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A Note on Two Different Definitions of Reference Surface
of Deformed Rubber-Like Shells

R. F. Yükseler1

Abstract: The mid surface of undeformed rubber-like shells undergoing finite ro-
tations and finite strains has been considered to be the reference surface of the un-
deformed configuration. There have been two different definitions for the reference
surface of deformed rubber-like shells, undergoing finite rotations and finite strains,
used by several researchers. In this study, some comments on the stress-resultants
defined relative to the mentioned two reference surfaces of deformed incompress-
ible rubber-like shells under axisymmetrical effects, considering transverse normal
and transverse shear deformations, are presented.
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1 Introduction

Considering the mid surface of undeformed rubber-like shells undergoing finite ro-
tations and finite strains as the reference surface of the undeformed configuration,
there have been two alternative definitions for the reference surface of deformed
rubber-like shells, undergoing finite rotations and finite strains [Taber (1987); Sim-
monds (1986); Libai and Simmonds (1998); Yükseler (1996a); Yükseler (1996b)]:

(i) Theory II : The reference surface of a deformed shell is composed of the particles
which have been on the reference surface of the undeformed shell, and therefore

ξII|ξ0=0 = 0, (1)

where ξ0 denotes the transverse coordinate of a point of the undeformed shell mea-
sured from the reference surface S0 of the undeformed shell space (the perpendicu-
lar distance from the reference surface S0 of the undeformed shell) and ξII denotes
the transverse coordinate of a point of the deformed shell measured from the refer-
ence surface SII of the deformed shell space (See Fig. 1 of Yükseler (2003).). The
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subscript 0 is used to denote that the related parameter belongs to the undeformed
configuration, and the subscript II is used to denote that the concerning parame-
ter belongs to Theory II. In most of the relevant studies, Theory II has been used,
e.g. [Makowski and Stumpf (1989); Taber (1985); Stumpf and Makowski (1986);
Brodland and Cohen (1987); BaŞar and Kratzig (1989); Yükseler (2008)].

(ii) Theory I : The material composition of the reference surface SI of the deformed
shell is not necessarily same as that of the reference surface S0 of the undeformed
shell and

t/2∫
−t/2

ξIdξ0 = 0 (2)

should be satisfied [Taber (1987); Simmonds (1986); Libai and Simmonds (1998)].
t is the thickness of the undeformed shell. Here and henceforth, the subscript I is
used to denote that the concerning parameter belongs to Theory I. If neither the
subscript I nor the subscript II is used (except the parameters having the subscript
0), the concerning parameter is considered to depend on the choice of the theory.
In some of the relevant references, Theory I has been used, e.g. [Yükseler (1996a);
Yükseler (1996b); Taber (1988); Taber (1989); Koçak and Yükseler (1999)].

The numerical results corresponding to these two theories have been compared in
various studies [Taber (1987); Yükseler (1996a); Yükseler (1996b); Koçak and
Yükseler (1999); Koçak and Yükseler (2000); Koçak and Yükseler (2002)]. The
parameters affecting the differences between the solutions corresponding to the
two different definitions of the reference surface of deformed rubber-like shells of
revolution, undergoing axisymmetric finite strains and finite rotations, have been
presented in Yükseler (2003), in which an asymptotic analysis has been used. Ac-
cordingly, the differences between the solutions to problems pertaining to incom-
pressible rubber-like shells of revolution, undergoing axisymmetric finite rotations
and finite strains including transverse shear and transverse normal strains, corre-
sponding to the two definitions of the reference surface of deformed rubber-like
shells, namely Theory I and Theory II, are increased if (i) the thickness of shell is
increased, (ii) the bending strains are increased, and (iii) the extensional strains are
decreased. An important emphasis has been noted in Yükseler (2003) that there
has been no claim that one of the two approaches is better than the other, the corre-
sponding solutions are being relative to the chosen reference surface. The present
study can be considered to be a modest extension of the study presented in Yükseler
(2003).
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2 Preliminary analysis

Assuming that the material fibers normal to the reference surface of the undeformed
shell are assumed to remain straight but not necessarily normal to the reference
surface of the deformed shell [Taber (1987); Yükseler (1996a); Yükseler (1996b);
Makowski and Stumpf (1989)], the natural base vectors of the undeformed and de-
formed shell spaces and, then, the metric tensors in the undeformed and deformed
configurations can be obtained [Yükseler (2003)]. Through an asymptotic analysis,
the incompressibility condition [Green and Zerna (1975)] has yielded the differ-
ence between the transverse coordinates corresponding to Theory I and Theory II,
as a measure of the difference between the locations of the mentioned two reference
surfaces of the deformed shell [Yükseler (2003)]:

ξ
∗
I - ξ

∗
II = ε[k∗φ II / {λ

2
θ II(λ φ II)3}+ k∗θ II / {λ

3
θ II(λ φ II)2}]/6+O(ε3) (3)

where

k∗θ = k
∗
θ
−λ φ λ

2
θ k∗θ0,

k∗φ = k
∗
φ
−λ

2
φ λθ k∗φ0

(4)

are nondimensional curvature change measures [Yükseler (1996b); Yükseler (2003)];
λ φ and λθ are the extensional strain measures; k∗

φ0 and k∗
θ0 are the nondimensional

curvature measures of the reference surface of the undeformed shell; k
∗
φ

, k
∗
θ are the

nondimensional curvature measures of the reference surface of the deformed shell
considering the transverse shear strains, respectively. ε is a thickness parameter,

ε = t/(2L) (5)

where L is deformation wavelength. ξ ∗ is the nondimensional form of ξ ,

ξ
∗ = (2 / t)ξ . (6)

3 Stress resultants

The nondimensional pseudo-stress resultants, the pseudo-shear stresses and the
pseudo-moment resultants per unit length of the reference surface of the unde-
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formed shell space have been defined as1

N∗α =
1∫
−1

µτ
∗
ααdξ

∗
0 ,

Q∗α =
1∫
−1

µτ
∗
α3dξ

∗
0 ,

M∗α =
1∫
−1

µτ
∗
ααξ

∗dξ
∗
0

(7)

where ταα and τα3 are the components of the Piola- Kichhoff stress tensor of the
second kind [BaŞar (1987)] and

µ = 1−2εH∗ξ ∗0 + ε
2K∗ξ ∗20 . (8)

H∗ and K∗ are the nondimensional mean curvature and Gaussian curvature, respec-
tively [BaŞar and Kratzig (1985); Chroscielewski, Pietraszkiewicz and Witkowski
(2010)]. The dashes at the bottom of the indices denote that the summation con-
vention is not applied to these indices.

It is clear from the first and second equations of Eqs. (7) that the nondimensional
pseudo-stress resultants N∗α and the pseudo-shear stress Q∗ can easily be noted to
be invariant of the choice of the mentioned reference surface of the deformed shell.
But; as it can be seen from the last of Eqs. (7), the pseudo-moment resultants M∗α
do depend on the choice of the mentioned reference surface (since ξ ∗ may have the
index I or II ). Via the last of Eqs. (7), the difference between the pseudo-moment
resultants M∗α relative to Theory I and Theory II can be expressed as

M∗αI
−M∗αII

=
1∫
−1

µτ
∗
αα(ξ ∗I −ξ

∗
II)dξ

∗
0 , (9)

or, using Eq. (3) and the first of Eqs. (7)

M∗αI
−M∗αII

= eN∗α (10)

where

e = ξ
∗
I −ξ

∗
II, (11)

1 Considering only the axisymmetrical external effects, one of the two pseudo-shear stresses is equal
to zero.
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or

e = ε[k∗φ II / {λ
2
θ II(λ φ II)3}+ k∗θ II / {λ

3
θ II(λ φ II)2}]/6 (12)

which does not depend on ξ ∗0 .

Equation (10) is nothing but an implication of a very well known expression from
the engineering mechanics; resolution of a given force into a force acting at a given
point and a couple, the moment of the couple being equal to the moment of the
concerning force [Beer and Johnston (1976)]. Therefore; when the pseudo-moment
resultants relative to one of the two reference surfaces of the deformed shell are
known, it is a very simple algebra to obtain the pseudo-moment resultants relative
to the other reference surface of the deformed shell.

4 Discussion

It is shown that

the pseudo-stress resultants and pseudo-shear stresses do no depend on the choice
of the reference surface of the deformed rubber-like shell,

the difference between the pseudo-moment resultants defined relative to the men-
tioned two reference surfaces of the deformed shell is governed by Eqs. (10, 12)
and a function of the curvature change measures, strain measures, thickness param-
eter, and the pseudo-stress resultants.

The arguments made in this study are restricted with the definitions of the stress-
resultants defined in Eqs. (7) and similar ones (e.g. those defined in [Taber (1985);
Taber (1988); Biricikoglu and Kalnins (1971); Makowski and Stumpf (1986)]).
Different definitions of the stress-resultants may not yield the same remarks pre-
sented in this study. For example; in case of using ξ ∗0 instead of ξ ∗ in the last of
the Eqs. (7) [Chroscielewski, Pietraszkiewicz and Witkowski (2010); BaŞar and
Ding (1990); Schieck, Smolenski and Stumpf (1999)], there would not be any dif-
ference between the stress resultants corresponding to the mentioned two theories.
Generalizing the last statement; if the transverse coordinate ξ ∗, belonging to the
deformed configuration, is not used in the expression of a stress resultant, includ-
ing the higher order stress-resultants corresponding to a higher order shell theory
than the first order theory [Reddy and Arciniega (2004)], there would not be any
difference between the stress resultants corresponding to the mentioned two theo-
ries.
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