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Abstract: Mobile malware occupies a considerable proportion of cyberattacks. 
With the update of mobile device operating systems and the development of 
software technology, more and more new malware keep appearing. The 
emergence of new malware makes the identification accuracy of existing 
methods lower and lower. There is an urgent need for more effective malware 
detection models. In this paper, we propose a new approach to mobile malware 
detection that is able to detect newly-emerged malware instances. Firstly, we 
build and train the LSTM-based model on original benign and malware samples 
investigated by both static and dynamic analysis techniques. Then, we build a 
generative adversarial network to generate augmented examples, which can 
emulate the characteristics of newly-emerged malware. At last, we use the 
augmented examples to retrain the 4th and 5th layers of the LSTM network and 
the last fully connected layer so that it can discriminate against newly-emerged 
malware. Actual experiments show that our malware detection achieved a 
classification accuracy of 99.94% when tested on augmented samples and 86.5% 
with the samples of newly-emerged malware on real data.  

Keywords: Malware detection; long short term memory networks; generative 
adversarial networks; transfer learning; augmented examples 

1 Introduction 
The mobility and ever-evolving exceptional and fascinating features of mobile devices, e.g., 

smartphones have made us store confidential data and information—from personal information, corporate 
information, to other sensitive data into them. With sophisticated mobile malware evolving now and then, 
all the information kept on mobile devices is a target for this malware threat. Therefore, there is a need to 
continuously improve existing defense mechanisms against malware attacks, and as well innovate state of 
the art automated malware detection systems to secure our confidential information stored on mobile 
devices. There is an exponential growth in mobile malware complexity and scope every year, reaching 
91778 in 2019 [1]. According to McAfee Labs Mobile Threat Report as of Q1 2020 [2], mobile malware 
has expanded the ways of hiding their attacks and frauds, making them increasingly difficult to identify 
and remove. 

Mobile malware has been analyzed by researchers using static methods, dynamic methods, or a 
combination of both (hybrid analysis). In static analysis: features are extracted from the manifest file or 
the Java bytecode, without executing the code, while for dynamic analysis: extraction of features is done 
during code execution (or emulation). The hybrid analysis is a combination of both static analysis and 
dynamic analysis methods. It is meant to analyze malware from various aspects and is considered a better 
approach than standalone analysis methods. 
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Machine learning-based malware detection systems have been proposed in recent works, and they 
have provided promising results. However, their defense against constantly newly-emerged attacks [3] 
still poses a great challenge to researchers. Adversarial attacks [4,5] aim at misleading the classifier such 
that malicious apps are misclassified as benign (integrity attack) or creating a denial of service in which 
benign apps are incorrectly classified as malicious (availability attack). Therefore, there is a need for 
resilient detection systems that can defend against constantly newly-emerged attacks. Deep learning 
techniques are also being employed by researchers in the fight against malicious activities. Deep learning 
is a section of machine learning in the field of Artificial Intelligence(AI) [6]. Deep learning is defined as 
neural networks with a large number of parameters and layers in a given deep learning architecture. A 
deep neural network's process of deciding which characteristics of the dataset can be used as indicators to 
label input data reliably (Automatic feature extraction) is one of the great advantages of deep learning 
over traditional machine learning algorithms [7]. Deep learning has been applied and has demonstrated 
better performance than traditional machine learning algorithms [8,9].  

In this research work, we present a new approach to building a robust mobile malware detection 
model that is able to detect constantly newly-emerged malware instances. The model is based on two 
Deep Learning architectures; Artificial Neural Network [10–12] and Generative Adversarial Network 
(GAN) [13]. The model's performance is boosted by retraining it with augmented examples crafted by a 
GAN. We build the model in phases; initially, we build, train, and test the model on original benign and 
malware samples investigated by both static [14,15] and dynamic [16,17] analysis techniques. Then we 
build a generative adversarial network and generate augmented examples. The model is tested on 
augmented samples before and additional samples after retraining with augmented examples. 

The main contributions of our research work can be summarized as follows: 
(1) We proposed a malware detection model based on LSTM to detect constantly newly-emerged 

malware instances. Our method not only achieves high accuracy for existing malware but also 
works for newly-emerged malware. 

(2) For the first time, we build a malware detection modele using transfer learning to retrain, so it can 
fight against newly generated malware with undefined characteristics. 

(3) The accuracy of our method has a good improvement compared to the previous method, which 
achieved 99.94% accuracy in malware detection on existing data sets and 86.5% accuracy on real 
data sets of new malware. 

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3 introduces 
our proposed methods and framework in detail. In Section 4 we present our findings and discussion of 
results. Lastly, we conclude the paper and also give highlights of future work in Section 5.  

2 Related Works 
2.1 Malware Analysis 

Cui et al. [18] presented a data mining approach through dynamic analysis of application behavior 
for detecting malware in the Android platform. Feature extraction (System calls) was done on the device 
while analysis and detection utilized cloud computing. The main challenge is that the approach can only 
distinguish between benign and malicious apps of the same name and version. 

Martinelli et al. [19] presented a malware detection tool “BRIDESMAID” that utilized hybrid 
analysis techniques to detect Android malware. The authors' static analysis was based on n-grams 
matching, while the dynamic analysis was based on multi-level monitoring of device, app, and user 
behavior. They reported 99.7% detection accuracy on testing with 2794 malicious apps. However, 
constantly newly-emerged cases were not considered. 

Zaki et al. [20] investigated the behavior of Mobile malware through a hybrid approach. The authors 
proposed a general mobile malware behavior model that can contribute in identifying the key features to 
detecting mobile malware on an Android platform device. 



            
JCS, 2021, vol.3, no.1                                                                                                                                                   13 

2.2 Machine Learning in Mobile Malware Detection 
Machine learning has been incorporated in most of the current research works. However, due to the 

sophistication of new unknown malware releases almost daily, most detection systems' performance is 
greatly affected when they fail to detect such malware, and this exposes mobile users to more deadly 
malware attacks.  

In [21], a machine learning approach with Rotation forest classification was proposed. Extraction of 
permissions, sensitive APIs, monitoring system events, and permission-rate as key features, than 
employing the ensemble Rotation Forest (RF) to construct a model to detect whether an Android 
application is malicious or not was done. DroidDet was based on the static analysis methodology. 

Ahmadi et al. [22] presented IntelliAV: an on-device tool that used a machine learning model built 
on top of the Tensor flow. APIs, Requested Permissions, and INT: Intents, CG was the features extracted. 
IntelliAV is based on a static analysis approach whose limitations include dynamic code loading 
techniques, and victim of evasion techniques against the learning approach. 

2.3 Deep Learning in Mobile Malware Detection 
Su et al. [8] and Li et al. [9] presented malware detection approaches for the Android platform based 

on deep learning. Both used static analysis techniques and reported over 97% detection accuracy, but 
constantly newly-emerged attacks were not considered. 

Yuan et al. [23] presented a deep learning-based malware detection model “DroidDetector” that 
could achieve 96.76% detection accuracy, which outperforms traditional machine learning techniques. 
Basing on their results, they noted that deep learning is suitable for characterizing Android malware and 
especially effective with the availability of more training data. 

Makandar et al. [24] analyzed and classified malware using an algorithm they implemented using 
feed-forward Artificial Neural Networks (ANN). They reported a classification accuracy of 96.35%. 

Several deep learning architectures including convolutional neural network (CNN), Artificial Neural 
Network (ANN), GAN, and Deep Brief Network (DBN) are utilized by different researchers to build 
more resilient detection models. For example, [25] proposed a novel Android malware detection system 
that used a deep convolutional neural network to process the raw Dalvik bytecode of an Android 
application. 

Although the detection accuracies reported by several authors are promising, constantly newly-
emerged attack scenarios have not been addressed. These methods have limited recognition of emerging 
malware that is increasingly dangerous. 

2.4 Generated Mobile Malware Samples 
In previous works [26–28] generated malware examples have been used to mislead detection models 

into classifying malware apps as benign. Additionally, in [27,28] an investigation on potential defense 
mechanisms for hardening malware detection models trained using Deep Neural Networks (DNN) was 
conducted. Adversarial training of the model, intentionally with generated crafted malware applications 
was found to improve the model’s robustness, as long as the perturbation introduced during adversarial 
training is carefully chosen.  

Wang et al. [29] assessed the transferability of adversarial examples generated on a sparse and 
structured dataset, and the ability of adversarial training of malware detection classifiers in resisting 
adversarial examples. Authors reported that adversarial examples generated by DNN can fool several 
machine learning classifiers–decision tree, random forest, SVM, CNN, and RNN. They further note that 
adversarial training can improve the robustness of DNN in terms of resisting adversarial attacks. 

In [26], a GAN was used to craft generated malware examples for PC malware basing on 160 API 
features to fool a black box malware detector. A GAN comprises a generator network that takes random 
input and generates a sample of data and a discriminator network that takes input from the generator and 
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tries to predict whether the input is real or fake. The generator is trained to mislead the discriminator into 
misclassifying generated samples as real samples. In our work, we generate examples of Android 
malware using dynamic features. 

3 Methodology 
3.1 Overview 

In our proposed approach, we build and train a powerful model (SmartAMD2, Smart Android 
Malware Detection 2) in 5 stages. At first, we build, train, and test the model (SmartAMD1, Smart 
Android Malware Detection 1) on the original dataset (benign apps and malware apps), then we build a 
GAN and generate augmented examples. Hereafter, we test SmartAMD1 on augmented samples to verify 
its effectiveness. To transform SmartAMD1 into a robust model- SmartAMD2, we retrain its 4th and 5th 
layers LSTM network and the last layer is a fully-connected layer on augmented examples. This model 
will greatly improve the model's robustness incorrectly classifying malware including constantly newly-
emerged malware examples. In the final stage, we test SmartAMD2 on additional examples. Fig. 1 shows 
our proposed approach. 

 
Figure 1: Methodological framework 

3.2 Dataset 
We generate our dataset by analyzing extracting significant features of benign and malware apps for 

malware detection. The motivation to generate our dataset is because to cope with current Android 
security challenges. It is important to analyze up-to-date apps, and each research has its unique objectives. 
To diversify our research, we experiment with 6,180 samples from different but credible sources as 
described below. 

3.2.1 Benign Samples 
The benign .apk files were collected randomly from two sources: (1) ApkPure APP store: which is a 

source for the original free APK files in Google Play store which is considered as the official market with 
the least possibility of malware applications. (2) Android Wake Lock Research Project: which is a source 
for binaries (APK files) of commercial Android apps that use wake locks. We randomly collected 3090 
benign samples in total. 

Table 1: Benign APK samples 

Source Number of Samples 
Apkpure.com 2090 

Android Wake Lock Research Project 1000 
Total 3090 
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3.2.2 Malware Samples 
Malicious .apk files were collected from 2 sources: (1) Virusshare: which is a repository of malware 

samples, it provides security researchers, incident responders and forensic analysts access to samples of 
live malicious code; (2) Ashishb: it is a GitHub Android malware repository. We collected 3090 Android 
malware samples from the 2 sources. 

Table 2: Malware APK samples 

Source Number of Samples 
Virusshare.com 3019 

Android-malware (git repo) 71 
Total 3090 

3.3 The Architecture of the Proposed Scheme 
We show the architectural design of our proposed approach of building a powerful malware 

detection that is retrained on augmented examples in Fig. 2. Sections 3.4, 3.5, 3.6 and 3.7 detail each of 
the steps shown in the proposed scheme. 

 
Figure 2: Architecture of the proposed scheme 

3.4 Feature Extraction and Selection 
Hybrid features are the most comprehensive features because they analyze applications from various 

aspects. In this research work, therefore we utilize both static and dynamic features that are significant in 
malware detection. 

3.4.1 Static Features 
Permissions: Before installation of an Android application, the Android permission system controls 

the access to privacy and security-relevant APIs. According to the functionality of an application, it must 
declare which permissions it will use in the AndroidManifest.xml. 

Receivers and receivers’ actions: A receiver also known as a broadcast receiver is a component 
that responds to system-wide broadcast announcements. Many broadcasts originate from the system—for 
example, a broadcast announcing that the screen has turned off, the battery is low or a picture was 
captured. Mohsen et al. [30] reported that Android Broadcast receivers are intensively used by malware 
compared to benign application. 

3.4.2 Dynamic Features 
Dynamic behaviors exhibited by apps during execution provide clues about malicious activities 

performed by suspicious apps. Monitoring and analyzing an app’s behavior while in execution can aid in 
detecting malware. In experiments, we consider system calls, registered broadcast receivers at runtime, 
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and fingerprints for dynamic features. Every application demands resources and services from the 
operating system by issuing system calls, such as read, write, and open. 

3.4.3 Feature Extraction Methods 
To automate the feature extraction process, we make use of CuckooDroid by Check Point Software 

Technologies. 
CuckooDroid is an automated, cross-platform, emulation and analysis framework based on the 

popular Cuckoo sandbox and several other open-source projects – providing both static and dynamic APK 
inspection, as well as evading certain VM-detection techniques, encryption key extraction, SSL 
inspection, API call trace, basic behavioral signatures and many other features [31]. 

Fig.3 below shows the process of analyzing each APK sample and how features are extracted. 

 
Figure 3: Analysis and feature extraction for an APK file 

The APK analysis and features extraction process starts by submitting the APK files to CuckooDroid 
and then starting the analysis and feature extraction process described in Fig. 3. During the analysis, the 
Android emulator provided by Android Studio is started and Android Debug Bridge (ADB) installs the 
APK on the emulator where dynamic execution is monitored. Upon analysis completion, a JSON report 
with both static and dynamic analysis results is generated. We organize the APK files into 2 folders 
(malware folder and benign folder). The analysis is done firstly on benign files and their JSON reports 
stored in a folder, then analysis of malware APKs is also carried out and corresponding json reports are 
also stored in a folder. Before we can consider the analysis of a given sample as successful and therefore 
store its JSON report, we look at its analysis log and check if the sample (APK) installed successfully and 
was executed on the emulator. 

3.4.4 Feature Selection Method 
Determining which features are significant: in other words, features that greatly impact the outcome 

is one of the fundamental steps in building a powerful, effective, and efficient machine learning model. 
The more the number of features, the more computational power and time required for a model to run and 
produce results. In the beginning, we had 714 features (from both static and dynamic analysis) but after 
conducting feature selection on our data, we were able to consider only 357 most important features for 
our study. The objective of feature selection is three-fold: improving the prediction performance of the 
predictors, providing faster and more cost-effective predictors, and providing a better understanding of 
the underlying process that generated the data [32]. 

We use the random forest algorithm's method to determine the score for each of the 714 features. 
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Feature selection using Random forest comes under the category of embedded methods. Embedded 
methods combine the qualities of filter and wrapper methods. They are implemented by algorithms that 
have their built-in feature selection methods. Some of the benefits of embedded methods are high 
accuracy, better generalization, and interpretability. 

The threshold for selecting features was set to 64 10−×  and any feature that scored above the 
threshold was considered as a significant feature. Thus getting 357 significant features in total. Tab. 3 
shows 20/357 most significant features we considered. 

Table 3: Most significant features 

Features Weights 
android_util_Base64_encode 0.074646 
android.permission.READ_PHONE_STATE 0.064252 
android.permission.SEND_SMS 0.060294 
android.intent.action.BATTERY_CHANGED 0.040793 
getDeviceId 0.035959 
dalvik_system_DexFile_dalvik_system_DexFile 0.023681 
android.intent.action.BATTERY_CHANGED 0.023639 
getSubscriberId 0.021915 
android_content_ContentValues_put 0.021404 
android_util_Base64_encodeToString 0.020104 
dalvik_system_DexFile_loadDex 0.018581 
android.permission.WAKE_LOCK 0.017911 
android.permission.ACCESS_WIFI_STATE 0.016962 
android.permission.GET_TASKS 0.016792 
android_telephony_TelephonyManager_getSubscriberId 0.013778 
java_net_ProxySelectorImpl_select 0.013303 
android.permission.MOUNT_UNMOUNT_FILESYSTEMS 0.013049 
android.permission.GET_ACCOUNTS 0.012937 
android_telephony_TelephonyManager_getDeviceId 0.012892 
android_app_SharedPreferencesImpl_EditorImpl_putLong 0.011981 

The JSON report contains a lot of information and we use a python script to extract only the data 
required for our study see Fig. 4. From the original report, we extract static and dynamic features. For 
static, we get the requested permissions, and receiver actions registered in manifest. Permissions like 
android.permission.PROCESS-OUTGOING-CALLS which allows the application to process outgoing 
calls and change the number to be dialed. Malicious applications may monitor, redirect, or prevent 
outgoing calls, android.permission.READ-CONTACTS this allows an application to read all of the 
contacts (address) data stored on your phone. Malicious applications can use this to send your data to 
other people, android.permission.READ-PHONE-STATE, which allows the application to access the 
phone features of the device. An application with this permission can determine the phone number and 
the serial number of the phone, whether a call is active, the number that calls are connected to, and so on. 
In total, we investigated 136 permissions. Lastly, we consider 74 receivers’ actions, such as 
android.intent.action.BOOT-COMPLETED, android.intent.action.DOWNLOAD-COMPLETE, etc. 

Therefore, for static analysis, we gather 210 features. The script accesses the folder containing all 
JSON files and loops over them, for each report, it gets the md5 of the APK that was analyzed together 
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with the data we need plus classification value (0 for benign and 1 for malware) and appends it to final 
JSON that stores all data about both malware and benign APK samples and this forms our dataset in 
JSON format.  

For dynamic behavior, we looked for Registered Receivers during Runtime such as: 
android.intent.action. PROXY-CHANGE, android.intent.action.SCREEN-OFF, android.intent.action.USER-
PRESENT and in total 64 registered receivers were considered. We record 72 API calls including but not 
limited to: android-app-ContextImpl-registerReceiver, java-io-File-exists, and libcore-io-IoBridge-open. 
Also a total of 11 fingerprints like getSimOperatorName, getSubscriberId and getDeviceId were 
investigated. Therefore, we collected 147 dynamic behaviors. This makes a grand total of 357 features to 
support our investigation in this research work. 

 
Figure 4: Generating Dataset for All Samples 

3.5 Our Proposed Network Model of SmartAMD1 
3.5.1 Overview 

Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture [33] 
used in the field of deep learning. It can avoid the problem of gradient disappearance of RNN and has a 
stronger memory ability than ordinary RNN. Therefore, for the same time series, events with relatively 
long intervals or delays can also be efficiently processed and predicted. It should be noted that this 
excellent ability of the LSTM network is not obtained by algorithm learning, but by the inherent 
advantages of its unit structure. LSTM can determine the forgetting or retention of information through 
the memory controller, and then complete the input and output of information through the forget gate, 
input gate, and output gate. 

Different types of artificial neural network topographies are suited for solving different types of 
problems. After determining the type of given problem we need to decide on the topology of the artificial 
neural network we are going to use and then fine-tune it. We need to fine-tune the topology itself and its 
parameters [10]. We need to fine-tune the topology itself and its parameters [10]. 

3.5.2 Our model of SmartAMD1 
SmartAMD1 shown in Fig. 5 is a multilayer perceptron based feed-forward fully connected neural 

network. The network consists of 8 layers, with 3 LSTM layers and 3 fully connected layers, and the 
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number of neurons from input to output layers are as follows: L0:357, L1:180, L2:90, L3:30, L4:12, and 
L5:8. Batch size is set to 100, and maximum epochs are 800. We use Adam Optimizer, Rectified linear 
units (ReLU) as the activation function for hidden layers, and sigmoid for the output layer. 
Implementation is done in Keras on Tensor-Flow Backend. 

 
Figure 5: Architecture of SmartAMD1 

3.6 Our Proposed Network Model of the GAN 
3.6.1 Overview 

A GAN is composed of a generative model G that captures the data distribution, and a discriminative 
model D that estimates the probability that a sample came from the training data rather than G [13]. GAN 
was used in [26], to transform original samples into augmented samples. Authors used binary features 
(160 APIs) to generate adversarial computer examples that could bypass machine learning black-box 
detectors.  

In our case, we generate augmented examples for Android malware using dynamic features; the 
architecture used is based on that proposed by [26]. Generated augmented samples are used for additional 
training of SmartAMD1 thus creating a more robust model SmartAMD2. The Generator and 
Discriminator are both multi-layer feed-forward neural networks that work together to fool SmartAMD1. 
The feedback from the black box detector is used while generating augmented samples. 

 
Figure 6: Architecture of GAN 

3.6.2 Generator 
The Generator intelligently adds certain irrelevant features to a malware feature vector to transform 

it into its augmented version. The concatenation of a noise vector v  and malware feature vector m  acts 
as input for the generator. m is a binary m-dimensional feature vector, where the absence of a feature is 
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represented by 0 and its presence is represented by 1. A hyper-parameter v  allows the generator to 
generate diverse augmented examples from original feature vectors. v  is a v-dimensional vector whose 
elements are random numbers sampled from a uniform distribution in range (0–1). 

The generator receives the input vector with weights gθ . Its output layer has m-neurons and uses a 
sigmoid activation function which limits the output in range (0–1). The generator's output is represented 
as a . Because malware feature values are binary, we apply binarization transformation to a  by assigning 
1 if a feature value is greater than 0.5, otherwise, we assign 0. This results in the production of a′ . 

Generating augmented examples for binary features only requires adding certain irrelevant features 
to malware. The original malware may crack if a certain feature is removed. For example, an application 
that performs normal writing function will crack if the “WRITE-EXTERNAL-STORAGE” permission is 
removed. The irrelevant features to be added to the original malware are the non-zero elements of the 
binary vector a′ . The final generated augmented example can be stated as |m m a′ ′=  where " | "  is 
element-wise binary OR operation. 

m′  is a binary vector, which implies that gradients cannot backpropagate from the discriminator to 
the generator. A smooth function G is defined to receive gradient information from the discriminator, as 
shown in (1). 

( , ) ( , )
g

G m v max m aθ =                                                                                                                               (1) 

(..)max  denotes element-wise max operation. If an element of m′  has the value 1, the 
corresponding result of G is also 1, which is unable to backpropagate the gradients. If an element of m has 
the value 0, the result of G is the neural network’s real number output in the corresponding dimension, 
and gradient information can go through. It can be seen that m′  is actually the binary transformed version 
of ( , )

g
G m vθ . 

3.6.3 Discriminator 
The discriminator is a multi-layer feed-forward neural network with weights dθ  and its input is a 

sample feature vector x . Its task is to classify the sample as a benign application or malware. The 
probability that x  is malware is represented as ( )

d
D xθ . The discriminator is trained on benign samples 

and augmented samples from the generator. The discriminator’s goal is to fit the black-box detector and 
offer gradient information to train the generator. The ground-truth labels of the training data are not used 
to train the discriminator. The black-box detector will detect this training data first and output whether a 
sample is benign or malware. The predicted labels from the black-box detector are used by the 
discriminator. 

3.6.4 Training GAN 
The loss function of the discriminator is defined in (2). 

(1 ( )) ( )
Benign d Malware dD x BB x BBL E Log D x E logD xθ θ∈ ∈= − − −  (2) 

BenignBB  is the set of applications that are recognized as benign by the black-box detector, and 

MalwareBB  is the set of applications detected by the black box as malware. 

To train the discriminator, DL  should be minimized concerning the weights of the discriminator.  

The loss function of the generator is defined in (3). 

(0,1), ~ ( ( , )) 
Malware uniform d gG m S v pL E logD G m vθ θ∈=                                                                                              (3) 
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MalwareS  is the actual malware dataset, not the malware set labeled by the black-box detector. GL  is 
minimized concerning the weights of the generator. Minimizing GL  will reduce the predicted malicious 
probability of malware and push the discriminator to recognize malware as benign. Since the 
discriminator tries to fit the black-box detector, the training of the generator will further fool the black-
box detector. The whole training process is shown in pseudo-code below: 

Algroithm 1 Training process 
1: while not converging do 
2:     sample a mini batch of samples m  
3:     generate augmented samples m′  from the generator 
4:     sample a mini batch of obfuscated app B  
5:     label m′  and B  using a black box detector 
6:     update discriminator's weights dθ  by descending along the gradient 

d DLθ∇  

7:     update generator's weights gθ  by descending along the gradient 
g GLθ∇  

8: end while 

In Steps 2 and 4, different sizes of mini-batches are used for malware and benign applications. The 
ratio of m′ 's size to B ’s size is the same as the ratio of the malware dataset’s size to the benign dataset's 
size. 

3.7 Our Proposed Network Model of SmartAMD2 
3.7.1 Overview 

Transfer learning, as the name suggests, is to transfer the learned model parameters to the new model 
to help the new model training [34]. Transfer learning can help us to quickly adjust the network structure 
and weights trained by the existing data set to enable it to complete the identification of the new data set. 
Such adjustments only need to change a small part of the network structure, and the training can be 
completed quickly.  

In order to make our model adapt to the constantly updated software environment, transfer learning 
is used to retrain our model (SmartAMD1) so that it can transfer to our new model (SmartAMD2). The 
augmented simples generated by GAN are used to retrain this model so that it can be equally effective 
against emerging malware. 

3.7.2 Our Model of SmartAMD2 
SmartAMD2 adjusts the structure of the network on SmartAMD1 and retrains it with augmented 

samples. SmartAMD2 shown in Figure 7 adds two layers of LSTM network compared to SmartAMD1. 
The model solidifies the weights trained in SmartAMD1 so that it can take effect on the existing malware. 
On this basis, SmartAMD2 adds LSTM layer4 and LSTM layer5 after the first three LSTM layers of 
SmartAMD1. In addition, we also retrain the last fully connected layer of SmartAMD1. Through the 
training of LSTM layer4, LSTM layer5, and fully connected layer3, SmartAMD2 can take effect on 
newly augmented malware. 
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Figure 7: Architecture of SmartAMD2 

4 Results and Discussion 
4.1 Building, Training, and Testing SmartAMD1 

In building and training our deep learning model, we utilize two deep learning architectures; Long 
Short-Term Memory (LSTM) network, and a Generative Adversarial Network (GAN). For the deep 
learning framework; we use Keras running on top of Tensor Flow. In the next step, we train our model 
(SmartAMD1) based on deep learning techniques using extracted features from both benign and 
malicious apps. To conclude phase 1, we test SmartAMD1 on both benign and malicious apps. 

4.1.1 Data Preprocessing 
The model to be built, trained, and tested deals with binary data. Therefore at this stage, we import 

the JSON dataset and transform it into a pandas data frame by recording the presence of a particular 
feature as 0 for absent and 1 for a present for all samples identified by their md5 in the JSON dataset. 
Figure 8 shows the data preprocessing. This creates a two-dimensional array of bits. 

 
Figure 8: Generating a pandas matrix of features from JSON Dataset 
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4.1.2 Training and testing SmartAMD1 
In this experiment, we train a multilayer feed-forward fully connected neural network (SmartAMD1) 

using the original dataset. To achieve the finest settings for optimal performance of our model, we vary 
the settings as reflected in Tab. 4 below. As you can note from the results table, the best accuracy of 
99.88% was achieved with 357:180:90:30:12:8:1 layer size, 80 batch size, 800 epochs, and 7:3 splitting 
ratio for training and testing sets, respectively. 

Table 4: Results (Original dataset) 
SmartAMD1 Dataset Samples Layer size Batch Size Epochs Accuracy 

Version.1 
Training set 4326 

357:180:90:30:12:8:1 100 800 99.84% 
Testing set 1854 

Version.2 
Training set 4326 

357:180:90:30:12:8:1 100 1000 99.87% 
Testing set 1854 

Version.3 
Training set 4326 

357:180:90:30:12:8:1 80 800 99.88% 
Testing set 1854 

To show the model’s weakness in detecting augmented samples, we test with a sample batch of 600 
augmented examples. We see that all versions achieved excellent performance in detecting original 
samples but when tested on augmented samples, their True Positive Rates (TPRs) are reduced to almost 0 
where SmartAMD1-Version.1 has 0.60% TPR, SmartAMD1-Version.2 has 0.80% TPR, and 
SmartAMD1-Version.3 has 0.30% TPR. Confusion matrices for each SmartAMD1 version are shown in 
Tab. 5 below, we can notice a high Type II error where almost all augmented malware is being 
misclassified as benign apps. 

Table 5: SmartAMD1-Confusion matrix 
Version Malware Benign 

Version.1 
Malware 4 596 
Benign 0 0 

Version.2 
Malware 5 595 
Benign 0 0 

Version.3 
Malware 2 598 
Benign 0 0 

4.2 Generating Augmented Examples 
The goal for this experiment is to generate augmented samples using the original dataset that was 

used in Section 4.1.2 above and to attack a black box detector using augmented samples. 
We use the following configurations for the GAN. The noise vector has a dimension of 40, and 

feature dimensions are 357 which makes the combined input for the generator to be 397. Layer size for 
the generator is set to 397:700:357 whereas for discriminator it is set to 357:700:1. We use Binary Cross-
Entropy for loss, Adam [35] as optimizer with a learning rate of 0.001, and accuracy as metrics. 
Generator and Discriminator networks both use sigmoid as activation function, which sets output values 
in the range (0, 1). We run 800 epochs with batch size 80. 

We ran the experiment seven times and achieved the following results in Table 6. Augmented 
samples generated during each run were saved and later used as input for retraining SmartAMD1 into a 
more robust model SmartAMD2 and testing it as discussed in Section 4.3. 
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Table 6: Results of GAN experiments 

Experiments 
Training set Test set 

Original samples Augmented samples Original samples Augmented samples 
1 97.32% 0.65% 97.66% 0.65% 
2 97.36% 0.35% 97.54% 0.39% 
3 97.62% 0.17% 96.76% 0.52% 
4 97.45% 0.39% 97.28% 0.39% 
5 97.24% 0.65% 97.93% 0.39% 
6 97.32% 0.43% 97.67% 0.52% 
7 97.37% 0.39% 97.54% 0.26% 

From Fig. 9 (produced by experiment 5 in Tab. 6), we notice that the curve is not smooth because 
training a GAN network is unstable and is one of the open issues for research in GAN technology. From 
the 200th  epoch, we notice a TPR (True Positive Rate) convergence that becomes steady from 450th  
epoch. Other experiments also showed similar graphs where convergence appears after 200th  epoch. 

 
Figure 9: Variation of true positive rate 

4.3 Boosting SmartAMD1 Hence SmartAMD2 
In this experiment we boost the performance of SmartAMD1, we retrain it on a dataset that just 

contains augmented samples such that it can learn the correlations among features of augmented samples, 
hence becoming a more robust model (SmartAMD2). We further test SmartAMD2 on additional samples 
to demonstrate its robustness. The architecture used for SmartAMD2 is that for the best model (Version.2) 
from Tab. 4. Experiments revealed that after retraining, SmartAMD2 can achieve 99.94% accuracy 
moreover with additional samples. We go ahead and test this SmartAMD2 on a batch of unseen additional 
samples and it could detect them with an accuracy of 86.5%. Tab. 7 and Table 8 below, show the results 
of the experiment. 

Table 7: SmartAMD2 results 
Dataset Samples Layer size Batch Size Epochs Accuracy 

Training set 4536 
357:180:90:30:20:15:12:8:1 

100 800 99.94% 
Testing set 1944 

Testing (additional samples) 600 - - 86.50% 
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Table 8: SmartAMD2-Confusion matrix 
 Malware Benign 

Malware 513 87 
Benign 0 0 

We evaluate the performance of SmartAMD2 using the AUC (Area Under the Curve)—ROC 
(Receiver Operating Characteristics) curve. AUC is considered the most important evaluation metric for 
checking any classification model’s performance. AUC is based on the output of a Confusion Matrix. To 
visualize the performance of SmartAMD2, we generate a ROC curve shown in Figure 10, we can see a 
higher AUC of 0.987 which implies that SmartAMD2 can distinguish well between benign and malware 
classes moreover including additional samples. 

 
Figure 10: Variation of true positive rate 

4.4 Comparison with other Methods 
In order to verify the effectiveness of our method, we conducted a series of comparative experiments 

with the methods proposed by others before us. The experiments showed that our method was more 
accurate than the previous methods and had an effect on the newly emerged malware. 

Our model achieved a classification accuracy of 99.94% when tested on augmented samples and 
86.5% with additional samples. Naive Bayes has the worst detection effect, with an accuracy rate of the 
only 80.6%; while the CNN with the best detection effect has an accuracy rate of 97.2%, and the accuracy 
of SmartAMD2 is 2.74% higher than it. The comparison with other methods is shown in Tab. 9. 

Table 9: Comparison of Accuracy of Several Methods 

Method Precious Recall F-measure Accuracy(%) 
KNN 0.95 0.97 0.96 92.23 
SVM 0.97 0.97 0.97 96.89 
RF 0.99 0.98 0.98 98.32 

CNN-0 0.99 0.98 0.98 97.80 
CNN-S 0.99 0.99 0.99 99.82 
DAE 0.96 0.98 0.98 94.72 

Decision Tree 0.98 0.98 0.98 97.54 
SmartAMD2 0.99 0.99 0.99 99.94 



 
26                                                                                                                                                   JCS, 2021, vol.3, no.1 

Compared with the CNN-S method proposed by Wang et al. [29], our method improves the 
recognition accuracy from 99.82% to 99.94%, far higher than KNN, SVM, RF, and other traditional 
methods. At the same time, the previous method cannot achieve good results in the detection of new 
malware, while our method can achieve an accuracy rate of 86.5% in the detection of new malware. 

5 Conclusion 
As new malware continues to appear, its harmfulness is also increasing. This calls for a greater need 

to build robust intelligent malware detection algorithms that can offer better protection in the arms race 
with malware authors. 

The research presented in this paper proposes a framework to build a robust malware detection 
model that can detect malware including constantly newly-emerged malware examples. We have built a 
robust malware detection that we trained on benign samples, malware samples, and augmented samples 
using a combination of static and dynamic features. This malware detection can effectively combat newly 
emerged malware. 

In the future, we intend to implement a cloud-based and distributed malware detection system and 
also more features will be considered. At the same time, we need to collect more and more malicious 
samples to train our model to make it more robust. 
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