2
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family members or through direct activation of Bax-like
molecules. FoxO factors may regulate Bim protein
expression to cause cell death due to cytokine deprivation.
FoxO factors may also repress transcription of Bcl-XL
through the induction of the transcriptional repressor
(Dijkers et al., 2000; Stahl et al., 2002; Tang et al., 2002).
Caspase-3 is an important effector protease, when it is
cleaved, it acts as the final executor during apoptosis. In the
current study, it was found that in 5-FU treated HS-5 cells,
FoxO1 targeted apoptosis-related proteins to cause an
increase in Bim, Bax, and caspase-3, whereas a decrease in
Bcl-2. FoxO1 targeted apoptosis to disturb the dynamic
balance of the cellularity of HS-5 cells, which may be one of
the reasons for cell growth inhibition. Moreover, the cyclin
kinase inhibitor p27Kip1, a downstream target of FoxO1,
acting as a potent inhibitor of cyclin/CDK complexes in the
S-phase of cell cycle progression was also tested (Collado
et al., 2000; Kops et al., 2002; Medema et al., 2000;
Nakamura et al., 2000). It was found herein that 5-FU
increased the expression of p27kip1. In addition, 5-FU
simultaneously reduced the expression of Cyclin D1. It is of
note that transcriptional repression of D-type cyclins is vital
to the FoxO-induced cell-cycle arrest, which is evidenced by
transcriptional profiling and mRNA analysis. D-type cyclins
are required for phosphorylation and inactivation of the
retinoblastoma tumor suppressor protein (pRb), an essential
determinant of cell-cycle progression in G1 (Ramaswamy et
al., 2002; Schmidt et al., 2002). To sum up, 5-FU-induced
HS-5 cell growth inhibition is probably associated with
FoxO1 targeted apoptosis or cell cycle arrest.

The traditional Chinese medicine Angelica sinensis,
which is commonly used to enrich the blood, promote
blood circulation (Wei et al., 2016). The active constituents
of Angelica sinensis include polysaccharides, organic acid
sand phthalides, among which Angelica sinensis
polysaccharides (ASP) are regarded as the main biological
activity ingredient responsible for pharmacological effects
with multi-target property (Deng et al., 2006). ASP have
attracted more and more attention to its beneficial effects,
such as hematopoietic effects (Liu et al., 2010b),
immunologic enhancement (Yang et al., 2006), anti-tumor

activity (Cao et al., 2010; Shang et al., 2003), and anti-
radiation damage (Zhao et al., 2012). The antioxidant
properties of ASP suppress the production of ROS and
protected the endothelial progenitor cells, hepatocytes,
myocardial cells, and nerve cells from oxidative damage (Ai
et al., 2013; Ji et al., 2014; Zhang et al., 2010). Moreover, the
evidence demonstrated that ASP promote cell proliferation,
including in total spleen cells, macrophages (Yang et al.,
2006), and gastric epithelial cells (Xie et al., 2019). Our
previous studies suggested that ASP reduced oxidative stress
and oxidative DNA damage, boosted direct cell-cell contact
between stromal cells and hematopoietic cells through Cx43
junctions, regulated cytokines, growth factors and
chemokines such as CXCL12, SCF, GM-CSF, RANTES and
thus provided a homeostatic microenvironment for
hematopoietic stem/progenitor cells to regenerate following
chemotherapeutic myelosuppression. In the present study, it
was further demonstrated that ASP protected HS-5 cells
from 5-FU-induced proliferation inhibition and ameliorated
cellular oxidative stress via the mechanism of up-regulation
of Wnt/β-catenin signaling. Most importantly, it was first
evidenced herein that ASP balanced the relationship
between FoxO-mediated transcription and Wnt signaling in
BMSCs under oxidative stress, which might be promising
for the clinical therapeutic use of ASP to myelosuppression.

Conclusions

In conclusion, the present study has reported that ASP
protect stromal cells against 5-FU-induced proliferation
inhibition and apoptosis via activating the Wnt/β-catenin
signaling pathway directly or the indirect effects on Wnt/β-
catenin signaling by down-regulation of its antagonizing
FoxO1 (Fig. 6), suggesting a broad role for ASP as a
potential antioxidant protective agent for chemoradiation
therapeutic, preventive agents.
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