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Simulation of Newtonian-Fluid Flows with C2-Continuous
Two-Node Integrated-RBF Elements
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Abstract: In this paper, the C2-continuous control-volume method based on
2-node integrated radial basis function elements (IRBFEs) [CMES, vol.72, no.4,
pp.299-334, 2011] are further developed for the simulation of incompressible vis-
cous flows in two dimensions. Emphasis is placed on (i) the 2-node IRBFE discreti-
sation of the stream function-vorticity formulation on Cartesian grids; and (ii) the
development of a high order upwind scheme based on 2-node IRBFEs for the case
of simulating convection-dominant flows. High levels of accuracy and efficiency
of the present method are demonstrated by solving the lid-driven cavity problem.
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1 Introduction

Cartesian-grid-based control-volume methods can be very economical owing to
the fact that generating a grid and integrating the governing equations are low-cost.
The approximations for the dependent variables and their spatial derivatives can be
constructed globally on the whole grid or locally on small segments of the grid.
An example of local approximation schemes is the standard control-volume (CV)
method wherein the fluxes are estimated by a linear variation between two grid
points, e.g. Patankar (1980). The use of two grid points allows for the consistency
of the fluxes at CV faces - one of the four basic rules to guarantee a physically
realistic solution (Patankar (1980)). With two-node-based local approximations,
Cartesian-grid-based methods typically produce solutions which are continuous for
the fields but not for their partial derivatives, i.e. C0 continuity. The grid thus needs
to be sufficiently fine to mitigate the effects of discontinuity of partial derivatives.

The Navier-Stokes (N-S) equations typically involve convection and diffusion terms.
At high values of the Reynold number, the convection term is dominant and the nu-
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merical simulation of the N-S equations becomes challenging. Various treatments
for the convection term have been proposed in the literature. Those which take the
influence of the upstream information of the flow into account, e.g. the upwind
differencing and QUICK schemes, are known to provide a very stable solution. To
maintain a high level of accuracy, an effective way is to employ high-order upwind
schemes with the deffered-correction strategy.

Recently, a local high order approximant based on 2-node elements and integrated
RBFs (IRBFs) for solving second-order elliptic problems in the CV framework
has been proposed by An-Vo, Mai-Duy, and Tran-Cong (2011). It was shown that
such elements lead to a C2-continuous solution rather than the usual C0-continuous
solution. In this study, these C2-continuous elements are extended to the simulation
of viscous flows. In addition, high-order upwind treatments are incorporated in the
proposed scheme to deal with convection-dominant flows.

The remainder of the paper is organised as follows. Brief reviews of the governing
equations and integrated RBF elements are given in Section 2 and 3, respectively.
Section 4 describes the proposed technique. The lid-driven cavity flow is presented
in Section 5, followed by conclusions in Section 6.

2 Control-volume formulation

In this study, the method of modified dynamics or false transients is applied to
obtain the structure of a steady flow. The N-S equations in terms of the stream
function ψ and the vorticity ω are modified as
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where Re = UL/ν is the Reynolds number, in which L is the characteristic length;
U the characteristic speed of the flow; and ν the kinematic viscosity.

Integrating (1) and (2) over a CV of a grid point P, ΩP, and applying the Green
theorem to integrals leads to the following equations∮
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where ΓP is the CV circumference. The governing differential equations (1) and
(2) are thus transformed into a CV form (3)-(4).
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3 Two-node IRBFEs

Consider an interior element, η1≤η ≤η2, and its two nodes are locally named as 1
and 2. Let φ(η) be a function to be approximated, and φ1, ∂φ1/∂η , φ2 and ∂φ2/∂η

be the values of φ and ∂φ/∂η at the two nodes, respectively. The 2-node IRBFE
scheme approximates φ(η) using two multiquadric-RBFs (MQs) whose centres are
located at η1 and η2
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where I(2)
i (η) denotes the MQ; ci the MQ centre; ai the MQ width; I(1)
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constants. Equations (7), (6) and (5) can be transformed into the physical space as
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where {ϕi(η)}4
i=1 is the set of basis functions in the physical space. Further details

can be found in An-Vo, Mai-Duy, and Tran-Cong (2011).

4 Proposed method

Using the middle-point rule, equations (3) and (4) become
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where the superscript 0 represents the value obtained from the previous time level;
the subscripts e,w,n and s the values of the property at the intersections of grid
lines and the east, west, north and south faces of a CV; and AP the area of ΩP. Let
E,W,N and S denote the east, west, north and south neighbouring nodes of P. One
can form 4 two-node IRBFEs, namely WP,PE,SP and PN.

4.1 Diffusion approximations

The values of the flux at x = xe and x = xw are computed by means of the elements
WP and PE, respectively, using (9)(
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where φ represents ψ and ω . Expressions for the flux at y = yn and y = ys are of
similar forms.

4.2 Convection approximations

Let f be the intersection of the CV face and the grid line. The value of ω at point
f is computed as

ω f = ωU +∆ω f , (15)

where ωU is the upstream value and ∆ω f the correction term that is a known value.
∆ω f is presently derived from the 2-node IRBFE approximation, i.e. (8). As an
example, when f ≡ w and uw > 0, one has

ωU = ωW , (16)
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P +ϕ3(xw)
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Velocity values in the convection term are simply estimated by a linear profile.
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(a) Re = 1000,81×81 (b) Re = 3200,91×91
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Figure 1: Convergence behaviours: present method using time steps of 3×10−4 in
(a) and 10−4 in (b) converges remarkably faster than the no-upwind version using
time step of 7×10−6 and 8×10−7, respectively. It is noted that the latter diverges
for time steps greater than 7×10−6 and 8×10−7. CM denotes the relative norm of
the stream-function field between two successive time levels.

5 Lid-driven cavity flow

In this study, the MQ shape parameter a is simply chosen proportionally to the
element length h by a factor β . A large value of β , i.e. β = 15, is used in present
calculations. The cavity is taken to be a unit square, with the lid sliding from left to
right at a unit velocity. Boundary values of the vorticity are obtained by applying
(10) as
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where η represents x and y.

The convergence behaviours with respect to time are shown in Fig. 1. Results with-
out the upwind treatment are also presented. It can be seen that solutions converge
remarkably faster for those with upwind than those without upwind. Much larger
time steps can be used for the former. Tab. 1 reveals that the present results are
closer to the benchmark spectral solutions than the global 1D-IRBF-CVM.
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Table 1: Re = 1000: percentage errors relative to the spectral benchmark results
(Botella and Peyret (1998)) for the extreme values of the velocity profiles on the
vertical centreline. Results of upwind central difference (UW-CD), central differ-
ence (CD-CD) and global 1D-IRBF-CVM are taken from Mai-Duy and Tran-Cong
(2010).

Error (%)
Grid UW-CD CD-CD 1D-IRBF-CVM IRBFE-CVM

umin

31x31 46.10 29.19 11.86 7.11
41x41 38.17 18.13 6.50 4.42
51x51 32.92 12.11 4.09 2.93
61x61 29.12 8.63 2.80 2.06
71x71 26.21 6.46 2.03 1.52
81x81 23.88 5.02 1.54 1.16
91x91 21.95 4.01 1.19 0.91

101x101 20.33 3.28 0.96 0.74
111x111 18.94 2.73 0.78 0.61
121x121 17.74 2.31 0.65 0.51

6 Concluding remarks

We have extended our 2-node IRBFEs to the solution of the stream function-vorticity
formulation governing fluid flows. Numerical results show that (i) much larger
time steps can be used with the upwind version; and (ii) a high level of accuracy is
achieved.
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