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Abstract: Visual tracking is a classical computer vision problem with many 
applications. Efficient convolution operators (ECO) is one of the most outstanding 
visual tracking algorithms in recent years, it has shown great performance using 
discriminative correlation filter (DCF) together with HOG, color maps and 
VGGNet features. Inspired by new deep learning models, this paper propose a 
hybrid efficient convolution operators integrating fully convolution network (FCN) 
and residual network (ResNet) for visual tracking, where FCN and ResNet are 
introduced in our proposed method to segment the objects from backgrounds and 
extract hierarchical feature maps of objects, respectively. Compared with the 
traditional VGGNet, our approach has higher accuracy for dealing with the issues 
of segmentation and image size. The experiments show that our approach would 
obtain better performance than ECO in terms of precision plot and success rate 
plot on OTB-2013 and UAV123 datasets. 

Keywords: Visual tracking; deep learning; convolutional neural network; hybrid 
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1 Introduction 
Visual tracking has been made research in the field of computer vision for decades, so that it has found 

wide applications [1–2]. These methods [3–6] have made much progress in the past years, but it still has 
lots of challenges including appearance variations and clutters. To handle these challenges, existing 
appearance based tracking methods design various feature operators to capture semantic information of 
targets, and learn discriminative or generative models to distinct co-occurring targets and background.  

With the success of deep convolutional neural network (CNN) in image recognition and retrieval, most 
of recent visual tracking method get rich semantic and strong distinguishing information via residual 
network (ResNet) instead of relying on hand-crafted features only. Nam et al. [1] proposed a novel 
discriminatively trained convolutional neural network (CNN) for tracking, Ma et al. [2] exploited to transfer 
a deep CNN pretrained model from recognition datasets to tracking datasets, and Wang et al. [3] and 
Danelljan et al. [4–6] claimed a new kind of method spatially regularized discriminative correlation filters 
(SRDCF). Obviously, deep CNNs naturally enrich the multi-level features and classifiers in an end-to-end 
framework. All these motivate that we also apply CNNs for the feature operator in this paper to address the 
challenges faced by tracking. 

For the tracking model, correlation filter (CF) tracker is a kind of famous and effective algorithm, 
which has improved the tracking performance in recent years [7–9]. The CF tracker involves a group of 
filters to estimate the possible target’s positions and select one with maximal response in the next frame. 
The traditional CF tracker assumes that all targets can be estimated easily by Fourier transform, but it 
requires the input of continuous image sequences and the operations of multiplying cosine masks for better 
tracking performance in recent works [9]. Then, based on C-COT, effcient convolution operators (ECO) 
combines deep CNN and CF to get an excellent tracking model [10–13], which reduces the number of the 
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model parameters by the factorized convolution and improves tracking efficiency [14,15]. However, ECO 
can only tackle with the image sequence with fixed-size CNN model so that it has difficulties to handle co-
occurring targets.  

Driven by the good performance of fully convolutional networks (FCN) in image segmentation [3], in 
this paper, we propose a framework of hybrid efficient convolution operators based on ECO for visual 
tracking. Based on combining the FCN feature with ResNet feature, our method jointly extract the hybrid 
efficient convolution operators by fusion strategy to improve the per-pixel segmentation, which can 
segment the objects from backgrounds and extract hierarchical feature maps of objects. Different with the 
existing CF tracker which assumes that the images is periodic, our tracker can greatly improve the efficiency 
of the Fourier transform process without the continuous of image sequence. The experiments are conducted 
on OTB-2013 dataset [16] and UAV123 dataset [17] and it demonstrates the better performance of our 
method than the state-of-the-arts in terms of precision plot and success rate plot. 

The rest of the paper is organized as follows. In Section 2, we review the related works about visual 
tracking, feature operator, CF trackers. In Section 3, we elaborate the details of our proposed method. In 
Section 4, we describe the experiments and discuss the results. In Section 5, we draw the conclusion. 

2 Related Works 
2.1 Visual Tracking 

Visual object tracking has been achieved impressive results in computer vision. Existing visual 
trackers are sorted out as two categories based on generative models and discriminative models. Using 
generative models, Comaniciu et al. [18] employed similarity measurement and mean-shift for optimization. 
To handle occlusions and distracters, Oron et al. [19] proposed LOT tracker with locally orderless matching, 
and Zhang et al. [20] proposed another tracker using the spatio-temporal context of targets. Sevilla-Lara 
[21] proposed DFT with distribution fields to smooth the objective function. On the other hand, deep 
trackers have also drawn great attention. Using discriminative models, Hare et al. [22] proposed a typical 
discriminative tracker named Struck that used the structured support vector machine. To achieve more 
robust tracking, Kalal et al. [23] proposed a tracking learning detection (TLD) tracker with positive-
negative learning, and then Zhang et al. [24] proposed MEEM to set a multi-expert restoration system. CF 
(correlation filter) based methods also take on an important position in discriminative trackers [25–27], 
such as DSST [28], CSK [13], SINT [29], ECO [4], LCCF [30] and so on. These discriminative model 
based trackers generally train a classifier and distinguish targets from the background, and gain more high 
tracking precision at fast speed than generative model based trackers.  

2.2 Feature Operator 
Recently, most existing works focus on the design of appearance models so that the feature operator 

can affect the performance of trackers [10,14,31]. Using hand-crafted features, the trackers are learned with 
discriminative and generative models. Ross et al. [32] learned subspace online to model the appearance for 
searching candidates with minimized reconstruction errors. CRFs [33], multiple instance learning [33] and 
structural SVM [34] were also applied in learning online tracker to separate the foreground and background. 
Using deep learning features, the online tracking is under fully explored. Wang et al. [35] exploited sparse 
coding and sparse linear combination of target templates for target reconstruction, and trained a stacked 
denoising autoencoder on a tiny dataset to learn features for online tracking. Li et al. [36] performed 
tracking as an online target-background classifier with CNN. Hong et al. [37] proposed target-specific 
saliency maps to guide CNN features for visual tracking.   

2.3 CF Tracker 
In the field of visual tracking, CF (Correlation filter) is a recent successful tracker algorithm. 

According to the papers related to CF, it is not an old-fashioned theory, but there are plenty of viarants in 
CF. Generally, CF means that identifying the target depends on the scale of correlation. Bolme et al. [25] 
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first put correlation into computer vision and designed correlation filter. Now, there has been many 
developments based on CF to get new trackers. Valmadre et al. [10] presented a new method to accomplish 
learning in visual tracking based correlation filter, and adopted fully learning features. Zhang el al. [11] 
proposed a multi-task correlation particle filter (MCPF) for visual tracking, which exploits the combination 
of MCF and a particle filter. Besides, it can maintain multiple modes in the posterior density and deal with 
large-scale variations by the particle sampling. Bibi et al. [12] proposed a general framework to calculate 
the target response adaptively along the image sequence, which is robust to the circular shifts and 
translations in a small range.  

As for kernel correlation filter (KCF), an updated version of circulant structure with kernels (CSK), 
Henriques et al. [13,14] provided a new Fourier transform after online learning in fast. Comparing with 
CSK, Henriques et al. also proposed KCF continued to use Fourier transform but use discrete Fourier 
transform in CSK and fast Fourier transform in KCF. Besides, there are more channels when handling with 
images which lead in a better performance in practice. 

3 Hybrid Efficient Convolution Operators 
In this section, we propose a framework of hybrid efficient convolution operators based on ECO for 

visual tracking. It combines the FCN feature with ResNet feature and extracts the hybrid efficient 
convolution operators jointly by fusion strategy. It improves the semantic segmentation ability of the feature 
operators to segment the objects from backgrounds and extract hierarchical feature maps of objects. 

3.1 Overview of CF in Baseline ECO 
We first overview the basic existing CF trackers in the baseline ECO, and then analyze its 

shortcomings of the cosine mask [4,9]. The CF tracker in general gets a multi-channel correlation filter 
from a group of feature maps that are extracted from original images. However, this only helps to 
discriminate the target from the background��𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘��1

𝑡𝑡 ,where k ∈ 𝑅𝑅𝑑𝑑 is a d-dimensional feature extracted 
by CNN from one single image, 𝑦𝑦𝑘𝑘 is the target output with a scalar value for the Gaussian-shaped image, 
and t is the number of all images. To start I resize all the images to the size of certain CNN input size and 
extract the feature from a small region. We put feature layer as 𝑥𝑥𝑘𝑘𝑙𝑙 , 𝑙𝑙={1,2, … ,𝑑𝑑}with da as the total layer 
number. 𝑓𝑓𝑙𝑙  will be set as the correlation filter of the 𝑙𝑙-th feature layer, and the response of 𝑥𝑥𝑘𝑘 is given by 
the formulation: 
𝑅𝑅𝑓𝑓(𝑥𝑥𝑘𝑘) = ∑ 𝑥𝑥𝑘𝑘𝑙𝑙 ∗ 𝑓𝑓𝑙𝑙𝑑𝑑

𝑙𝑙=1                                                                                                                                 (1) 
where * denotes the circular convolution. The filter 𝒇𝒇 is learned by minimizing the oprimation problem as 
this formulation: 

𝑓𝑓 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓 �∑ 𝑎𝑎𝑘𝑘�𝑅𝑅𝑓𝑓(𝑥𝑥𝑘𝑘) − 𝑦𝑦𝑘𝑘�
2 + ∑ �𝑤𝑤◎𝑓𝑓𝑙𝑙�

2
𝑑𝑑
𝑙𝑙=1

𝑡𝑡
𝑘𝑘=1 �.                                                               (2) 

In this formulation 𝑤𝑤  is the regularization weight, and ◎ means element-wise product. Thus, the 
original CF tracker helps to separate targets from the background, and we propose a novel and better feature 
extraction strategy for the CF tracker to improve its representative ability.  

3.2 Feature Extraction Using FCN 
In ECO framework, the tracker are learned offline. It takes 120 images which show one man cross the 

street and its job is to track the same man crossing the street inside the 120 images. Following these setting, 
we use the feature representation as the first layer output of Conv-1 and the last layer output of Conv-5 in 
the VGG network, color names (CN) and histogram of gradients (HOG). We illustrate new configuration 
of ECO framework with FCN feature extraction in Fig. 1, in which there are seven implementation 
processes illustrated.  
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Figure 1: Description of new configuration of ECO framework with FCN feature extraction 

In our tracker, some image parameters, feature parameters and other parameters are defined at first. 
For the image parameters, the image sequence and ground truth are input to evaluate the tracker. For the 
feature parameters, the FCN is used as the primary feature extraction in Fig. 2. For the other parameters, 
we follow the setting of ECO to initialize the correct max number of samples, initial scale factor, search 
area size, window size, size of the extracted feature maps, Gaussian label function using Poisson formula, 
spatial regularization filter, cosine window, energy of the filter, Fourier series of interpolation function, 
minimum allowed sample weight, and the set conjugate gradient.  

Then, each frame of image sequence is input our tracker for calculation. For simplify the description, 
we denote the output FCN feature map as 𝑿𝑿, and 𝑿𝑿𝒌𝒌 denotes the FCN feature map at k frame. Following 
ECO, we initialize the tracker in the first frame, then extract features  𝑿𝑿𝒌𝒌 and 𝜶𝜶𝒌𝒌 are updated by the position 
model in the next frame. Given the number of samples 𝒕𝒕  and 𝒅𝒅 , the Gaussian means 𝝁𝝁𝒌𝒌  and the prior 
weights 𝝅𝝅𝒌𝒌, we calculate the detection scores with 𝑹𝑹𝒇𝒇 (𝝁𝝁𝒌𝒌), and learn the multi-channel convolution filters 
using the loss function as: 
𝑓𝑓 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓�∑ 𝜋𝜋𝑘𝑘𝑡𝑡

𝑘𝑘=1 ∥ 𝑅𝑅𝑓𝑓 (𝜇𝜇𝑘𝑘) − 𝑦𝑦0 ∥2+∑ ∥ 𝑤𝑤⨀𝑓𝑓𝑙𝑙 ∥2𝑑𝑑
𝑙𝑙=1 �.                                                   (3) 

 
Figure 2: Flowchart of FCN feature extraction with parameters 

3.3 Feature Extraction Using ResNet 
Deep learning is more theoretical and there are more connection with human science especially brain 

and neuro science, such as AlexNet, ImageNet and so on [15]. The deeper networks are able to start 
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converging, and it can get saturated accuracy. The common deep features are extracted with the output of 
the last FC layer, and some recent feature are calculated from the residual connection layers to get great 
performance. We use ResNet [18] to produce more discriminative and contain structural features for the 
improvement of tracking accuracy as  

( )( )= + _Z FC relu I res I                                                                                                                               (4) 

where I denotes the input image patch, + _I res I denotes the output of identity mapping, ( )relu  denotes 

the activation function in the residual block,  ( )FC denotes the last FC layer of the residual block in ResNet, 
Z is the ResNet feature for the image patch I .  

In this section, we introduce ResNet to extract features as the heatmap for the current frame. First, we 
load the pre-trained ResNet model, and resized the images to get single precision maps. Then, we subtract 
the average maps from the original maps, and input them to the ResNet and get the score maps. Finally, we 
calculate the heatmap of the current frame by assigning score maps to weights. We analyze the advantages 
of using ResNet in tracker our as follows. 1) The deep residual nets can optimize than simply stack layers 
when the depth increases and increase the accuracy to produce better networks; 2) The ResNet always 
learns residual functions and pass all information with additional residual functions. 

3.4 Feature Fusion Strategy 
In this section, we explain the fusion strategy for combining FCN features and ResNet features in 

tracker. Feature fusion is to integrate multiple source of feature maps into an individual feature map with 
more accurate and discriminative ability, in other words, two feature maps are combined into a feature map 
in our model. We proposed to apply feature level fusion strategy using a method based on canonical 
correlation analysis, and get the train and test data matrices from a single feature set. 

Given two feature maps ×∈ p mX R  and ×∈ q nZ R of random variables from two different modalities 
(FCN and ResNet), we define the cross-covariance ×n m  matrix with the ( ),i j  entry as the covariance

( )cov ,i jx z , then construct the covariance matrix with a pair of sampled data from ×∈ p mX R  and ×∈ q nZ R . 

We define two vectors a  and b  with initial random values, and search different vectors a  and b  for 
calculating Ta X  and Tb Z  to maximize the correlation ρ = corr( , )T Ta X b Z .   

′ ′ =
,

( , ) argmaxcorr( , )T T

a b
a b a X b Z                                                                                                               (5) 

We continue to update two vectors with the constraint and uncorrelated variables up to min{ , }m n  ti
mes. When obtaining the maximal correlation, we denote the pair of two vectors as ′a  and ′b , and the tra
nsformed feature maps as ′= TU a X  and ′= TV b Z . Similar to [34], the feature-level fusion is obtained vi
a the concatenation operation of the transformed feature maps: 

( )= ,F U V                                                                                                                                                      (6) 

In this paper, we then use the fused hybrid feature maps F to deploy tracker models following the 
basic ECO method [4]. The query target is then classified as the highest response value based on the target 
template and the patches in the background. 

4 Experiments 
Based on FCN and ResNet, our method is presented to incorporate the hybrid feature operators into a 

powerful tracker. To verify the effectiveness of the proposed method, we conduct experiments on two 
bechmarks, OTB-2013 benchmark dataset [16] and UAV123 dataset [17]. 
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4.1 Benchmark Datasets 
The OTB-2013 dataset [16] is a challenging tracking dataset with 50 sequences. In the ground-truch 

files, multiple targets in each frame of a sequence are marked as various numbers, and each target is 
recorded with the bounding box in a row. Compared with OTB-2013, UAV123 is a newly published 
benchmark with 123 sequences on unmanned aerial vehicles (UAVs) [17]. Due to the specific 
characteristics of UAV photography, the video clips in UAV123 benchmark include extremely small target, 
rapid view point change, drastic scale variation, and long-term out-of-view. We choose UAV123 at the 
frame rate of 10fps to evaluate in our experiment.  

4.2 Implementation Details 
We compare our method with other state-of-the-art trackers on two above-mentioned datasets. Our 

tracking method is implemented in Matlab 2017b based on Matconvnet 1.0 framework, and runs at one 
NVIDIA GeForce GTX 1080ti GPU, in Windows 10 operating system. The FCN and ResNet are pretrained 
on ImageNet dataset, and finetuned in the first frame of each sequence after 10 iterations of updating via 
back-propagation. For experimental setting, except for the fixed parameters in ECO tracker, the learning 
rate of ResNet is 1e-7, and that for FCN is 1e-9, the weight decay is 0.005, the size of the ROI near target 
is 386 × 386 pixels, and the number of feature maps for fusion is 384.  

4.3 Results and Analysis 
For the OTB-2013 dataset, we evaluate the performance of our tracker following the protocol in [4]. 

As shown in Tab. 1, we analyze the experimental results of our and other trackers in two terms, precision 
and area under curve of success plots. It is noted that our tracker outperforms other Siamese trackers with 
the success rate of 0.65 and the precision of 0.88, such as the SRDCF [6], SINT [29], CFNet [10], ECO-
HC [4], ECO-Deep [4], LCCF [30], which demonstrates the superior performance of our tracker. 

Table 1: The comparisons of distance precision and success rate on OTB-2013 dataset sequences using 
one-pass evaluation 

Method 
OTB-2013 

Success rate Distance precision 

SRDCF [6] 0.63 0.84 

SINT [29] 0.64 0.85 

CFNet [10] 0.61 0.80 

ECO-HC [4] 0.64 0.86 

ECO-Deep [4] 0.65 0.87 

LCCF [30] 0.57 0.85 

Our tracker 0.65 0.88 

For the UAV-123 dataset, our tracker results are illustrated in Tab. 2. As known from the published 
works, UAV123 is more difficult than OTB-2013 in the aspects of tracking challenges, but our tracker still 
achieves better evaluation indicators than six state-of-the-art trackers, including DSST [28], MEEM [24], 
CFNet [10], ECO-HC [4], ECO-Deep [4], LCCF [30]. It is demonstrated that our tracker improves the 
success rate and precision to 0.54 and 0.76, which confirms that our tracker is more effective because of 
using the hybrid efficient convolution operators. 
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Table 2: The comparisons of distance precision and success rate on UAV-123 dataset sequences using one-
pass evaluation 

Method 
UAV-123 

Success rate Distance precision 

DSST[28] 0.36 0.58 

MEEM [24] 0.39 0.62 

CFNet [10] 0.47 0.68 

ECO-HC [4] 0.49 0.70 

ECO-Deep [4] 0.53 0.75 

LCCF [30] 0.38 0.61 

Our tracker 0.54 0.76 

More specifically, in Fig. 3, we choose four best compared methods on OTB-2013 dataset sequences, 
and draw the distance precision plot and success plot of OPE. In Fig. 3, our tracker are compared with four 
recent methods, SRDCF [6], SINT [29], ECO-Deep [4], and LCCF [30], and our tracker gain the best 
performance under the same experimental settings and its efficiency will be improve for real applications. 

 
 

Figure 3: Visualization of the plots of distance precision and success rate using our tracker and four 
compared trackers on the OTB-2013 dataset 

In ECO framework, the trackers are learned offline. It takes 120 images which show one man cross 
the street and its job is to track the same man crossing the street inside the 120 images. The original 
experiment uses the same feature as C-COT, histogram of gradients (HOG) and color names (CN). We 
illustrate new configuration of ECO framework with FCN feature extraction in Fig. 1, in which there are 
seven implementation processes illustrated.  

To further evaluate our tracker, we visualize the feature maps of some frames in a sequence. In Fig. 4, 
we select five frames to illustrate the good ability of our method in image segmentation compared with 
ECO. Obviously, our method gets high score pixels in a much closer region of target, which relies on the 
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excellent semantic segmentation ability of our proposed hybrid convolution operators to learn the local and 
global correlation information. Indeed, the hybrid operators can label each pixel using dense predictions to 
figure out the target and the background. In Fig. 4, it is shown that compared with the second row of ECO 
results, our tracker with hybrid operators gets more compact and high scores in the feature map when 
occurring the partial occlusion in the sequence. It is also noted that the feature map obtained by our tracker 
is so clear to represent the correlation among pixels from a same target and update the contour of target by 
gradually learning. 

 
Figure 4: Visualization of the training set with feature representation of ECO and our tracker on a sequence 
from OTB-2013 

5 Conclusion 
Efficient convolution operators (ECO) is one of the most excellent and recent tracking methods due to 

its great performance using discriminative correlation filter, however, lots of challenges still exist in the 
learning process as appearance changes, occlusions, variations, and clutters. In order to enhance the target 
segmentation ability of ECO, this paper propose a hybrid efficient convolution operators integrating fully 
convolution network (FCN) and residual network (ResNet) for visual tracking, where FCN and ResNet are 
introduced in our proposed method to segment the objects from backgrounds and extract hierarchical 
feature maps of objects, respectively. Compared with the traditional VGGNet, our approach has higher 
accuracy for dealing with the issues of segmentation and image size. The experiments show that our 
approach gain better performance than ECO on OTB-2013 and UAV123 datasets. In the future work, the 
deep learning based semantic representation will be studied and involved for a robust tracker, and more 
complex datasets will be used for comparison in visual tracking task. 
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