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ABSTRACT

In this paper, we analyze the behaviour of solution for the system exemplifying model of tumour invasion and
metastasis by the help of q-homotopy analysis transform method (q-HATM) with the fractional operator. The
analyzed model consists of a system of three nonlinear differential equations elucidating the activation and the
migratory response of the degradation of the matrix, tumour cells and production of degradative enzymes by
the tumour cells. The consideredmethod is graceful amalgamations of q-homotopy analysis techniquewith Laplace
transform (LT), and Caputo–Fabrizio (CF) fractional operator is hired in the present study. By using the fixed point
theory, existence and uniqueness are demonstrated. To validate and present the effectiveness of the considered
algorithm, we analyzed the considered system in terms of fractional order with time and space. The error analysis
of the considered scheme is illustrated. The variations with small change time with respect to achieved results are
effectively captured in plots. The obtained results confirm that the considered method is very efficient and highly
methodical to analyze the behaviors of the system of fractional order differential equations.
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1 Introduction

The existence of cancer among the people around the globe has been developed swiftly, and
globally it becomes the second foremost cause of demise after cardiovascular diseases [1]. The
process of spreading and formation of secondary tumours is known as Metastasis and this nature
of cancer cells is the main reason for the death in cancer patients. In addition, the prediction
of size, stage, and evolution of a tumour is very critical for the treatment of cancer. Moreover,
mathematics plays as an essential tool and aid us to analyze the behaviour of the tumour. The
tumour growth has been mathematically modelled by the number of researchers and which are

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

http://dx.doi.org/10.32604/cmes.2021.014988


1014 CMES, 2021, vol.127, no.3

appeared in the literature [2–4]. The growth of the tumour invasion and metastasis are described
by PDEs. Particularly, deterministic diffusion-reaction equations and these equations are employed
to model the spatial spread of tumours at the initial development and later invasive moments [5].

The fractional-order derivatives are introduced by Leibnitz soon after the classical order
derivatives. As compared to classical calculus, it was soon discovered that fractional calculus (FC)
is more appropriate for describing real-world problems [6–10]. The calculus of arbitrary order
turned out one of the most essential tools to describe biological phenomena. The human diseases
which are modelled through derivative having fractional-order help us to incorporate the informa-
tion about its present and past states [11–16]. Moreover, these models demonstrate the non-local
distributed effects, hereditary properties and system memory. These properties are necessary to
describe the biological models. In connection with this, recently many authors established the
arbitrary-order model to analyze the diffusion equation and to forecast the effect of the tumour
and they applied many powerful methods to find the solution for these models [17–32]. The pivotal
aim of generalizing the integer to fractional order is to capture consequences related non-locality,
long-range memory and time-based properties and also anomalous diffusion aspects. Many real-
world problems exemplified with complex and nonlinear models are effectively, systematically and
accurately illustrated and investigated by the aid of theory and fundamental concept of FC. Many
pioneers nurtured and developed novel and distinct notions of fractional order for both differential
and integral operators. Most familiarly hired operators to analyze many models are Riemann,
Liouville, Caputo, Fabrizio and others. However, researchers pointed out some limitations while
generalizing the system with these notions. The Riemann–Liouville derivative fails to elucidate
the essence of initial conditions; the Caputo derivative has overcome this limitation and latter it
has been widely applied to the numerous classes of mathematical models exemplifying real-world
problems. But this fractional operator is unable to describe the singular kernel of the systems
or problems. However, Caputo et al. [33] in 2015 overcome the foregoing obliges and then the
number of authors employed CF derivative to investigate and study wide classes of complex and
nonlinear problems. It has been proved by many researchers; CF fractional operator as great
results compared to other fractional operators.

The study of mathematical models effectively exemplified diverse phenomena. However, as
much as important of nurturing the phenomena with the system of equations finding the
corresponding solution is also very vital and difficult. In this path, many authors examined
diverse phenomena, for instance, the structured predator-prey model with prey refuge [34],
COVID-19 [35–39], Zika virus transmission [40], planar system-masses in an equilateral tri-
angle [41], a harmonic oscillator with position-dependent mass [42], time fractional Burgers
equation [43], fractional optimal control problems [44], Emden–Flower type equations [45], and
many others [46–53]. These investigations help researchers to understand the importance of gener-
alizing the classical concept into fractional operators, and efficiency and difference between diverse
schemes.

Many physicists, engineers and mathematicians recently proposed and modified diverse solu-
tion procedure with a different approach with respect to increasing in accuracy and methodology,
to reduces the complexity, many additional assumptions and consideration, huge time for evalu-
ation and to save computer memory. Moreover, each method is suitable for some specific family
of problems and they have their own limitations, including conversion of nonlinear to linear,
partial to ordinary differential equations, splitting complex and nonlinear term to simple parts
terms. In this connection, with the help of topological concept called homotopy, Liao Shijun who
is a Chinese Mathematician proposed algorithm called homotopy analysis method (HAM) and
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illustrated to confirm it overcomes almost all the limitations raised while we solving nonlinear
systems exists in sciences and other disciplines associated to mathematics [54]. The most familiar
thing of employing this method by many authors is including it solves nonlinear problems without
linearization and perturbation.

As science and technology-enhanced, mankind always expecting new tools or modifications
in existing tools to improve the accuracy and reduces the time taken for finding needful. In this
regard, some scholars pointed out similar things in HAM and suggested to union with existing
and familiar transformation. Authors in [55] modified q-HAM with the help of Laplace transform
(LT) and manifest new modified scheme is called q-HATM. This method is perceptible includes
all merits which are achieved by HAM and also it attracted many researchers to analyze the
diverse class of models and systems. For instance, the model exemplifying three Lakes pollution
with the newly proposed fractional operator is investigated by authors in [56], fractional vibration
equation is analyzed by authors in [57] with some interesting results, authors in [58] presented
the efficiency of the projected scheme while analyzing Swift–Hohenberg equation having arbitrary
order, the accuracy of the hired scheme in comparison with existing results is illustrated by
authors in [59] with respect to the physical model, the convergence analysis of the considered
method for Lienard’s equation is demonstrated in [60], many others analyzed various biological
and physical phenomena by the assist of the projected scheme [61,62].

In the present study, we find the series solution for a system of nonlinear differential equations
describing the model of tumour invasion and metastasis using q-HATM with the help of a
novel fractional operator. By using the important results of fixed-point theory for the projected
system the existence and uniqueness are demonstrated. The novelty of the projected scheme gives
more freedom to choose the initial conditions and the novelty is it offers a simple solution
procedure and associated with parameters to provide the swift convergence. Further, it contains
the results achieved by other classical methods including ADM, HPM, q-HAM and some other
methods [63–72]. In the present study, we analyzed the system describing the tumour invasion and
metastasis with different time and space for different fractional-order using q-HATM within the
frame of the novel fractional operator which can describe the singular kernel. This study can help
us to analyze more complex and nonlinear mathematical models describing the deadly virus or
diseases.

The rest of the manuscript is organized as follows: The basic and fundamentals are presented
in the next section, the hired model is exemplified in Section 3, the basic procedure of the
q-HATM is presented in Section 4, and its algorithm is illustrated for the considered model in
Section 5. The existence and uniqueness for the archived results and error analysis are respectively
presented in Sections 6 and 7. Moreover, with the aid of behaviour captured for the obtained
result, the corresponding comments and conclusion are respectively exemplified in Sections 8
and 9.

2 Preliminaries

The basic definitions are presented in this segment for the FC and Laplace transform.
Specifically, we recall the notions related to Caputo-Fabrizio fractional operator [33,73].

Definition 1. The CF fractional derivative for f ∈H1 (a, b) is presented as [33]

Dα
t (f (t))= M (α)

1−α

∫ t

a
f ′ (t) exp

[
−α

t−ϑ

1−α

]
dϑ , b> a, α ∈ [0, 1] , (1)
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where M (α) is a normalization function and admits M (0)=M (1)= 1. Further, if f /∈H1 (a, b)
then we have

Dα
t (f (t))= αM (α)

1−α

∫ t

a
(f (t)− f (ϑ)) exp

[
−α

t−ϑ

1−α

]
dϑ . (2)

Definition 2. The CF fractional derivative for f ∈H1 (a, b) is presented as [73]

Iα
t (f (t))= 2 (1−α)

(2−α)M (α)
f (t)+ 2α

(2−α)M (α)

∫ t

0
f (ϑ)dϑ , 0< α < 1, t≥ 0. (3)

Note: According to [73], the following must hold

2 (1−α)

(2−α)M (α)
+ 2α

(2−α)M (α)
= 1, 0< α < 1, (4)

which gives M (α)= 2
2−α

. By the assist of above equation researchers in [73] proposed a novel

Caputo derivative as follows:

Dα
t (f (t))= 1

1−α

∫ t

0
f ′ (t) exp

[
α
t−ϑ

1−α

]
dϑ , 0< α < 1. (5)

Definition 3. The LT for a CF derivative CF
0 Dα

t f (t) is presented as [33] below

L
[
CFC
0 D(α+n)

t f (t)
]
= sn+1L [f (t)]− snf (0)− sn−1f ′ (0)− . . .− f (n) (0)

s+ (1− s)α
. (6)

3 Mathematical Model

On the basis of generic solid tumour growth and assuming it is in avascular stage, the
mathematical model has been proposed [74]. In this stage, most of the tumours are asymptomatic
and further there is a possibility of cells to migrate and escape to the lymph nodes. The considered
system exemplifies the interfaces of the surrounding tissue with the tumour and it can be extended
to incorporate tumour and the vasculature. Here, the projected system of equations illustrates
the interactions of the matrix-degrading enzymes (MDE, signifies by E), extra cellular matrix
(ECM, symbolised by C) and tumour cells (denoted by T). With respect to ECM, most of
the macromolecules are essential for cell motility, spreading and adhesion. Further, the ECM
associated with many macromolecules, for instances collagen, laminin and fibronectin. During the
various stages of metastasis, invasion and turn our growth, MDEs play a vital role. The ECM
locally degrades by MDEs which are produced by tumour cells. Further, the method wherein they
interact with tumour cells, growth factors and inhibitors are highly intricate. The tumour cells
in the considered system as haptotaxis and in order to integrate this concept in the model, the
hypotactic flux is considered as [75,76]

Jhapto= χT∇C,
where χ > 0 denotes haptotactic coefficient and which is constant. The random motion is another
contribution to tumour cell motility and it helps to study ECM in isolation. Moreover, the flux
is defined for the tumour cells with exemplified random motility is

Jrandom=−D (C, E)∇T ,
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where ∇T is the chemokinetic response, D (C, E) is the function of either the ECM or MDE
concentration, or constant.

For the tumour cell density (T), the conservation equation is presented as

∂T
∂t

+∇ · (Jhapto+ J random
)= 0,

and for the cell proliferation absence, the equation describing tumour cell motion is defined as

∂T
∂t

=∇ · (D (C,M)∇T)−χ∇ · (T∇C) (7)

For the notation, the random motility coefficient of tumour cell is considered as D (C,M)=
DT and which is constant. Therefore, the degradation process is exemplified by the subsequent
equation with positive constant δ

∂C
∂t

=−δEC. (8)

Active MDEs are formed by T , experience some form of decay and diffuse throughout the
tissue. The equation modelling the evolution of MDE concentration is presented with MDE
diffusion coefficient DE as

∂E
∂t

=DE∇2E+ g (T , E)− h (T , E, C) , (9)

where g=μT and h= λE, h and g are the functions respectively describing the MDE decay and
the production of active MDEs. Moreover, in the surrounding tissues there is a linear relationship
between the level of active MDEs and the density of tumour cells.

From the above description, the system is presented as [18,54,57]:

∂T
∂t

= DT∇2T︸ ︷︷ ︸
randommotility

−χ∇ · (T∇C)︸ ︷︷ ︸
haptotaxis

,

∂C
∂t

=− δEC︸︷︷︸,
degradation

∂E
∂t

=DE∇2E︸ ︷︷ ︸
diffusion

+ μT︸︷︷︸
production

− λE︸︷︷︸ .
decay

(10)

Here, with appropriate initial conditions, Eq. (10) is assumed to satisfy on a region of tissue
or domain �. Moreover, the model is nurtured so that the MDEs and tumour cells remain inside
the domain of tissue within deliberation and hence no-flux boundary conditions are executed on
∂�. The terms contained in the above system with ECM density (C0), tumour cell density (T0)

and MDE concentration (E0) by setting

T̃ = T
T0

, C̃ = C
C0

, Ẽ = E
E0

, x̃= x
l
, t̃= t

τ
, (11)
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where l signifies scale length and τ is the time. Then we have a scaled system of equations by
dropping the tildes for notational convenience [18,74,77]

∂T
∂t

= dT∇2T − γ∇ · (T∇C),

∂C
∂t

=−ηEC,

∂E
∂t

= dE∇2E+αT −βE, (12)

where dT =DT/D, γ = χC0/D, η = τE0δ, dE =DE/D, α = τμT0/E0 and β = τλ.

The projected model can be protracted to integrate interactions between blood vessels and the
tumour cells [74].

Now, we modify the time derivative by the CF derivative in Eq. (12) and given by

CF
0 Dα

t T (x, t)= dT
∂2T
∂x2

− γ

[
∂T
∂x

∂C
∂x

+ ∂2C
∂x2

]
,

CF
0 Dα

t C (x, t)=−ηEC,

CF
0 Dα

t E (x, t)= dE
∂2E
∂x2

+αT −βE, (13)

where α is fractional order. The associated initial conditions are

T (x, 0)= e
−x2

ε ,

C (x, 0)= 1− 0.5e
−x2

ε ,

E (x, 0)= 0.5e
−x2

ε . (14)

4 Fundamental Idea of the Considered Scheme

In this section, we hired the differential equation to present the basic procedure of the
projected scheme with initial conditions
CF
0 Dα

t v (x, t)+Rv (x, t)+N v (x, t)= f (x, t) , n− 1< α ≤ n, (15)

and

v (x, 0)= g(x). (16)

We obtained by applying LT on Eq. (15)

L [v (x, t)]− g(x)
s

+ s+ (1− s) α

s
{L [Rv (x, t)]+L [N v (x, t)]−L [f (x, t)]} = 0. (17)

For ϕ(x, t; q), N is contracted as follows:
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N [ϕ (x, t; q)]=L [ϕ (x, t; q)]− g(x)
s

+ s+ (1− s) α

s
{L [Rϕ (x, t; q)]+L [Nϕ (x, t; q)]−L [f (x, t)]} , (18)

where q ∈
[
0,

1
n

]
. Then, the homotopy is defined by results in [34]

(1−nq)L [ϕ (x, t; q)− v0 (x, t)]= �qN [ϕ (x, t; q)] , (19)

where L is signifying LT . For q= 0 and q= 1
n
, the following conditions satisfies

ϕ (x, t; 0)= v0 (x, t) , ϕ

(
x, t;

1
n

)
= v(x, t). (20)

By using Taylor theorem we get

ϕ (x, t; q)= v0 (x, t)+
∞∑
m=1

vm (x, t) qm, (21)

where

vm (x, t)= 1
m!

∂mϕ(x, t; q)
∂qm

|q=0. (22)

For the proper chaise of v0 (x, t),n and � the series (13) converges at q= 1
n
. Then

v (x, t)= v0 (x, t)+
∞∑
m=1

vm (x, t)
(
1
n

)m
. (23)

After differentiating Eq. (19) m-times with q and multiplying by
1
m!

and substituting q = 0,

one can get

L[vm (x, t)− kmvm−1 (x, t)]= �Rm
(�vm−1

)
, (24)

where the vectors are defined as

�vm = {v0 (x, t) , v1 (x, t) , . . . , vm (x, t)} . (25)

Eq. (24) reduces after employing inverse LT to

vm (x, t)= kmvm−1 (x, t)+�L−1 [Rm
(�vm−1

)]
, (26)

where

Rm
(�vm−1

)=L [vm−1 (x, t)]−
(
1− km

n

)(
g(x)
s

+ s+ (1− s) α

s
L [f (x, t)]

)

+ s+ (1− s) α

s
L [Rvm−1+Hm−1] , (27)



1020 CMES, 2021, vol.127, no.3

and

km =
⎧⎨
⎩
0, m≤ 1,

n, m> 1.
(28)

Here, Hm is homotopy polynomial and presented as

Hm = 1
m!

[
∂mϕ (x, t; q)

∂qm

]
q=0

and ϕ (x, t;q)= ϕ0 + qϕ1+ q2ϕ2+ . . . . (29)

By the help of Eqs. (26) and (27), we found

vm (x, t)= (km+�) vm−1 (x, t)−
(
1− km

n

)
L−1

(
g(x)
s

+ s+ (1− s)α

s
L [f (x, t)]

)

+�L−1
{
s+ (1− s)α

s
L [Rvm−1+Hm−1]

}
. (30)

By the help of q-HATM, the series solution is

v (x, t)= v0 (x, t)+
∞∑
m=1

vm (x, t)
(
1
n

)m
. (31)

5 Implementation of the q-Homotopy Analysis Transform Method

Consider the system of equation cited in Eq. (13) describing the tumour invasion and
metastasis in CF fractional derivative

CF
0 Dα

t T (x, t)− dT
∂2T
∂x2

+ γ

[
∂T
∂x

∂C
∂x

+ ∂2C
∂x2

]
= 0,

CF
0 Dα

t C (x, t)− ηEC = 0,

CF
0 Dα

t E (x, t)− dE
∂2E
∂x2

−αT +βE = 0. (32)

Applying Laplace transform on Eq. (32) and then with the help of Eq. (13), we get

L [T (x, t)]− 1
s

(
e
−x2

ε

)
− s+ (1− s)α

s
L

{
dT

∂2T
∂x2

− γ

[
∂T
∂x

∂C
∂x

+ ∂2C
∂x2

]}
= 0,

L [C (x, t)]− 1
s

(
1− 0.5e

−x2
ε

)
+ s+ (1− s) α

s
L {ηEC} = 0,

L [E (x, t)]− 1
s

(
0.5e

−x2
ε

)
− s+ (1− s) α

s
L

{
dE

∂2E
∂x2

+αT −βE

}
= 0. (33)
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The non-linear operator N defined as

N1 [ϕ1 (x, t; q) , ϕ2 (x, t; q) , ϕ3 (x, t; q)]=L [ϕ1 (x, t;q)]− 1
s

(
e
−x2

ε

)
− s+ (1− s)α

s
L

{
dT

∂2ϕ1 (x, t; q)
∂x2

−γ

[
∂ϕ1 (x, t; q)

∂x
∂ϕ2 (x, t; q)

∂x
+ ∂2ϕ2 (x, t; q)

∂x2

]}
,

N2 [ϕ1 (x, t; q) , ϕ2 (x, t; q) , ϕ3 (x, t; q)]=L [ϕ2 (x, t; q)]− 1
s

(
1− 0.5e

−x2
ε

)

+ s+ (1− s)α

s
L {ηϕ3 (x, t; q)ϕ2 (x, t; q)} ,

N3 [ϕ1 (x, t; q) , ϕ2 (x, t; q) , ϕ3 (x, t; q)]=L [ϕ3 (x, t; q)]− 1
s

(
0.5e

−x2
ε

)
− s+ (1− s)α

s

×L

{
dE

∂2ϕ3 (x, t; q)
∂x2

+αϕ1 (x, t; q)−βϕ3 (x, t;q)

}
. (34)

The m-th order deformation equation by the projected scheme at H(x, t)= 1 is given by

L [Tm (x, t)− kmTm−1 (x, t)]= �L−1
{
R1,m

[
�Tm−1, �Cm−1, �Em−1

]}
,

L [Cm (x, t)− kmCm−1 (x, t)]= �L−1
{
R2,m

[
�Tm−1, �Cm−1, �Em−1

]}
,

L[Em (x, t)− kmEm−1 (x, t)]= �L−1
{
R3,m

[
�Tm−1, �Cm−1, �Em−1

]}
, (35)

where

R1,m

[
�Tm−1, �Cm−1, �Em−1

]
=L [Tm−1 (x, t)]−

(
1− km

n

)
1
s

(
e
−x2

ε

)

−s+ (1− s) α

s
L

{
dT

∂2Tm−1

∂x2
− γ

[
m−1∑
i=0

∂Ti
∂x

∂Cm−1−i
∂x

+ ∂2Cm−1

∂x2

]}
,

R2,m

[
�Tm−1, �Cm−1, �Em−1

]
=L [Cm−1 (x, t)]−

(
1− km

n

)
1
s

(
1− 0.5e

−x2
ε

)

+s+ (1− s) α

s
L

{
η

m−1∑
i=0

EiCm−1−i

}
,

R3,m

[
�Tm−1, �Cm−1, �Em−1

]
=L [Em−1 (x, t)]−

(
1− km

n

)
1
s

(
0.5e

−x2
ε

)

−s+ (1− s) α

s
L

{
dE

∂2Em−1

∂x2
+αTm−1−βEm−1

}
.

(36)
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On employing inverse LT on Eq. (35), it simplifies to

Tm (x, t)= kmTm−1 (x, t)+�L−1
{
R1,m

[
�Tm−1, �Cm−1, �Em−1

]}
,

Cm (x, t)= kmCm−1 (x, t)+�L−1
{
R2,m

[
�Tm−1, �Cm−1, �Em−1

]}
,

Em (x, t)= kmEm−1 (x, t)+�L−1
{
R3,m

[
�Tm−1, �Cm−1, �Em−1

]}
. (37)

By using T0 (x, t) ,C0 (x, t) and E0 (x, t) and then solving the forgoing equations, we can obtain
the terms of

T (x, t)=T0 (x, t)+
∞∑
m=1

Tm (x, t)
(
1
n

)m
,

C (x, t)=C0 (x, t)+
∞∑
m=1

Cm (x, t)
(
1
n

)m
,

E (x, t)=E0 (x, t)+
∞∑
m=1

Em (x, t)
(
1
n

)m
. (38)

6 Existence and Uniqueness of Solutions

In this section, the existence and uniqueness are illustrated for the considered system with the
assist of fixed-point theory. We consider the Eq. (32) as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

CF
0 Dα

t [T (x, t)]=G1 (x, t,T) ,

CF
0 Dα

t [C (x, t)]=G2 (x, t,C) ,

CF
0 Dα

t [E (x, t)]=G3 (x, t,E) .

(39)

Now, using Eq. (32) and results derived in [53], we obtained⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (x, t)−T (x, 0)= CF
0 Iα

t

{
dT

∂2T
∂x2

− γ

(
∂T
∂x

∂C
∂x

+ ∂2C
∂x2

)}
,

C (x, t)−C (x, 0)= CF
0 Iα

t {−ηEC} ,

E (x, t)−E (x, 0)= CF
0 Iα

t

{
dE

∂2E
∂x2

+αT −βE

}
.

(40)
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Then we have from [73] as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (x, t)−T (x, 0)= 2 (1−α)

M (α)
G1 (x, t,T)+ 2α

(2−α)M (α)

∫ t

0
G1 (x, ζ ,T)dζ ,

C (x, t)−C (x, 0)= 2 (1−α)

M (α)
G2 (x, t,C)+ 2α

(2−α)M (α)

∫ t

0
G2 (x, ζ ,C)dζ ,

E (x, t)−E (x, 0)= 2 (1−α)

M (α)
G3 (x, t,E)+ 2α

(2−α)M (α)

∫ t

0
G3 (x, ζ ,E)dζ .

(41)

Theorem 1. The kernel G1 admits the Lipschitz condition and contraction if 0 ≤(
dTδ2− γ (λ1δ +λ2)

)
< 1 satisfies.

Proof. Let us consider the two functions u and u1 to prove the theorem, then

‖G1 (x, t,T)−G1 (x, t,T1)‖ =
∥∥∥∥∥dT

(
∂2T
∂x2

− ∂2T1

∂x2

)
− γ

(
∂C
∂x

(
∂T
∂x

− ∂T1

∂x

)
+ ∂2C

∂x2

)∥∥∥∥∥
=
∥∥∥∥∥
(
dTδ2− γ

(
∂C
∂x

δ+ ∂2C
∂x2

))
[T (x, t)−T (x, t1)]

∥∥∥∥∥
≤
∥∥∥∥∥dTδ2− γ

(
∂C
∂x

δ + ∂2C
∂x2

)∥∥∥∥∥‖T (x, t)−T (x, t1)‖

≤
(
dTδ2− γ (λ1δ+λ2)

)
‖T (x, t)−T (x, t1)‖ (42)

where
∥∥∥∥∂C

∂x

∥∥∥∥≤ λ2 and

∥∥∥∥∥∂2C
∂2x

∥∥∥∥∥≤ λ3 be the bounded function. Putting η1 = dTδ2 − γ (λ1δ+λ2) in

the above inequality, then we have

‖G1 (x, t,T)−G1 (x, t,T1)‖ ≤ η1 ‖T (x, t)−T (x, t1)‖ . (43)

Eq. (43) provides the Lipschitz condition for G1. Similarly, we can see that if 0 ≤ dTδ2 −
γ (λ1δ+λ2) < 1, then it implies the contraction. Similarly, we can prove⎧⎪⎨
⎪⎩
‖G2 (x, t,C)−G2 (x, t,C1)‖ ≤ η2 ‖C (x, t)−C (x, t1)‖ ,

‖G3 (x, t,E)−G3 (x, t,E1)‖ ≤ η3 ‖E (x, t)−E (x, t1)‖ .
(44)
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By the assist of the above equations, Eq. (41) simplifies to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (x, t)=T (x, 0)+ 2 (1−α)

(2−α)M (α)
G1 (x, t,T)+ 2α

(2−α)M (α)

∫ t

0
G1 (x, ζ ,T)dζ ,

C (x, t)=C (x, 0)+ 2 (1−α)

(2−α)M (α)
G2 (x, t,C)+ 2α

(2−α)M (α)

∫ t

0
G2 (x, ζ ,C)dζ ,

E (x, t)=E (x, 0)+ 2 (1−α)

(2−α)M (α)
G3 (x, t,E)+ 2α

(2−α)M (α)

∫ t

0
G3 (x, ζ ,E)dζ .

(45)

Then we get the recursive form as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tn (x, t)= 2 (1−α)

(2−α)M (α)
G1 (x, t,Tn−1)+ 2α

(2−α)M (α)

∫ t

0
G1 (x, ζ ,Tn−1)dζ ,

Cn (x, t)= 2 (1−α)

(2−α)M (α)
G2 (x, t,Cn−1)+ 2α

(2−α)M (α)

∫ t

0
G2 (x, ζ ,Cn−1)dζ ,

En (x, t)= 2 (1−α)

(2−α)M (α)
G3 (x, t,En−1)+ 2α

(2−α)M (α)

∫ t

0
G3 (x, ζ ,En−1)dζ .

(46)

The associated initial conditions are

T (x, 0)=T0 (x, t) , C (x, 0)=C0 (x, t) and E (x, 0)=E0 (x, t) . (47)

Now, between the terms, the successive difference is defined as

φ1n (x, t)=Tn (x, t)−Tn−1 (x, t)

= 2 (1−α)

(2−α)M (α)
(G1 (x, t,Tn−1)−G1 (x, t,Tn−2))

+ 2α
(2−α)M (α)

∫ t

0
(G1 (x, t,Tn−1)−G1 (x, t,Tn−2))dζ ,

φ2n (x, t)=Cn (x, t)−Cn−1 (x, t)

= 2 (1−α)

(2−α)M (α)
(G2 (x, t,Cn−1)−G2 (x, t,Cn−2))

+ 2α
(2−α)M (α)

∫ t

0
(G2 (x, t,Cn−1)−G1 (x, t,Cn−2))dζ , (48)

φ3n (x, t)=En (x, t)−En−1 (x, t)

= 2 (1−α)

(2−α)M (α)
(G3 (x, t,Tn−1)−G3 (x, t,Tn−2))

+ 2α
(2−α)M (α)

∫ t

0
(G3 (x, t,Tn−1)−G3 (x, t,Tn−2))dζ .
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Notice that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tn (x, t)=
n∑
i=1

φ1i (x, t) ,

Cn (x, t)=
n∑
i=1

φ2i (x, t) ,

En (x, t)=
n∑
i=1

φ3i (x, t) .

(49)

Then we have

‖φ1n (x, t)‖ = ‖Tn (x, t)−Tn−1 (x, t)‖

=
∥∥∥∥ 2 (1−α)

(2−α)M (α)
(G1 (x, t,Tn−1)−G1 (x, t,Tn−2))

+ 2α
(2−α)M (α)

∫ t

0
(G1 (x, t,Tn−1)−G1 (x, t,Tn−2))dζ

∥∥∥∥ , (50)

Application of the triangular inequality, Eq. (50) reduces to

‖φ1n (x, t)‖ = ‖Tn (x, t)−Tn−1 (x, t)‖ = 2 (1−α)

(2−α)M (α)
‖(G1 (x, t,Tn−1)−G1 (x, t,Tn−2))‖

+ 2α
(2−α)M (α)

∥∥∥∥
∫ t

0
(G1 (x, t,Tn−1)−G1 (x, t,Tn−2))dζ

∥∥∥∥ (51)

The Lipschitz condition satisfied by the kernel T1, so, we have

‖φ1n (x, t)‖ = ‖Tn (x, t)−Tn−1 (x, t)‖ ≤ 2 (1−α)

(2−α)M (α)
η1

∥∥φ1(n−1) (x, t)
∥∥

+ 2α
(2−α)M (α)

η1

∫ t

0

∥∥φ1(n−1) (x, t)
∥∥dζ . (52)

Similarly, we have

‖φ2n (x, t)‖ ≤ 2 (1−α)

(2−α)M (α)
η2

∥∥φ2(n−1) (x, t)
∥∥+ 2α

(2−α)M (α)
η2

∫ t

0

∥∥φ2(n−1) (x, ζ )
∥∥dζ ,

‖φ3n (x, t)‖ ≤ 2 (1−α)

(2−α)M (α)
η3

∥∥φ3(n−1) (x, t)
∥∥+ 2α

(2−α)M (α)
η3

∫ t

0

∥∥φ3(n−1) (x, ζ )
∥∥dζ .

(53)

By the help of above result, we state the following theorem:

Theorem 2. If we have specific t0, then the solution for Eq. (32) will exist and unique. Further,
we have

2 (1−α)

(2−α)M (α)
ηi+ 2α

(2−α)M (α)
ηit0 < 1, for i= 1, 2 and 3.
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Proof. Let T (x, t) ,C (x, t) and E (x, t) be the bounded functions admitting the Lipschitz
condition. Then, we get by Eqs. (52) and (53)

‖φ1i (x, t)‖ ≤ ‖Tn (x, 0)‖
[

2 (1−α)

(2−α)M (α)
η1+ 2α

(2−α)M (α)
η1t

]n
,

‖φ2i (x, t)‖ ≤ ‖Cn (x, 0)‖
[

2 (1−α)

(2−α)M (α)
η2+ 2α

(2−α)M (α)
η2t

]n
,

‖φ3i (x, t)‖ ≤ ‖En (x, 0)‖
[

2 (1−α)

(2−α)M (α)
η3+ 2α

(2−α)M (α)
η3t

]n
. (54)

Therefore, for the obtained solutions, continuity and existence are verified. Now, to prove the
Eq. (54) is a solution for Eq. (32), we consider

T (x, t)−T (x, 0)=Tn (x, t)−K1n (x, t) ,C (x, t)−C (x, 0)=Cn (x, t)−K2n (x, t) ,

E (x, t)−E (x, 0)=En (x, t)−K3n (x, t) . (55)

Let us consider

‖K1n (x, t)‖ =
∥∥∥∥ 2 (1−α)

(2−α)M (α)
(G1 (x, t,T)−G1 (x, t,Tn−1))

+ 2α
(2−α)M (α)

∫ t

0
(G1 (x, ζ ,T)−G1 (x, ζ ,Tn−1))dζ

∥∥∥∥
≤ 2 (1−α)

(2−α)M (α)
‖(G1 (x, t,T)−G1 (x, t,Tn−1))‖

+ 2α
(2−α)M (α)

∫ t

0
‖(G1 (x, ζ ,T)−G1 (x, ζ ,Tn−1))‖dζ

≤ 2 (1−α)

(2−α)M (α)
η1 ‖T −Tn−1‖+ 2α

(2−α)M (α)
η1 ‖T −Tn−1‖ t. (56)

This process gives

‖K1n (x, t)‖ ≤
(

2 (1−α)

(2−α)M (α)
+ 2α

(2−α)M (α)
t
)n+1

ηn+1
1 M

Similarly, at t0 we can obtain

‖K1n (x, t)‖ ≤
(

2 (1−α)

(2−α)M (α)
+ 2α

(2−α)M (α)
t0

)n+1

ηn+1
1 M. (57)

As n→∞ and from Eq. (57), ‖K1n (x, t)‖→ 0. Similarly, we can verify for ‖K2n (x, t)‖ and
‖K3n (x, t)‖.
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Next, for the solution of the projected model, we prove the uniqueness. Suppose
T∗ (x, t) ,C∗ (x, t) and E∗ (x, t) be the set of other solutions, then

T (x, t)−T∗ (x, t)= 2 (1−α)

(2−α)M (α)

(G1 (x, t,T)−G1
(
x, t,T∗))

+ 2α
(2−α)M (α)

∫ t

0

(G1 (x, ζ ,T)−G1
(
x, ζ ,T∗))dζ . (58)

Now, employing the norm on the above equation we get

∥∥T (x, t)−T∗ (x, t)
∥∥= ∥∥∥∥ 2 (1−α)

(2−α)M (α)

(G1 (x, t,T)−G1
(
x, t,T∗))

+ 2α
(2−α)M (α)

∫ t

0

(G1 (x, ζ ,T)−G1
(
x, ζ ,T∗))dζ

∥∥∥∥
≤ 2 (1−α)

(2−α)M (α)
η1

∥∥T (x, t)−T∗ (x, t)
∥∥+ 2α

(2−α)M (α)
η1t

∥∥T (x, t)−T∗ (x, t)
∥∥ . (59)

On simplification∥∥T (x, t)−T∗ (x, t)
∥∥(1− 2 (1−α)

(2−α)M (α)
η1− 2α

(2−α)M (α)
η1t

)
≤ 0. (60)

From the above condition, it is clear that T (x, t)=T∗ (x, t), if(
1− 2 (1−α)

(2−α)M (α)
η1− 2α

(2−α)M (α)
η1t

)
≥ 0. (61)

Hence, Eq. (61) proves our required result.

7 Error Analysis of the q-Homotopy Analysis Transform Method

Theorem 3. Let (B [0,T ] ,‖·‖) be a Banach space and suppose vn (x, t) and v (x, t) define in the
that, then the solution defined in Eq. (31) converges to the solution of Eq. (15), if 0< λ1 < 1.

Proof: Let {Sn} be a sequence of partial sum of Eq. (31). Then, we need to prove {Sn} is
Cauchy sequence in (B [0,T ] ,‖·‖). Now, consider

‖Sn+1 (t)−Sn (t)‖ = ‖vn+1 (x, t)‖
≤ λ1 ‖vn (x, t)‖
≤ λ1

2 ‖vn−1 (x, t)‖ ≤ . . .≤ λ1
n+1 ‖v0 (x, t)‖

For every n,m ∈N(m≤ n), now we have

‖Sn−Sm‖ = ‖(Sn−Sn−1)+ (Sn−1 −Sn−2)+ . . .+ (Sm+1−Sm)‖
≤ ‖Sn−Sn−1‖+‖Sn−1−Sn−2‖+ . . .+‖Sm+1−Sm‖

≤
(
λ1

n+λ1
n−1+ . . .+λ1

m+1
)
‖v0‖
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≤ λ1
m+1

(
λ1

n−m−1+λ1
n−m−2+ . . .+λ1 + 1

)
‖v0‖

≤ λ1
m+1

(
1−λ1

n−m

1−λ1

)
‖v0‖ . (62)

But 0< λ1 < 1, therefore limn,m→∞‖Sn−Sm‖ = 0. Hence, {Sn} is the Cauchy sequence.

Theorem 4. The maximum absolute error for the series solution of the Eq. (15) defined in
Eq. (31) is determined as∥∥∥∥∥v (x, t)−

M∑
n=0

vn (x, t)

∥∥∥∥∥≤ λ1
M+1

1−λ1
‖v0 (x, t)‖ .

Proof: By using Eq. (62), we get

‖v (x, t)−Sn‖ = λm+1
1

(
1−λ1

n−m

1−λ1

)
‖v0 (x, t)‖ .

But 0< λ1 < 0⇒ 1−λ1
n−m < 1. Hence, we have∥∥∥∥∥v (x, t)−

M∑
n=0

vn (x, t)

∥∥∥∥∥≤ λ1
M+1

1−λ1
‖v0 (x, t)‖ .

This ends the proof.

Table 1: Description of parameters presented in the projected system [74]

Parameters Descriptions Parameters Value

DE MDE diffusion coefficient ε 0.01
DT Tumour cell random motility coefficient dT , dE 0.001
δ Degradation rate for normal cells η 10
χ Haptotaxis coefficient γ 0.005
μ Production for MDE α 0.1
λ Decay rate for MDE β 0.5

8 Results and Discussion

Here, we demonstrate the future scheme is efficient and reliable and evaluate the approximate
results for the system of partial differential equations representing a model of tumour invasion
and metastasis. In the present study, we find the fourth-order solution to present the nature of
the system. In Tab. 1, we present the specific values of the parameters cited in Fig. 1 captures
the behaviour of q-HATM solution for tumour cells (T), extra cellular matrix (C), and matrix
degrading enzymes (E) in 3D plots by using the Tab. 1 and the combined surface for the three
components at the initial stage (i.e., t = 0) is cited in Fig. 2. By generalizing the system with a
newly nurtured fractional operator, it aids us to capture more interesting consequences associated
with singular kernel. In the present work, we demonstrated the nature of q-HATM results for
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district α both in the change of x and t, and which are presented in Fig. 3. From these curves,
we can observe that, as varying in both time and space with fractional order, the obtained
results show noticeable vicissitudes in the behaviour. Specifically, extra cellular matrix and matrix
degrading enzymes show stimulating behaviour for the change α.

(a) (b)

(c)

Figure 1: Surfaces of q-HATM solution for (a) tumour cells (T), (b) extra cellular matrix
(C) , (c) matrix degrading enzymes (E) at n= 1, α = 1 and �=−1 and using Tab. 1

Figure 2: Surface of q-HATM solution for Eq. (32) at n= 1,α = 1,�=−1 and using Tab. 1
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(a)

(b)

(c)

Figure 3: Nature of obtained solution for (a) tumour cells (T), (b) extra cellular matrix
(C) , (c) matrix degrading enzymes (E) with the change in time (t) for diverse α at n= 1,�=−1
and using Tab. 1



CMES, 2021, vol.127, no.3 1031

(a) (b)

(c)

Figure 4: �-curves drown for q-HATM solution of (a) T (x, t) , (b) C (x, t) , (c) E (x, t) for distinct
α at t= 0.01,x= 0.1,n= 1 and using Tab. 1

The behaviors have been captured for different fractional Brownian motions and standard
motion (α = 1) with the change in �. In Fig. 4, we drowned the �-curves for the obtained solutions
for T (x, t) ,C (x, t) and E (x, t) with the appropriate value of �. The �-curves aid to adjust and
control the convergence province of the achieved results. Fig. 5 presents the 2D plots of an
analytic-approximate solution for Eq. (32) at a distinct time. By the plots we can see that, the
tumour cells and matrix degrading enzymes are also increases while time increases, but the extra
cellular matrix decreases. Moreover, these types of investigation can open the door for analyses
the stimulating models exemplifying deadly disease by incorporating diffusion co-efficient.
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(a) (b)

(c) (d)

Figure 5: Response of obtained solution for the considered model with varying in x at (a) initial
time (t= 0), (b) t= 0.1, (c) t= 0.5 and (d) t= 1 with n= 1,α = 1,�=−1 and Tab. 1

9 Conclusion

In the present study, we analyzed and capture the behaviour of the nonlinear fractional
model of tumour invasion and metastasis by using the fractional operator and efficient analytical
technique. The existences and uniqueness are demonstrated with the assist of a fixed point
hypothesis. The plots captured in the present investigation display the stimulating behaviour and
these can help scholars for some essential and interesting consequence of the hired system. The
present study shows, the phenomena conspicuously be contingent on the time history and the time
instant and, these can be proficiently studied using fundamental perceptions of FC and newly
proposed fractional operator. The investigations of these types of models can provide new notions
to analyze more real-world problems and it opens the door for employing an efficient method to
study complex phenomena associated with science and technology.
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