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Multiple Interacting and Coalescing Semi-Elliptical
Surface Cracks in Fatigue-Part-I: Finite Element Analysis

S. K. Patel1, B. Dattaguru2 and K. Ramachandra1

Abstract: Damage tolerance analysis is essential for evaluating life extension of
aged structures which are in service beyond originally stipulated life. The major
issue for such an analysis for aged aero-engines is the effect of multiple three-
dimensional flaws on the structural integrity. In this paper, an improved modified
virtual crack closure integral technique is applied to investigate the interaction of
twin coplanar semi-elliptical cracks in a finite body under both tension and bend-
ing. The specific configuration analysed and presented here is two semi-elliptical
surface cracks for combinations of various aspect ratios, thickness ratios and com-
bination of interspacing. The interaction effects are studied for both interacting and
coalescing phases as observed to occur during the growth of multiple surface cracks
under fatigue load. Empirical equations are formulated to estimate interaction fac-
tors which could be used in simulation of fatigue crack growth of three-dimensional
multi-site damage.

1 Introduction

In order to use the damage tolerance approach in high technology structures, the
primary requirement is the ability to accurately estimate fatigue life or residual life
in the presence of cracks. Fatigue damage in thick structural parts such as those
in aero-engines normally manifests in the form of surface cracks which may be
through, part through or a cluster of such cracks. For reliable prediction of fatigue
life in the presence of such cracks, it is essential to develop methods for accurate
estimation of stress intensity factors along the crack front and methods to develop
crack shape at various stages of growth due to fatigue loading. For structures which
are being newly designed and built, the primary issue will be damage tolerance in
the presence of cracks which could be missed during non-destructive testing. On
the other hand, for structures which are in service beyond their originally stipulated
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life (aged structures) a primary concern would be damage tolerance in the pres-
ence of multi-site damage. An understanding of fracture behavior of inter-acting
multiple cracks is required to carry out life extension of such structures. These
cracks may interact depending upon their geometry, spatial location, structure ge-
ometry and mode of loading. Interaction between multiple cracks becomes signifi-
cant when they are nearby and it is important to evaluate these effects to accurately
estimate the life of various components.

There are very few solutions for multiple semi-elliptical surface cracks in literature.
Murakami et al [Murakami and Nemat-Nasser (1982)] and Isida [Isida, Yoshida and
Naguch (1990)] have used body force method to estimate stress intensity factors for
two equal semi-elliptical surface cracks in a semi-infinite body. O’Donoghue et al
[Donoghue, Nishioka and Atluri (1986)] used an alternating method in conjunction
with finite element method for multiple surface cracks in pressure vessels. These
studies were limited to interaction phase of multiple fatigue crack growth of sur-
face cracks. Kishimoto et al [Kishimoto, Soboyejo, Smith and Knott (1989)] have
published results showing the variation of stress intensity factor around profiles of
typical coalescing cracks. Soboyejo et al. [Soboyejo, Knott, Walse and Cropper
(1990)] although presented interaction factors for both interacting and coalescing
phases but only for limited cases (aspect ratios a/c=0.83 and 0.67) using strain en-
ergy difference method.

During 80’s modified virtual crack closure integral (MVCCI) technique [Rybicki
and Kanninen (1977); Buchholz (1984); Badari Narayana, Dattaguru, Ramamurthy
and Vijaykumar (1994); Narayana, George, Dattaguru, Ramamurthy and Vijayku-
mar (1994)] was developed extensively for evaluation of Strain Energy Release
Rate (SERR) components in two- dimensional problems with cracks. For three-
dimensional cracks for estimation of strain energy release rates has been improved
by Patel [Patel (2000)] to deal with curved crack front and unequal elements across
the crack front. The accuracy of this method was demonstrated for certain bench-
mark surface flaw problems. Here, this improved MVCCI is used to study inter-
action between three-dimensional cracks in a multiple surface crack situation in a
finite body. These are coplanar semi-elliptical cracks subjected to uniform tension
and pure bending. Many of these developments are reviewed by Kruger [Kruger
(2004)].

There were other attempts to evaluate SIF along the crack front by various work-
ers. Chahardehi et al [Chahardehi and Brennan and Han (2010)] developed an RMS
SIF estimation method to avoid the problems of surface point where the stress state
changes from three-dimensional to biaxial. Xiao and Yan [Xiao and Yan (2007)]
used FRANC3D software developed by Cornell University to arrive at SIF distribu-
tion along the crack front. Lin and Smith [Lin and Smith (1999)] in their two part
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paper used the Newman and Raju [Newman Jr. and Raju (1979)] method of 2-point
plus semi-elliptical growth to develop the crack front as it grows. The work which
is close to the present work is by Kamaya [Kamaya (2008)] and in a two part paper
he developed the crack growth shape in interacting surface cracks and applied it to
map the crack growth in the case of two parallel cracks.

In this first part of the paper finite element analysis of these configurations is pre-
sented along with numerical studies in which stress intensity factors are presented
in terms of basic geometric parameters, parametric angle and separation between
the cracks. The interaction effects are studied for both interacting and coalesc-
ing phases as observed to occur in the growth of multiple surface cracks. This is
a comprehensive study combining both interacting and coalescing phases starting
with two cracks in the close neighborhood and taking them through the stage of
merging into a single crack. Extensive numerical work is performed to study the
effects of various parameters such as aspect ratio, thickness ratio and interspacing
on the interaction factor. Using these solutions, empirical equations are formu-
lated to estimate interaction factors. This facilitated the development of a simple
semi-analytical method to study fatigue crack growth of multiple cracks.

2 Methodology

The modified virtual crack closure integral technique [Badari Narayana, Dattaguru,
Ramamurthy and Vijaykumar (1994); Narayana, George, Dattaguru, Ramamurthy,
and Vijaykumar (1994)] with curvature correction [Patel (2000)] in conjunction
with the finite element method is used in estimating mode-I strain energy release
rate and stress intensity factor for three-dimensional interacting cracks. In this tech-
nique for a three-dimensional solid, the work required to close an infinitesimal area
of virtual crack extension is expressed in terms of nodal forces and displacements
in the elements forming the crack front. Consider the finite element idealisation of
surface crack configuration with the eight noded conventional brick elements along
the crack front as shown in Fig.1, the SERR for GI(p) is given by [Badari Narayana,
Dattaguru, Ramamurthy and Vijaykumar (1994)]

GI(p) =
1

2∆Ak
[4J0C11 +4J1C12 +4J2C13] (1)

where

C11 = a0b0 +a1b1/3+a2b2/3+a3b3/9

C12 = a1b1 +a1b0/3+a2b3/3+a3b2/9
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C13 = a2b2 +a1b3/3+a2b0/3+a3b1/9

and the Jacobian |J|= J0 + J1ξ + J2η where ξ and η are natural coordinates.
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Figure 1: (a): Nodal displacements and forces on a face of kth eight noded brick
element at crack front, (b): Schematic of finite element mesh at crack front

At this stage ∆Ak can be assumed as the area of element ‘b’ behind the crack front
(Fig. 1b). For a sufficiently small element size, one could use the area of element
as virtual crack extension area. The coefficients ai (i=0,1,2,3) can be determined
from the nodal values of displacements (Fig. 1) as follows

a0
a1
a2
a3

=
1
4


1 1 1 1
−1 1 1 −1
−1 −1 1 1
1 −1 1 −1




Uy, j−1
Uy, j

Uy, j+3
Uy, j−2

 (2)

The coefficient bi (i=0,1,2,3) can be obtained from the equivalent nodal forces as
b0
b1
b2
b3

= 4


J0 J1/3 J2/3 0

J1/3 J0/3 0 J2/9
J2/3 0 J0/3 J1/9

0 J2/9 J1/9 J0/9


−1

1 1 1 1
−1 1 1 −1
−1 −1 1 1
1 −1 1 −1




(Fh)y, j
(Fh)y, j+1
(Fh)y, j+2
(Fh)y, j+3

 (3)

Fh refers to forces obtained from the element ‘h’ (Fig. 1b)
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Due to curved crack front, it is convenient to use elements of unequal size across
the crack front. A correction factor for this case was presented by Patel [Patel
(2000)]. The “curvature and area correction factor” to be multiplied in MVCCI
force coefficient matrix in eq. (3) is given by

(Fb)y, j+i = (Fh)y, j+i

[√
∆a2

∆a1

{
1− 1

3
∆a2
R

1+ 1
3

∆a1
R

}]
(4)

where i assumes values equal to 0, 1, 2 and 3.

3 Results and discussions

The presence of multiple cracks is quite common in engineering structures. Under
fatigue loads these cracks may initially grow independently based on their geome-
tries and distance between them. As the cracks come closer they start interacting
and the crack propagation rates increase and eventually cracks linkup to behave as
coalescing crack prior to formation of a single dominant crack. This process of
fatigue crack growth of multiple cracks can be divided into four phases-

1. Isolation period (cracks are sufficiently far away such that interaction factor
is one).

2. Interaction period (when cracks approach each other and are close).

3. Coalescence period (when cracks coalesce).

4. Dominant single crack growth period (the two cracks merge into a single
crack).

Crack growth of individual cracks during the isolation period or that of dominant
crack can be predicted following usual procedure. But during the interaction and
coalescence periods the adjacent cracks influence growth of each other depending
on the change in their stress intensity factors. These cracks may interact depend-
ing upon their geometry, spatial location, structure geometry and mode of loading.
These effects are usually represented by interaction factors. The estimation of in-
teraction factor for interacting and coalescing multiple surface cracks is required to
carry out accurate life prediction of components in presence of three-dimensional
multiple cracks. Here, improved MVCCI[Patel (2000)] (with area and curvature
corrections) is used to handle curvature and unequal areas across the crack front of
interacting and coalescing equal semi-elliptical cracks in a finite body cracks and a
comprehensive stress intensity factor solution is provided for both of them.
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3.0.1 Multiple interacting surface cracks

In the present numerical study, the interaction of twin coplanar semi-elliptical
cracks in a finite body under uniform tension and bending has been studied. The
geometric parameters of interacting surface cracks are shown in Fig. 2. The spe-
cific configurations analysed are two identical semi-elliptical cracks of aspect ra-
tio a/c=0.25, 0.50, 0.75 for various combinations of interspacing (ts) in a plate of
crack-depth ratio a/t=0.25, 0.50, 0.75 and crack-width ratio of 0.2. One of the fi-
nite element models used for estimation of stress intensity factor is shown in Fig.
3(a)-(b). The model consists of 7120 nodes and 5876 linear eight-noded elements
and is only for half the configuration considering symmetry of the case of equal
intersecting cracks.

 Figure 2: Geometric parameters of interacting surface cracks

The SIF solutions of single crack are also evaluated to enable the estimation of in-
teraction factor for the case of multiple cracks. Some of these solutions for single
cracks (a/c=0.25, a/t=0.25-0.75) are shown in Fig. 4. In order to compare the accu-
racy of present solution Newman-Raju [Newman Jr. and Raju (1981)] solutions are
also plotted in Fig. 4. The close agreement between present results and Newman-
Raju solutions demonstrates the reliability of present technique and finite element
models.

The stress intensity factors for multiple semi-elliptical surface cracks for various
geometric parameters a/c, a/t and ts/c were estimated with MVCCI. The normalised
stress intensity factor (KI/

σ
√

πa
Q ) variation with parametric angle for various values

of interspacing (keeping a/c=0.5, a/t=0.25) is shown in Fig. 5(a) and Fig. 5(b)
along with stress intensity factor for a single crack of same geometric parameters
subjected to tension load and bending loads respectively. It is observed that the
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                        (a)                                (b)   

  Figure 3: (a): Finite element model (only half symmetric) of interacting crack
(a/c=0.5, a/t=0.25, ts/c=0.1). (b). Mesh details at crack front

presence of second crack affects significantly the stress intensity factor in the region
approximately 0-30 degrees (150˚-180˚ in Fig. 5a) from the interacting plane. A
marginal increase in stress intensity factor is also observed along the entire crack
front compared to single crack.

The interaction between cracks is represented by interaction factor. Here the in-
teraction factor, γ , is defined as the ratio of stress intensity factor at a point along
the crack front in the presence of another crack in the neighbourhood to that in
the absence of another crack in the neighbourhood. The solution in absence of the
second crack is obtained from Fig. 4. The interaction factors as a function of crack
interspacing (ts/c) and aspect ratio (a/c) at the plate surface (ϕ=180˚) under tension
load are obtained by MVCCI method and are plotted in Fig. 6. The results indicate
that the interaction effect is significant when the cracks are separated by a small
distance. As the distance between two cracks is approximately equal to the length
of a crack (ts/c=0.5), the interaction factor is less than 1.05. It is also observed that
the interaction factor increases with increase in aspect ratio (a/c) but the effect is
relatively less compared to crack interspacing. It is seen that the interaction factors
are only marginally different between tension and bending loading (Fig. 7).

The interaction factors at parametric angle ϕ=0˚, 90˚ and 180˚ for the interacting
semi-elliptical surface cracks under tension loading are listed in Tab. 1. It is seen
from the table that the effect of aspect ratio on the interaction factor is more pro-
nounced at small values of interspacing (ts/c).
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Table
1:

Typicalinteraction
factors,

γ,atellipticalangle
ϕ

=0˚,90˚
and

180˚
as

functions
of

norm
alised

interspacing
(ts /c),

aspectratio
(a/c)and

thickness
ratio

(a/t)fortw
o

equalsym
m

etric
cracks

in
a

finite
plate

undertension
loading.

Interaction
Factor,

γ

a/c♦
0.25

0.50
0.75

a/t
ts /c

A
ngle

0˚
90˚

180˚
0˚

90˚
180˚

0˚
90˚

180˚

0.25

0.05
1.023

1.033
1.175

1.032
1.040

1.216
1.038

1.045
1.272

0.1
1.021

1.029
1.116

1.031
1.037

1.144
1.036

1.041
1.179

0.3
1.017

1.022
1.060

1.024
1.028

1.067
1.028

1.030
1.076

0.5
1.014

1.016
1.037

1.020
1.022

1.044
1.023

1.023
1.047

0.5

0.05
1.061

1.063
1.349

1.081
1.077

1.361
1.088

1.077
1.382

0.1
1.050

1.054
1.252

1.074
1.070

1.267
1.082

1.071
1.275

0.3
1.033

1.031
1.138

1.053
1.048

1.145
1.060

1.051
1.143

0.5
1.022

1.019
1.085

1.040
1.035

1.095
1.047

1.038
1.096

0.75

0.05
1.098

1.085
1.555

1.130
1.088

1.540
1.137

1.082
1.530

0.1
1.086

1.073
1.418

1.119
1.080

1.419
1.127

1.075
1.403

0.3
1.057

1.043
1.191

1.083
1.052

1.215
1.090

1.049
1.212

0.5
1.043

1.031
1.102

1.062
1.037

1.132
1.068

1.035
1.137
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Figure 4: Comparison of SIF solutions for single cracks (a/c=0.25, a/t=0.25-0.75)
with Newman-Raju[17]

3.1 Empirical equation for interacting cracks

The interaction factors, γB, at location ϕ=180˚ evaluated in the present work are
fitted by multivariable least square fit in the following form

γB =a0 +a1 ln(t̄s)+(a2 +a3 ln(t̄s))
(a

c

)
+(a4 +a5 ln(t̄s))

(a
c

)2

+(a6 +a7 ln(t̄s))
(a

t

)
+(a8 +a9 ln(t̄s))

(a
c

)(a
t

) (5)

where t̄s is normalised interspacing i.e. ts/c

The coefficients ai evaluated with least square fit are given in Tab. 2. The interac-
tion factors are estimated for interacting cracks from eq.(5) and compared with the
numerical values (generated in the present work) in Fig. 8. It is clear from the Fig.
8 that eq. (5) represents the numerical data very accurately.
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(a)
  

(b)

Figure 5: (a) Normalised stress intensity factor in mode-I for multiple in-plane
semi-elliptical cracks (a/c=0.5) in a finite solid (a/t= 0.25, c/W=0.20) under tension,
(b) Normalised stress intensity factor in mode-I for multiple in-plane semi-elliptical
cracks (a/c=0.5) in a finite solid (a/t= 0.25, c/W=0.20) under bending

 
Figure 6: Effect of cracks interspacing (ts/c) and aspect ratio (a/c) on interaction
factor under uniform tension (a/t=0.25)

3.2 Multiple Coalescing Surface Cracks

Here, the improved modified virtual crack closure integral method is used to obtain
the stress intensity factor solutions for a wide variety of parameters of coalescing
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Figure 7: Effect of type of loading on interaction factor

  
Figure 8: Correlation between eq.(5) for interaction factors and numerical data
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Table 2: Coefficients ai in eq. (5).

a0=1.013815113 a1=0.0391813193 a2=0.03512327218 a3=-0.07534944455
a4=-0.1699475003 a5=-0.07223897935 a6=-0.1316018562 a7=-0.3447194355
a8=0.3061928307 a9=0.2647192415

coplanar equal semi-elliptical cracks subjected to tension loading. Since the inter-
action factor is only marginally dependent on the type of loading (as clear from
discussion of previous section), the interaction factor for coalescing cracks sub-
jected to bending load is not considered. The definition of geometric parameters of
coalescing crack configuration is given in Fig. 9.
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Figure 9: Definition of geometric parameters of coalescing crack configuration

Following crack configurations (total 54 cases) in a wide body (c/W=0.2) are con-
sidered in the present study:

Aspect Ratio (a/c) = 0.25, 0.50 and 0.75

Thickness Ratio (a/t) = 0.25, 0.50 and 0.75

Interspacing (ts/c) = -0.01, -0.03, -0.05, -0.1, -0.3 and -0.5.

One of the finite element models of coalescing cracks (a/c=0.5, a/t=0.5, ts/c=-0.05)
is shown in Fig. 10. This is also for half the domain considering two equal coalesc-
ing cracks. The models consist of degrees of freedom varying from 8712-11946.
The definition of interaction factor (γ) is same as described in the previous section.

The variation of normalised stress intensity factor along the crack front at aspect ra-
tio of a/t=0.25 and a/c=0.25 is depicted in Fig. 11(a) and similarly same for a/t=0.25
and a/c=0.5 is shown in Fig. 11(b). The parameter varying across these curves is
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                  (a) 

       

                                 (b) 
 

Figure 10: (a) Finite element model of coalescing cracks (a/c=0.5, a/t=0.5, ts/c=-
0.05). (b) Details of mesh at crack tip

interspacing ts/c. It is observed that the SIF is principally influenced in region close
to coalescence region, within 30-60 degrees from the coalescing plane. The SIF at
this plane increases with aspect ratio and this is true for any interspacing. The SIF at
coalescence plane with respect to interspacing ratio does not show any clear trend.
For example, in case of configuration with a/t=0.25 and a/c=0.25 (Fig. 11(a)), the
SIF at this plane first decreases with interspacing ratio upto ts/c=-0.05 then found
to be increasing with increasing absolute value of ts/c. Whereas for configuration
with a/t=0.25 and a/c=0.50 (Fig. 11(b)), the SIF at this plane reduces with increase
in absolute value of interspacing. Soboyejo et al. [ Soboyejo, Knott, Walse and
Cropper (1990)] defined the interaction factor as the ratio of stress intensity factor
at coalescence plane (location ‘B’) to that of SIF at location ‘C’ in case of single
crack. However, for locations A and C the interaction factor was evaluated as the
ratio of SIF at the same location with and without neighboring crack.

The variation of interaction factor γB with interspacing for various aspect ratios is
shown in Fig. 12. For all the cases except a/c=0.25 the interaction factor reduces
with increase in interspacing distance i.e. during crack coalescence the stress inten-
sity factor is maximum at the beginning of coalescence. The interaction factor of
a/c=0.25 first decreases for increase in interspacing (upto ts/c=-0.05) but thereafter
it increases with interspacing. This happens since the interaction factor is defined
relative to SIF at point ‘C’ i.e. at parametric angle ϕ=180˚. But as it is observed
that the stress intensity factor is a function of parametric angle for elliptical crack,
the base SIF (of point ‘C’) used for evaluation of interaction factor (as used by
Soboyejo[Soboyejo, Knott, Walse and Cropper (1990)]) does not provide true esti-
mate of amplification on SIF. Thus logically speaking, the interaction factor should
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(a)

  

(b)

Figure 11: (a) Variation of SIF distribution for coalescing semi-elliptical cracks
(a/t=0.25, a/c=0.25) with crack separation distance (ts/c). (b) Variation of SIF dis-
tribution for coalescing semi-elliptical cracks (a/t=0.25, a/c=0.50) with crack sepa-
ration distance (ts/c)

be defined based on SIF of single crack in same body at the same parametric angle
of coalescing plane. We call this as absolute interaction factor and this is plotted
with interspacing for various aspect ratios in Fig. 13 (a)-(c). It is evident from Fig.
13 (a)-(c) that the behavior of absolute interaction factor is monotonic at coalescing
plane.

It is also observed that the interaction factor is a strong function of aspect ratio and
thickness ratio, and increases with increase in both the parameters. For locations
‘A’ and ‘C’ the interaction factors are found to be small compared to point ‘B’.
The absolute interaction factors for various aspect ratios, thickness ratios and inter-
spacing are given in Tab. 3 which can directly be used for crack growth simulation.

3.3 Empirical equation for coalescing cracks

It can be observed form the results of coalescing cracks that the interaction factor
at a location is a function of interspacing (ts), aspect ratio (a/c) and thickness ra-
tio (a/t). Thus, first least square fit technique is applied and interaction factor was
obtained as a function of thickness and aspect ratios. Subsequently, effect of inter-
spacing is accounted for by another parametric equation. The interaction factor for
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Figure 12: Interaction factors for coalescing cracks for various values of aspect
ratio for thickness ratio (a/t)=0.25

coalescing crack at location ‘B’ is written as

γB = ftsg
[

b0 +b1

(a
c

)
+b2

(a
t

)
+b3

(a
c

)(a
t

)
+b4

(a
c

)2(a
t

)
+b5

(a
c

)(a
t

)2
+b6

(a
c

)2(a
t

)2
]

(6)

where g is a ‘fine tune’ parameter which should have a limiting values of interaction
factor (γ=1) for various aspect ratios and thickness ratios at t̄s=2 (represents single
crack) given as

g = 1−0.12
(a

t
−0.25

)
(t̄s)

p
{

1+0.3
(a

c

)(a
t

)
−0.6

(a
c

)2(a
t

)2
}

where p = 1+ a
c + a

t .

It was observed that the interaction factor changes rapidly with ts upto t̄s=0.1, sub-
sequently, its variation is nearly linear. Thus, the least square fit has been separated
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(a)

  

(b)
  

(c)

Figure 13: (a) Absolute interaction factors for coalescing cracks for various values
of aspect ratio for thickness ratio (a/t)=0.25. (b) Absolute interaction factors for
coalescing cracks for various values of aspect ratio for thickness ratio (a/t)=0.5. (c)
Absolute interaction factors for coalescing cracks for various values of aspect ratio
for thickness ratio (a/t)=0.75

in two parts. The first part is valid upto t̄s<0.1 and fitted with fourth order polyno-
mial whereas the second part is valid in the range of t̄s=0.1 to 2.0 and fitted with
second order polynomial. It can be observed, the definition of interaction factor that
the interaction approaches to unity at all locations (A, B and C) as t̄s approaches 2.
Thus, this limiting value of γB equal to 1.0 is used at t̄s=2.0 at various aspect ratios
of cracks. The effect of thickness on the interaction factor is accounted for by the
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Table 3: Absolute interaction factors at positions B, A, and C.

a/c ts/c a/t =0.25 a/t=0.50 a/t=0.75
γB γA(90) γC(0) γB γA γC γB γA γC

0.25 -0.01 2.376 1.039 1.025 2.775 1.075 1.053 3.302 1.085 1.070
-0.03 2.075 1.038 1.023 2.450 1.079 1.056 2.997 1.098 1.095
-0.05 1.914 1.040 1.023 2.274 1.085 1.060 2.811 1.107 1.105
-0.10 1.835 1.037 1.022 2.174 1.085 1.058 2.641 1.103 1.094
-0.30 1.660 1.050 1.028 1.989 1.110 1.075 2.476 1.154 1.142
-0.50 1.515 1.048 1.020 1.783 1.114 1.071 2.122 1.159 1.127

0.50 -0.01 3.214 1.049 1.039 3.638 1.095 1.091 4.511 1.190 1.228
-0.03 2.745 1.052 1.040 3.128 1.101 1.097 3.930 1.200 1.246
-0.05 2.531 1.054 1.040 2.890 1.106 1.101 3.648 1.209 1.254
-0.10 2.442 1.057 1.040 2.800 1.115 1.107 3.534 1.222 1.265
-0.30 2.218 1.075 1.047 2.549 1.148 1.130 3.258 1.264 1.326
-0.50 1.950 1.082 1.041 2.212 1.160 1.132 2.758 1.296 1.321

0.75 -0.01 3.849 1.061 1.047 4.225 1.100 1.109 4.771 1.103 1.174
-0.03 3.255 1.066 1.049 3.586 1.109 1.116 4.085 1.115 1.190
-0.05 3.010 1.068 1.051 3.325 1.115 1.121 3.812 1.122 1.202
-0.10 2.927 1.076 1.051 3.244 1.129 1.132 3.727 1.140 1.222
-0.30 2.699 1.104 1.061 2.993 1.165 1.156 3.447 1.189 1.269
-0.50 2.352 1.115 1.058 2.586 1.183 1.161 2.929 1.213 1.273

terms in the bracket of eq.(6) and the effect of interspacing (t̄s) is represented as
follows:

fts =
(
a0 +a1t̄+s a2t̄2

s +a3t̄3
s +a4t̄4

s
)
+
(
a5 +a6t̄+s a7t̄2

s +a8t̄3
s +a9t̄4

s
)(a

c

)
+
(
a10 +a11t̄+s a12t̄2

s +a13t̄3
s +a14t̄4

s
)(a

c

)2

For t̄s<0.1.

and

fts =
(
a15 +a16t̄+s a17t̄2

s
)
+
(
a18 +a19t̄+s a20t̄2

s
)(a

c

)
+
(
a21 +a22t̄+s a23t̄2

s
)(a

c

)2
(7)

For 0.1≤t̄s≤2.
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where positive and normalized value of interspacing i.e. t̄s has been considered.
The coefficients in eq.(6) are determined for locations ‘B’ and given in Tab. 4.
Eq.(6) is generally accurate within 2%, however, at the limiting values of inter-
spacing, t̄s, (equal to 2) the error is found to be within 6%.

Table 4: Coefficients for location ‘B’ in eq.(6).

Coefficients ai
a0=1.450189381 a1=-12.55647713 a2=205.9764320 a3=-1444.376452
a4=2938.526285 a5=5.003239267 a6=-49.7539799 a7=220.0115025
a8=1546.596142 a9=-6042.25784 a10=-1.526420392 a11=-13.33773731
a12=840.5565687 a13=-8487.303625 a14=19557.89619 a15=1.148717900

a16=-0.3174026763 a17=0.1217113293 a18=3.502034045 a19=-3.372128914
a20=0.8100193548 a21=-1.211662752 a22=2.300021769 a23=-0.8470418449

Coefficients bi
b0=0.91505583 b1=0.07219005 B2=0.48590438
b3=-2.03341992 b4=1.83890792 B5=4.33947915 B6=-4.80896730

The interaction factors are estimated from eq.(6) for various thickness ratios and
interspacings for coalescing cracks and compared with numerical values (Tab. 2)
in Fig. 14. It is clear from the Fig. 14 that eq. (6) represents the numerical data
very accurately.

4 Concluding Remarks

Improved MVCCI technique was utilized to study the interaction effects between
two surface cracks in a finite body under uniform tension and pure bending. The
study is of great significance for problems of multisite damage in aging structures.
The effect of geometric parameters on the interaction factor is presented. It is found
that the interaction factor significantly increases with aspect ratio but the type of
loading i.e. tension or bending has marginal effect on the interaction factor. As
expected, the results also indicate that the interaction effect is significant when the
cracks are separated by a small distance. As the distance between two cracks is
increased to approximately equal to the length of a crack (ts/c=0.5), the interaction
factor is negligible.

The numerically evaluated stress intensity factors are also presented for coalescing
phase of multiple cracks. For coalescing cracks the interaction factor as defined
earlier by Soboyejo et al [Soboyejo, Knott, Walse and Cropper (1990)] does not
provide a clear picture of behavior of coalescing cracks with respect to interspacing.
Thus a different definition of interaction factor called absolute interaction factor
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Figure 14: Variation of interaction factor with interspacing, a comparison between
the numerical values and eq. (6)

is proposed. It is demonstrated that the absolute interaction factor explains the
behavior of coalescing cracks in a better way. The absolute interaction factor is
found to be a monotonic function of interspacing. It is also observed in coalescing
phase too that the interaction factor increases with the thickness ratio and aspect
ratio. This clearly shows that the interaction factor of multiple cracks in infinite
body can not directly be used in life prediction of finite (real) bodies.

Using the finite element estimates of interaction factors for twin coplanar semi-
elliptical cracks, empirical equations are formulated for interacting and coalescing
cracks to facilitate their direct use in the fatigue crack growth simulation and crack
shape mapping of multiple cracks in a finite body.
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