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Determination of Interior Point Solutions for 3D Generally
Anisotropic Elastic Solids by the Boundary Element

Method

C. L. Tan1 and Y.C. Shiah2

Abstract: Using newly derived explicit algebraic forms of the first- and second-
order derivatives of the Green’s function, interior point solutions for the displace-
ments and stresses in 3D generally anisotropic elastic bodies are obtained using the
boundary element method (BEM). The approach, which follows the same vein as in
BEM for isotropic elasticity via Somigliana’s identities, has not been successfully
achieved previously in the literature due to the analytical difficulties involved with
using the non-explicit forms of the Green’s function. The veracity of the formula-
tion and implementation is demonstrated by some examples.

Keywords: Anisotropic elasticity, Stroh’s eigenvalues, boundary element method,
Somigliana’s identity.

1 Introduction

In the boundary element method (BEM), interior point solutions for the displace-
ments and the stresses at an interior point of an elastic body are obtained from
the numerical evaluation of the Somigliana’s identities. It is carried out as a sec-
ondary exercise in the BEM analysis, after the boundary integral equation (BIE)
has been solved for all the unknown displacements and tractions on the surface of
the domain. In the integrals of these identities, the integrands contain terms with
up to second- order derivatives of the Green’s function for the displacements of the
elastic problem. Although the BEM is a boundary solution technique, the displace-
ments and stresses at interior points of the solid are sometimes required, e.g., for
calculating J- or M-integrals in fracture mechanics analysis.

The Green’s function, or fundamental solution, for displacements and that for trac-
tions are necessary items for the direct formulation of the BEM for elastic stress
analysis. For 3D generally anisotropic solids, Lifschitz and Rozentsweig (1947)
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have presented the Green’s function for displacements in 1947. The numerical
evaluation of these fundamental solutions has remained a subject of investigation
over the past few decades in the development of the BEM to treat such bodies; see,
e.g. Wilson and Cruse (1978); Sales and Gray (1998); Tonon et al (2001); Phan
et al (2004); Wang and Denda (2007); Tan et al (2009). This is because of their
mathematical complexity. In the BEM formulation presented by the present au-
thors recently, Tan et al (2009), the fundamental solutions employed in the BIE are
expressed in algebraic, real-variable explicit forms, unlike those used previously by
the other authors. They were derived by Ting and Lee (1997) for displacements,
and Lee (2003) for their first derivatives, respectively; the latter being utilized for
the derivation of the traction solution. These Green’s functions were used for the
first time in a BEM formulation. Because of their algebraic forms, they can be nu-
merically evaluated in a fairly straightforward manner. Their implementation into
an existing BEM code which had been developed for 3D isotropic elastostatics was
also carried out without any difficulty. It was, however, discovered that a signifi-
cant proportion of the computational effort is spent on evaluating high-order tensor
terms which appear in Lee’s (2003) solution. Lee (2009) re-examined her solution
and showed how the first derivatives of the displacement Green’s function can be
obtained without introducing the high-order tensors. This is achieved by carrying
out the partial differentiation in a spherical coordinate system as an intermediate
step; the explicit expressions are, however, presented only for the special case of
transverse isotropy in (2009). Following this development, the present authors de-
rived the corresponding fully explicit forms of the solution for the displacement
first derivatives in general anisotropy. Their validity and superior efficiency of us-
ing these alternative fully explicit forms of the fundamental solutions in the BIE is
demonstrated very recently in Shiah et al (2008).

Of significance to note too about Lee’s (2009) revised approach is that it also lends
itself more readily to obtaining higher order derivatives of the Green’s function for
the displacements, again without the need to introduce high-order tensor quantities.
The present authors have further derived the expressions, in fully explicit algebraic
forms, of the second derivatives of the displacement fundamental solution Shiah el
al (2011). This enables the implementation of the BEM to obtain the displacements
and stresses at an interior point of a 3D generally anisotropic solid as well; it is the
focus of the present paper. To the authors’ knowledge, this development has never
been reported previously in the literature. Some examples are presented in which
the numerical solutions obtained are compared with those obtained using the FEM
to demonstrate their validity.
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2 The BEM for 3D Anisotropic Elasticity

In BEM for linear elasticity, the boundary integral equation (BIE) is an integral
constraint equation relating displacements, ui, to the tractions, ti, on the surface of
the domain. It may be written as follows,

Ci jui(P)+ ∫
S

ui(Q)Ti j(P,Q)dS = ∫
S

ti(Q)Ui j(P,Q)dS + ∫
Ω

Xi(q)Ui j(P,q)dΩ (1)

where the leading coefficient Ci j(P) depends upon the local geometry of S at the
source point P; Ui j(P,Q)≡ U, and Ti j(P,Q) represent, the fundamental solutions of
displacements and tractions, respectively, in the xi-direction at the field point Q due
to a unit load in the x j-direction at P in a homogeneous infinite body. Once eq. (1)
has been solved for all the unknown displacements and tractions on the surface S
of the solution domain, the displacement at an interior point p of the body can be
determined from Somigliana’s identity, viz,

Ci jui(P)+ ∫
S

ui(Q)Ti j(P,Q)dS = ∫
S

ti(Q)Ui j(P,Q)dS + ∫
Ω

Xi(q)Ui j(P,q)dΩ (2)

The corresponding stresses may be obtained using the generalized Hooke’s law:

σi j = Ci jmn (um,n +un,m)/2 (3)

In eq. (3), the 1st-order derivatives of displacements are obtained by differentiating
eq. (2), viz.

Ci jui(P)+
∫
S

ui(Q)Ti j(P,Q)dS =
∫
S

ti(Q)Ui j(P,Q)dS +
∫
Ω

Xi(q)Ui j(P,q)dΩ (4)

The Green’s function U employed here is that derived by Ting and Lee (1997),
which can be expressed in simple closed-form as

U(x) =
1

4πr
H[x] =

1
|T|

4

∑
n = 0

qnΓ̂ΓΓ
(n)

(5)

where r is the radial distance between the load and field point, and, H[x], is the
Barnett-Lothe tensor. The expressions for|T|, Γ̂ΓΓ

(n)
and qn in eq. (5) may be found

in [7, 8]. The numerical evaluation of Ti j that is required in eq. (1) and eq. (2)
may be carried out using the relationship between tractions and stresses, and the
generalized Hooke’s law, namely,

T =
i j σ

( j)
ik Nk, (6)
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σ
( j)
ik = Cikmn (Um j,n +Un j,m)/2 (7)

In eq. (6), σ
( j)
ik are the stresses at a field point due to a unit concentrated force

applied in the x j direction at the source point, and Nk are components of the outward
normal vector of the surface at Q. From the above, it is clear that the 1st-order
derivatives of U must first be obtained in order to evaluate the fundamental solution
for stresses or tractions. Also, from eqs.(4)–(6), the second order derivatives of U
are required as well.

Instead of carrying out the differentiation of the Green’s function directly in the
Cartesian coordinate system, the partial derivatives can be obtained in a spherical
coordinate system as an intermediate step and the chain rule then employed, as
follows

Ui j,l =
∂Ui j

∂ r
∂ r
∂xl

+
∂Ui j

∂θ

∂θ

∂xl
+

∂Ui j

∂φ

∂φ

∂xl
(8)

Ui j,kl =
∂Ui j,k

∂ r
∂ r
∂xl

+
∂Ui j,k

∂θ

∂θ

∂xl
+

∂Ui j,k

∂φ

∂φ

∂xl
(9)

In doing so, Lee (2009) shows that no high order tensor quantities need to be intro-
duced. The partial derivatives above can be shown to be expressed as:

∂Ui j

∂ r
=
−Ui j

r
,

∂Ui j

∂θ
=

I′i j− J′i j

4π2r
,

∂Ui j

∂ϕ
=

I”
i j− J”

i j

4π2r
(10)

∂Ui j,k

∂ r
=

∂ 2Ui j

∂ r2
∂ r
∂xk

+
∂Ui j

∂ r
∂

∂ r

(
∂ r
∂xk

)
+

∂ 2Ui j

∂ r∂θ

∂θ

∂xk
+

∂Ui j

∂θ

∂

∂ r

(
∂θ

∂xk

)
+

∂ 2Ui j

∂ r∂ϕ

∂ϕ

∂xk
+

∂Ui j

∂ϕ

∂

∂ r

(
∂ϕ

∂xk

)
,

∂Ui j,k

∂θ
=

∂ 2Ui j

∂ r∂θ

∂ r
∂xk

+
∂Ui j

∂ r
∂

∂θ

(
∂ r
∂xk

)
+

∂ 2Ui j

∂θ 2
∂θ

∂xk
+

∂Ui j

∂θ

∂

∂θ

(
∂θ

∂xk

)
+

∂ 2Ui j

∂θ∂ϕ

∂ϕ

∂xk
+

∂Ui j

∂ϕ

∂

∂θ

(
∂ϕ

∂xk

)
,

∂Ui j,k

∂ϕ
=

∂ 2Ui j

∂ r∂ϕ

∂ r
∂xk

+
∂Ui j

∂ r
∂

∂ϕ

(
∂ r
∂xk

)
+

∂ 2Ui j

∂θ∂ϕ

∂θ

∂xk
+

∂Ui j

∂θ

∂

∂ϕ

(
∂θ

∂xk

)
+

∂ 2Ui j

∂ϕ2
∂ϕ

∂xk
+

∂Ui j

∂ϕ

∂

∂ϕ

(
∂ϕ

∂xk

)
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∂ 2Ui j

∂ r2 =
Ui j

r2 −
∂Ui j

∂ r
,

∂ 2Ui j

∂ r∂θ
=− 1

r2
∂Ui j

∂θ
,

∂ 2Ui j

∂ r∂φ
=− 1

r2
∂Ui j

∂φ

∂ 2Ui j

∂θ 2 =
1

4π2r

(
∂ I′i j

∂θ
−

∂J′i j

∂θ

)
,

∂ 2Ui j

∂ϕ2 =
1

4π2r

(
∂ I”i j

∂ϕ
−

∂J”i j

∂ϕ

)
,

∂ 2Ui j

∂θ∂ϕ
=

1
4π2r

(
∂ I”i j

∂θ
−

∂J”i j

∂θ

)
(11)

In eqs.(10)-(12), I′i j, I′′i j, J′i j, J′′i j can be reduced to relatively direct, algebraic expres-
sions in terms of the Stroh’s eigenvalues. The explicit algebraic expressions for the
component terms of Ui j,l and Ui j,kl above have been derived very recently by the
present authors Shiah el al (2011). As they are fairly elaborate, they will not be
presented here because of space limitations.

3 Numerical Results

Two examples are presented below to demonstrate the veracity of the BEM formu-
lation developed for obtaining the displacements and stresses at an interior point
of a generally anisotropic solid. The BEM solutions for the surface points of these
two problems have been obtained and discussed in a previous study [7]; the focus
here is on the solutions for the interior points only.

Example (A): The first example is a rectangular alumina (Al2O3) crystal prism sub-
jected to a uniform shear stress τ23= τo= 1 on four of its sides, as shown in Fig. 1(a).
The exact analytical solution for the displacements in the body of this problem can
be found in Lekhnitskii (1963). For the purpose of illustration, the displacements
and all the stress components are obtained for five arbitrarily selected points inside
the prism. The stiffness coefficients for the Al2O3 crystal are taken to be as follows
Huntington (1968):

C11= 465 GPa; C33= 563 GPa; C44= 233 GPa; C12= 124 GPa;

C13= 117 GPa; C14= 101 GPa.

All the elastic stiffness coefficients defined are arranged in accordance with the
generalized stress/strain relation:

(σ11 σ22 σ33 σ23 σ13 σ12)
T = C (ε11 ε22 ε33 γ23 γ13 γ12)

T . (12)

Figure 1(b) shows the BEM mesh employed; it has 10 quadratic boundary elements
with a total of 32 nodes. The comparison of all the BEM-computed displacements
and stresses with analytical solutions for the sample internal points is shown in
Table 1. The agreement of the two corresponding sets of results can be seen to be
excellent.
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Table
1:D

isplacem
ents

and
stresses

atinternalpoints
–

E
xam

ple
(A

).

Int.point
coord.

(0,0.5,0.5)
(0,0.25,0.5)

(0,0,0.5)
(0,-0.25,0.5)

(0,-0.5,0.5)

u
1

B
E

M
-0.4E

-09
-0.8E

-09
-0.7E

-0
-0.1E

-09
0.8E

-09
E

xact
0

0
0

0
0

u
2

B
E

M
0.85522E

-03
0.42762E

-03
0.19500E

-07
-0.42758E

-03
-0.85518E

-03
E

xact
0.85519E

-03
0.42760E

-03
0

-0.42760E
-03

-0.85519E
-03

u
3

B
E

M
0.28874E

-02
0.14437E

-02
0.17400E

-07
-0.14437E

-02
-0.28874E

-02
E

xact
0.28873E

-02
0.14437E

-02
0

-0.14437E
-02

-0.28873E
-02

σ
11

B
E

M
-0.61539E

-05
-0.34317E

-05
-0.49309E

-05
-0.25667E

-05
-0.47013E

-05
E

xact
0

0
0

0
0

σ
22

B
E

M
0.34529E

-05
0.38731E

-05
0.42609E

-05
0.48083E

-05
0.41356E

-05
E

xact
0

0
0

0
0

σ
33

B
E

M
-0.16045E

-05
-0.8133E

-06
-0.7556E

-06
-0.23678E

-05
-0.13421E

-05
E

xact
0

0
0

0
0

σ
12

B
E

M
-0.39420E

-06
0.11470E

-06
-0.10000E

-06
-0.18560E

-06
0.27940E

-06
E

xact
0

0
0

0
0

σ
23

B
E

M
1.00000

1.00000
0.999998

1.000000
1.00000

E
xact

1
1

1
1

1

σ
13

B
E

M
-0.15336E

-05
-0.82960E

-06
-0.66590E

-06
-0.49110E

-06
0.10180E

-06
E

xact
0

0
0

0
0
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r r rθ θ φ φ θ φ θ θθ π φ π π
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eigenvalues. The explicit algebraic expressions for the component terms of Uij,l and Uij,kl above have been derived very 
recently by the present authors [12].  As they are fairly elaborate, they will not be presented here because of space limitations. 
 

Numerical Results 
Two examples are presented below to demonstrate the veracity of the BEM formulation developed for obtaining the 
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Figure 1:  (a) A rectangular prism under uniform shear stress - Example (A); (b) BEM mesh: 10 elements, 32 nodes. 
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Figure 1: (a) A rectangular prism under uniform shear stress - Example (A); (b)
BEM mesh: 10 elements, 32 nodes.

Example (B): The second example is a cylindrical bar with a spherical cavity (see
Fig. 3a), fixed at one end and subjected to a uniform unit tensile load at the other
end. The case considered is for a/R = 0.4, H/R = 2. The resultant normalized
displacements and the normalized von Mises equivalent stress, σeq/σo, at a series of
points around the circle at radius r = 0.75R are obtained here. The material is taken
to be a niobium (Nb) crystal, a cubic material with the elastic stiffness constants
(Huntington (1968)): C∗11= 246 GPa; C∗12= 134 GPa; C∗44= 28.7 GPa, where the
asterisks denote properties defined in the directions of the material principal axes.
For the analysis, these axes are deliberately rotated successively about the x1-axis,
x2-axis, and x3-axis counterclockwise by 15o, 30o, and 45o, respectively, which
yields the following fully populated stiffness matrix:

C =



218.76 153.52 141.72 - 10.01 0.40 7.21
153.52 209.89 150.59 - 2.21 0.96 - 0.18
141.72 150.59 221.69 12.22 - 1.36 - 7.04
- 10.01 - 2.21 12.22 45.29 - 7.04 0.96
0.40 0.96 - 1.36 - 7.0436.42 - 10.01
7.21 - 0.18 - 7.04 0.96 - 10.01 48.22

GPa,

This has the characteristics of a generally anisotropic solid, thereby serving to
demonstrate the capability of the algorithm to treat such solids. To verify the results
obtained, the problem is also analyzed using the commercial finite element method
(FEM) code, ANSYS. The mesh designs employed in BEM and FEM are shown
in Fig. 3(b) and (c), respectively. Table 2 lists the results obtained using the two
techniques. It can be seen that they are, again, in very good agreement.
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Figure 3: (a) A cylinder with a spherical cavity under remote tension - Example (B); (b) BEM mesh employed – 88 quadratic 

elements, 228 nodes; (c) FEM mesh employed with ANSYS – 2940 SOLID186 elements with 6826 nodes. 
 
 

Table 2: Resultant displacements and normalized von Mises equivalent stress, σeq/σo, at points on the plane of the equator of 
the spherical cavity- Example (B). 

 

 2 2 2
1 2 3u u uδ = + + (*10-9) /eq oσ σ  

θ FEM BEM |% Diff.| FEM BEM |% Diff.| 

00 0.1104 0.1078 2.39 1.1268 1.1218 0.44 

450 0.1236 0.1209 2.16 1.1168 1.1080 0.79 

900 0.1362 0.1335 1.99 1.0919 1.0844 0.69 

1350 0.1381 0.1351 2.15 1.0799 1.0737 0.58 

1800 0.1203 0.1175 2.30 1.1192 1.1107 0.76 

2250 0.1040 0.1011 2.80 1.1172 1.1098 0.64 

2700 0.1033 0.1003 2.91 1.1054 1.0998 0.50 

3150 0.1064 0.1036 2.63 1.0824 1.0781 0.39 
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σo= 1  
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2H 
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Figure 2: (a) A cylinder with a spherical cavity under remote tension - Example
(B); (b) BEM mesh employed – 88 quadratic elements, 228 nodes; (c) FEM mesh
employed with ANSYS – 2940 SOLID186 elements with 6826 nodes.

Table 2: Resultant displacements and normalized von Mises equivalent stress,
σeq/σo, at points on the plane of the equator of the spherical cavity- Example (B).

δ =
√

u2
1 +u2

2 +u2
3(*10−9) σeq/σo

θ FEM BEM |%Diff.| FEM BEM |%Diff.|
00 0.1104 0.1078 2.39 1.1268 1.1218 0.44
450 0.1236 0.1209 2.16 1.1168 1.1080 0.79
900 0.1362 0.1335 1.99 1.0919 1.0844 0.69
1350 0.1381 0.1351 2.15 1.0799 1.0737 0.58
1800 0.1203 0.1175 2.30 1.1192 1.1107 0.76
2250 0.1040 0.1011 2.80 1.1172 1.1098 0.64
2700 0.1033 0.1003 2.91 1.1054 1.0998 0.50
3150 0.1064 0.1036 2.63 1.0824 1.0781 0.39

4 Conclusions

Following an approach suggested by Lee (2009) very recently, first- and second-
order derivatives of the Green’s function for a 3D generally anisotropic solid have
been successfully derived in fully explicit, algebraic forms in terms of Stroh’s
eigenvalues. This has enabled the numerical implementation of Somigliana’s iden-
tities for obtaining displacements and stresses at interior points of an anisotropic
solid in BEM, in the same vein as has been well established in isotropic elastic-
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ity. It has never been previously achieved in the literature using other forms of
the Green’s function because of the mathematical complexity. In addition, there
are no very high order tensor quantities being introduced that may incur dispropor-
tionate computing effort to evaluate. Two example problems have been presented
to demonstrate the veracity and successful implementation of the formulations de-
rived.
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