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Abstract: Machine learning based image analysis for predicting and diagnos-
ing certain diseases has been entirely trustworthy and even as efficient as a
domain expert’s inspection. However, the style of non-transparency function-
ing by a trained machine learning system poses a more significant impediment
for seamless knowledge trajectory, clinical mapping, and delusion tracing.
In this proposed study, a deep learning based framework that employs deep
convolution neural network (Deep-CNN), by utilizing both clinical presen-
tations and conventional magnetic resonance imaging (MRI) investigations,
for diagnosing tumors is explored. This research aims to develop a model
that can be used for abnormality detection over MRI data quite efficiently
with high accuracy. This research is based on deep learning and Deep-CNN
was deployed to examine the MR brain image for tracing the tumor. The
system runs on Tensor flow and uses a feature extraction module in Deep-
CNN to elicit the factors of that part of the image from where underlying
issues are identified and subsequently succeeded in prediction of the disease
in the MR image. The results of this study showed that our model did not
have any adverse effect on classification, achieved higher accuracy than the
peers in recent years, and attained good detection outcomes including case
of abnormality. In the future work, further improvement can be made by
designing models that can drastically reduce the parameter space without
affecting classification accuracy.
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1 Introduction

Diagnosis of most of the disease requires extensive clinical investigations, including radio-
logical imaging, which provides vital information regarding the concerned organs’ physiological
appearances. However, imaging has various modalities according to the application, e.g., X-ray,
thermal imaging, ultrasound scanning, MRI and computed tomography (CT) scan. MRI scan is
preferable option for brain imaging as it provides information about brain soft tissue anatomy,
especially for soft tissue delineation. Additionally, it doesn’t produce any harmful radiation
because it is a non-invasive technique and generates high-quality resolution images of soft brain
tissues [1]. Hence, to begin an investigation of the brain-related disorders like Schizophrenia,
Alzheimer’s disease (AD), Parkinson’s disease (PD), autism and brain tumor, neurologists require
brain MR images as an imperative resource to complete clinical investigation. Using MR image,
neurologists can assess the extent, volume, and intensity of the tumor, and subsequently, they can
categorize tumor into its types—malignant (cancerous) or benign (non-cancerous). However, the
complexity, non-uniform spreading, and confusing cases in MRI pose a significant challenge for
a specialist to deal with. In the backdrop of this case, getting a second opinion on time can
definitely boost confidence and help the neurologists/radiologists in the diagnosis and subsequent
treatment trajectory. Additionally, the enormous count of MR image tissue parameters becomes
a cumbersome task for doctors to interpret such images manually [2]. Keeping an eye on this
requirement, the design of an Artificial Intelligence (AI) based automatic system for diagnosing
malignant tumors is presented in this research work.

Generally, MRI processing for diagnosis passes through few specified phases as shown
in Fig. 1.
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Figure 1: The generic process of classification

In this common framework of classification, first, the brain’s MRI image is acquired from a
reliable source. The quality of selected images is enhanced for better resolution, and the underlying
noises are removed by employing several de-noising methods, like spatial filters, transformation
domain filters, or fuzzy-based filters. Next, it is segmented to highlight the region of study as
segmentation projects sharp boundaries of tumor image that helps feature extraction of the region
of interest [3]. A plethora of segmentation techniques are utilized for this purpose, e.g., fuzzy
c-means, SVM, self-organising map (SOM), neuro-fuzzy c-means and wavelet transformation [4].
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Next, the image’s vital features are extracted from the image for classification purposes [5].
Several feature extraction techniques are used for this purpose, e.g., texture features, Gabor
features, feature based on wavelet transform, principal component analysis, discriminant analysis,
decision boundary feature extraction, nonparametric weighted feature extraction and spectral
mixture analysis [6]. Once the high dimensional feature vectors are extracted, fewer features can
be selected for further processing to increase the accuracy by employing dimensionality reduction
techniques, such as principal component analysis (PCA) or kernel PCA. Next, a classifier has to
be designed that will achieve the highest accuracy and would incur a less computational cost [7,8].

The recent literature has shown different brain MRI investigations employing deep learning
technique. In general, there has been a significant change in the outlook towards CNN diversifi-
cation and employability. Certainly, it is evident from the fact that deep learning has been utilised
in (i) marketing for sentiment analysis of the customers [9-11], (ii) social network platform for
hate speech detection [12], (iii) agriculture for crop disease detection [13], (iv) healthcare for ECG
beat classification [14], electromyography (EMG) based recognition [15], X-ray investigation [16],
COVID-19 exploration [!7] and many more.

The recent literature has shown different brain MRI investigations employing deep learning
technique. In general, there has been a significant change in the outlook towards CNN diversi-
fication and employability. Zou et al. [18] developed an automatic classification algorithm based
on 3D-CNN to classify attention deficit hyperactivity disorder (ADHD) exploiting information
from functional MRI (fMRI) scans. Similarly, Cao et al. [19] implemented a novel method for
improving the feature extraction efficiency of the MRI image by processing a multi-channel input
employing 3D-CNN system, which ultimately helps in reducing the dimensionality of the features.
On the other side of the spectrum, Li et al. [20] developed a 3D-CNN for comparing the
multi-modality of neuroimaging data by capturing the nonlinear relationships between different
data modalities.

Using CNN and other deep learning methods, Lin et al. [21] developed a system that can
successfully predict the mild cognitive impairment to AD conversion. They came up with a
strong result that showed that CNN could easily extract the distinctive features by identifying
morphology changes between AD and normal controls. Igbal et al. [22] presented a deep CNN
network that can segment brain tumors from the MRI data. The given network used the BRATS
segmentation dataset, which had a lot of different MRI data obtained from four separate modal-
ities. Lundervold et al. [23] presented an insight into deep learning models revealing their MRI
processing chain applications from attenuation to prediction of the diseases.

Farooq et al. [24] proposed and implemented a 4-way classifier to predict AD, mild cognitive
impairment (MCI) and late MCI. The experiment was carried out on the ADNI dataset with
the help of a very high-performance GPU and resulted in prediction accuracy of 98.8%. Ramzan
et al. [25] explored fMRI’s effectiveness for a multi-class AD classification, including associated
stages of AD progression. They even investigated the ResNet-18 architecture in great detail to
provide a better insight into the transfer learning approaches that could be applied for the
classification of AD.

From the above observations, it is clear that brain MRI scan is mostly used for diagnosing
brain-related disorders. However, the counts of disorders are increasingly numerous due to com-
plexity of brain structure. In this context, we have chosen the detection of brain tumor, as there
are only a few studies in the literatures that utilized CNN for classifying brain tumor. Moreover,
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those studies employed standard CNN models for their experiment, but in comparison to that
our approach is quite different. The major contributions of our research work are listed below

(i) The Deep-CNN model is proposed based on incremental design associated with customized
hyper parameters.

(i) Proposed model adopts to GAP layer replacing conventional fully connected layers
of CNN.

(i) The model has been evaluated on a contemporary dataset obtained from Kaggle [26].
(iv) The results obtained are promising as misclassification rate is almost zero.

The rest of the paper is organized as follows: methodology and its associated experimental
setup is explained in Section 2, while Section 3 presents analyses of our experimental results.
Section 4 discusses contemporary research in brain tumor detection using brain MR images
and compares the results with other standard CNN techniques. The conclusions are outlined in
Section 5.

2 Methods

The proposed system is designed by making use of a training dataset and further a testing
dataset is employed to check the system’s accuracy. The training data is first pre-processed as the
input image needs to be resized in order to process by CNN. Next, the data is augmented to
have a large pool of its variations. Now the images are subjected for feature extraction where the
unique point of the data is targeted and sent to the convolution neural network. By doing so, it
predicts which disease is existing in the training data. Correspondingly, the same process applied
to the testing images, and from the result the predictor checks how accurate it is in contrast to
data. If the accuracy is not up to the desired level, then the training process is repeated with
altering the network hyper parameters.

The MRI dataset was taken from Kaggle [26], which is an open platform. It contained
multiple MRI images of Diseased Brain MRI and one without any disease in JPEG format. There
were a total of 253 images, out of which 155 were diseased MRI images and 98 were healthy
MRI images.

Once the data is pre-processed, it is executed by convolution layer. The output of convolution
operation is subjected to pooling operation. The pooling layer shrinks the size of feature map’s
generated from the previous layer by a factor of pool size and pool stride. Next, the fully
connected (FC) layer is connected to all the neurons in the subsequent layer. Models having more
FC layers become slow down since the processing take much time for a huge network. However,
they cannot be bypassed as the individual feature’s significances might be lost by doing so and
consequently, it can lead to misclassification in the final output.

The general flow-map of Deep-CNN adopted by our work is depicted in Fig. 2.

The proposed flow-map is alterable as desired by the user, and it adopts diverse combinations
of a convolutional layer, pooling layer, dropout layer, batch normalization and activation func-
tions. We tested six variants of CNN models for their efficacy by employing brain tumor dataset.
These models are conceptualized as below:

(a) Model 1: One convolution layer with batch normalization and dropout layer. Softmax
layer is used in a fully connected layer and Adam optimizer is used in the convolution process.
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(b) Model 2: Two-layered Deep-CNN; each layer consists of a convolution layer and a pooling
layer with batch normalization and dropout layer. Softmax layer is used in a fully connected layer
and Adam optimizer is used in the convolution process.

(¢) Model 3: Three-layered Deep-CNN; each layer consists of a convolution layer and a
pooling layer with stopping criteria.

(d) Model 4: Four layered Deep-CNN; each layer consists of a convolution layer and a
pooling layer with stopping criteria with dropout.

(e) Model 5: Five convolutional layers with dropout and stopping criteria accompanied by
two fully connected layers.

(f) Model 6: In the Five layered Deep-CNN, each layer consists of a convolution layer and a
pooling. layer. The global average pooling layer is introduced, followed by the Softmax layer.
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Figure 2: The flow-map of the proposed Deep-CNN model

The proposed model is divided into two significant blocks known as convolutional blocks
and dense blocks, as these are two significant components of the network. Each block has few
layers, specific functions depending on designated functionalities, and the associated parameters
as presented in Fig. 3. Batch normalization was performed immediately after convolution and
dense operation.

The Deep-CNN model composed of three significant parts: (i) a convolution layer, (ii) a
pooling layer, and (iii) a fully connected layer. Automatic extraction of features from input images
was performed by convolution layer; however, pooling layer helped in reducing dimensions of
features obtained by convolution layer so that vital features are spotted for further processing,
while fully connected layer flattened the features into a vector and finally it was classified into
a particular label. First, the convolution layer was added to the proposed sequential Deep-CNN
model. Several parameters, such as kernel size, the number of filters, padding type, activation
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function type, strides and bias were specified when creating a convolutional layer. Fig. 4 shows a
snapshot of the Brain MRI Data.

Input Feature Input Feature

DENSE
CONV2D Activation=none,
kernel_size= (2,2),stride= (2,2), use_bias=True,
padding="valid" kernel_initializer=glorot_
uniform
Batch Batch
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ReLU Softmax Layer
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Figure 3: Structure of convolutional blocks and dense blocks used in the Deep-CNN (a) convo-
lutional block (b) dense block

Figure 4: A snapshot of brain MRI data
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On performing convolution operation, generated image size from convolution layer can be

determined by using Eq. (1):
W —B+2P H—-B+2P
|:—S+ + 1] X [—S+ + 1] (1)

where W is matrix width, H is matrix height, B is the width of convolution kernel, P stands
for padding and S is step-size. The output of the convolution layer is being subjected to pooling
operation; however, the size of the image after pooling is computed using Eq. (2):

[W_BH]X[WS_BH] ©)

S

3 Results

The experiment started with a basic structure of 2D convolution with the parameter values
as listed in Tab. 1.

Table 1: List of key parameters with their values for model 1

Parameter Value

Number of CNN Ilayers 1

Activation function ReLLU

Kernel size 2, 2)

Optimizer Adam

Epoch 50

Loss function Categorical cross-entropy
Dropout 0.25, 0.5

Pooling window Max pooling (2, 2)
Neurons at dense layer 512

The models used in our research were trained for 50 epochs with early stopping call backs
(patience = 5 epochs). In order to find the best setting, different optimization techniques were
applied to different settings of 2D Deep-CNN. The time required to complete one epoch was
different for different settings. The model performance was calculated using loss and classification
metrics, such as Precision, Recall, F1-measure and AUC-ROC curve. Fig. 5 shows the Proposed
Deep-CNN structure with the introduction of Global Average Pooling Layer.
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Conv 2D Pooling
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Figure 5: Proposed Deep-CNN structure with the introduction of global average pooling layer
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The basic model of Deep-CNN consisted of one layer of 2D convolutional neural network
that takes the input and processes it with kernel size (2, 2). Further, batch-normalization was
used, and finally the important features were taken out by applying max pooling with window
size (2, 2) and stride (2, 2). The outcome of the model 1 is listed in Tab. 2.

Table 2: Results using one layer of 2D Deep-CNN

Class Precision Recall F1

Dense 0.74 0.93 0.82
Normal 0.89 0.62 0.73
Macro average 0.81 0.77 0.79
Weighted average 0.81 0.79 0.78

This model yielded the Precision (P), Recall (R) and Fl-score (F1) values as 0.74, 0.93 and
0.82 for disease class; whereas for the normal class, it was 0.89, 0.62 and 0.73, respectively. The
macro average and weighted average P, R, and F1 was 0.81, 0.77, 0.79 and 0.81, 0.79, 0.78
respectively. The AUC-ROC curve obtained from the model is shown in Fig. 6.
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Figure 6: AUC-ROC curve obtained using model 1

As shown in Tab. 2, the proposed model 1 successfully identified the disease cases with a
recall value of 0.93, whereas recall value for normal cases was 0.62, which indicated that most
normal cases are misclassified. In medical cases, the misclassification rate must be less for both
classes so that normal people do not get a treatment similar to the infected people. It may cause
the loss of lives as well. Hence, we tried another model to improve the prediction accuracy by
adding another CNN layer in the previous model. The other parameter values were the same as
one layer of CNN. The results obtained with two layers of Deep-CNN are shown in Tab. 3.

This model yielded the Precision (P), Recall (R) and Fl-score (F1) values as 0.68, 1.00 and
0.81 for disease class, whereas for normal class, it was 1.00, 0.46 and 0.63 respectively. The macro
average and weighted average P, R and F1 was 0.84, 0.73, 0.72 and 0.84, 0.75, 0.73 respectively.
The AUC-ROC curve obtained from the model 2 is shown in Fig. 7.
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Table 3: Results using two layers of 2D Deep-CNN

2421

Class Precision Recall F1
Dense 0.68 1.00 0.81
Normal 1.00 0.46 0.63
Macro average 0.84 0.73 0.72
Weighted average 0.84 0.75 0.73
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Figure 7: AUC-ROC curve obtained using model 2

Two layers of Deep-CNN achieved the recall value of 1.00 for disease class prediction,
whereas for normal class, it is 0.62, which again showed that the model failed to identify the
normal cases misclassified to disease classes.

One layer of Deep-CNN and two layers of the Deep-CNN model failed to provide good
performance to detect the disease cases; however, both models failed to identify the normal case.
To overcome this issue, we tuned the model parameters and tried a different CNN model variant.
The detailed results obtained using the different models are presented in Tab. 4. Here model 3
having three layers of Deep-CNN along with the other parameters is listed in Tab. 4.

Model 4 consisted of four layers of Deep-CNN, whereas Model 5 was the modified archi-
tecture of Model 4. As shown in Tab. 4, Model 3 and Model 4 also performed well for disease
predictions, whereas Models 1 and 2 do not give satisfactory performance for normal cases. The
AUC-ROC curve obtained from Model 3 and model 4 are shown in Fig. §.

Models 3 and 4 yielded the same AUC-ROC values; the recall value for the normal class
is 0.46 and 0.23, which indicated that increasing the convolutional layer will not help achieve
better performance. Hence, in Model 5, we turned the other existing hyper parameters values of
model 4, such as the kernel size modified from (2, 2) to (3, 3), stride modified from (2, 2) to
(1, 1). Furthermore, the batch normalization process was not used between the second and third
layer of CNN; however, it was the same as previous models for layer one and layer 4. With these
changes, the model was re-run and it yielded the recall value as 0.62, which was better than earlier
experiments but still not satisfactory.
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Table 4: Performance of different models of deep-CNN

Model Metric Class Performance Macro average Weighted average
Model 3 Precision Disease 0.68 0.84 0.84
Normal 1
Recall Disease 1 0.73 0.75
Normal 0.46
F1 Disease 0.81 0.72 0.73
Normal 0.63
Model 4 Precision Disease 0.6 0.8 0.79
Normal 1
Recall Disease 1 0.62 0.64
Normal 0.23
F1 Disease 0.75 0.56 0.58
Normal 0.38
Model 5 Precision Disease 0.75 0.88 0.87
Normal 1
Recall Disease 1 0.81 0.82
Normal 0.62
F1 Disease 0.86 0.81 0.81

Normal 0.76
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Figure 8: AUC-ROC using different Models of Deep-CNN (a) AUC-ROC curve obtained using
Model 3 (b) AUC-ROC curve obtained using Model 4

3.1 Introduction of GAP

Finally, we modified the structure of model 5 by introducing the Global Average Pool-
ing (GAP) layer in place of the fully connected (FC) layer; hence Model 6 contained four
convolutional layers, each of them followed by batch normalization operation and a ReLu acti-
vation function. The last layer contained of a GAP layer and a Softmax activation function for
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classification. Here we maintained dropout values from 0.25 to 0.5 throughout the models and
achieved the recall value of 0.77 for normal class whereas 0.93 for disease class, which is the
best performance so far. Not only the recall but also the precision and other metrics values were
outperformed over the previous models, as shown in Tab. 5.

Table 5: Performance of Deep-CNN model with the introduction of the GAP layer

Metric Class Performance Macro average Weighted average
Precision Discase 0.82 0.87 0.86
Normal 0.91
Recall Discase 0.93 0.85 0.86
Normal 0.77
F1 Disease 0.87 0.85 0.86
Normal 0.83

The AUC-ROC curve obtained using Models 5 and 6 as shown in Fig. 9.

1.0 1.0 1
”,’ J—‘—/ ”’f
- -
+ ’f ] ,f

%l 0.8 | ”f % 0.8 ”f
x ’f’ x ”f
2 06 -~ S 061 -~
= -~ = -7
3 2
o 0.4 7 o 0.4 1 -7
@ ’I’ g ”f
= -~ = e

0.2 +“ —— ROC curve of class 0 (area = 0.89) 0.2 -~ — ROC curve of class 0 (area = 0.94)

-~
. —— ROC curve of class 1 (area = 0.89) 7 —— ROC curve of class 1 (area = 0.94)
0.0 . . . . 0.0 : : . .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
False Positive Rate False Positive Rate
(@) (b)

Figure 9: AUC-ROC using different Models of Deep-CNN (a) AUC-ROC curve obtained using
Model 5 (b) AUC-ROC curve obtained using Model 6

Figs. 10-12 show a change in loss value according to iterations in our model.

As shown in Fig. 10, for Model 1, the loss value for validation set was substantial; however,
for Model 2 the loss value for validation set abruptly fell after few epochs, and it was clearly
converging towards the minimum as epoch increased. Further, this reflected the accuracy boost
gradually by iterations. From Fig. 11, it is evident that both the models exhibited a considerable
decrease in the loss value for testing and validation sets, with the validation set a little higher value
of loss compared to test data. However, the convergence of loss value indicated the efficacy of
the model. Moreover, after 10-15 iterations, the loss became stable. As shown in Fig. 12, Model 5
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exhibited a sharp decline in loss, and further, the loss curve smoothed following 15 iterations. This
specified that a further increase in the number of iterations will have no impact on model loss. For
model 6 which was created, with the introduction of the GAP layer instead of a fully connected
layer, the loss incurred significantly reduced as it nearly approached zero. Though initially, the
loss value was higher—it straightway fell, and after five iterations-the curve almost flattened and
stabilized after that, having close to zero signifying the accuracy of the model as high as 98%.
Further, having an accuracy of more than 98% finally, our purpose of designing and fine-tuning
the model was met. It manifested that continuous updating of hyper parameters and formalizing
a lightweight architecture can better classify and predict classification.
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Figure 10: Loss Graph using Model 1 and Model 2 of Deep-CNN (a) loss graph using Model 1
(b) loss graph using Model 2
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Figure 11: Loss Graph using Model 3 and Model 4 of Deep-CNN (a) loss graph using Model 3
(b) loss graph using Model 4
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Figure 12: Loss Graph using Model 5 and Model 6 of Deep-CNN (a) loss graph using Model 5
(b) loss graph using Model 6

4 Discussion

The literature shows that supervised techniques such as ANN, kNN, SVM and unsupervised
methods like SOM and FCM are well suited for brain MRI classification tasks [3]. However,
deep neural networks’ preference is attributed to the extraction and utilization of millions of
parameters describing the brain’s structural and functional deformity. Additionally, this type of
classifiers does not require manually segmented tumor regions for processing. Hence, multiple
neurodegenerative brain diseases, such as Alzheimer’s disease, Parkinson’s disease, and Schizophre-
nia have been accessed by utilizing appropriate CNN models over brain MRI. However, we
focused on brain tumor detection using the Deep-CNN model; hence we narrowed down the
search space to brain tumor detection from MRI employing the CNN model as exhibited
in Tab. 6.

Table 6: Brain tumor segmentation and classification using CNN model

Studies Data details CNN specification Testing and result
Amin et al. [27] Input MR image is  This model has The method is tested
divided into multiple seven layers for over eight
patches, center pixel classification benchmark datasets
label of each patch (3 convolutional, of BRATS and
is calculated and is 3 RelLU, and a ISLES. Accuracy of
fed to the DNN softmax layer) BRATS 2012-100%,
ISLES 2015-100%
Seetha and Raja [28] BRATS-2015 data 2D CNN Classified as tumor

and non-tumor.
Accuracy-97.5%

(Continued)
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Table 6 (Continued).

Studies Data details CNN specification Testing and result

Deepak and Figshare dataset, Transfer learning Accuracy of

Ameer [29]

Nemaa et al. [30]

Sajid et al. [31]

Isselmou et al. [32]

Togacar et al. [33]

Kalaiselvi et al. [34]

3064 brain MRI
images from 233
patients diagnosed
with one of the
three brain tumors
(meningioma,
glioma, and pituitary
tumors)

BraTs-2015
BraTs-2017 dataset

BRATS-2013 dataset

20 T1-T2 weight
brain MR images
from Tianjin
Medical University
Hospital, China
The dataset from
Kaggle containing
two sets as normal
and tumor
BRATS 2013

technique,
pre-trained
GoogleNet

RescueNet using
residual and
mirroring principle is
proposed and is
trained using the
unpaired approach
A hybrid model
combining two-path
and three-path
network.

Fuzzy C-means for
segmentation and
CNN for
classification

BrainMR Net
proposed

Six different CNN
models with different
combinations of
layers

standalone transfer
model—92.3%, SVM
+ deep CNN
features—97.8%,
KNN + deep
CNN—98%

The evaluation
parameter value of
DICE—0.94 and
sensitivity—0.91

The model has
better DICE,
specificity, and the
sensitivity value
Accuracy of 98.7%

Accuracy, sensitivity,
and specificity is of
96%.

Model 6 attained
96% accuracy

Havaei [35] developed an automatic segmentation method for a brain tumor based on
deep CNN. While doing so, they used cascade CNN architectures and found their impact
on the performance. Their experimentation revealed that BRATS 2013 implementation was
30 times faster than the previous studies. Another article by Hossain [36] used a series
of standard classifiers such as SVM, kNN and MLP, and further achieved 97% accuracy
by implementing a CNN. They utilized BRATS 2013 dataset for the experiment. How-
ever, our dataset from Kaggle launched in 2019, was a recent one. In comparison to
that, we have experimented with different variants of the Deep-CNN model to reduce the

process’s complexity.
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5 Conclusions

In this paper, a Deep-CNN based model for automatically identifying brain tumors from
brain MRI scan is proposed. The model was tested over a brain tumor dataset. Our model
did not have any adverse effect on classification, achieved higher accuracy than the peers in
recent years, and attained good detection results including case of abnormality. We improved the
accuracy by increasing the network’s depth as the gradients were propagated backward, and it
caused an update of parameters. However, these added layers incurred an overhead in terms of
computational time and infra. Further, owing to the increase in the network’s depth, the parameter
spaces became huge and consequently training errors increased, as these are disadvantages of
increasing the depth of the network. Hence, in another embodiment, the GAP layer was employed
in place of a fully connected layer to limit the huge parameter space and avoid overfitting. Finally,
the layer outperformed others in terms of correct classification and reduced misclassification
to zero. In the future work, further improvement can be made by designing models that can
drastically reduce the parameter space without affecting classification accuracy.

This designated model may fail for another brain MRI images as MRI images possess varying
intensity levels due to different MRI machine configuration (1, 3, 5 or 7T). The images are
obtained in multiple MRI modalities (T1, T2, Tlc, T2flair) where each modality provides a
different kind of information regarding tumor. Moreover, our research is limited to classifying
brain MRI images into the normal or abnormal (tumor) categories; however, the tumors can be
further classified as malignant or benign since malignant is a kind of dreaded tumor. The finding
in this research is to detect the brain tumor only. In the future, this can be extended by further
categorizing tumors into glioma, meningioma and pituitary type.
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