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Carrying Capacity of Pressure Vessels under Hydrostatic
Pressure

Yang-chun Deng1 and Gang Chen2

Abstract: To use material effective and keep pressure vessel safety, large de-
formation analysis for pressure vessel is very important. Until 2007, the elastic-
plastic stress analysis method, that is the first time all over the world, is provided
in ASME VIII-2 edition 2007 for boiler and pressure vessel standard that Finite
Element Method is used with large deformation analysis. But there is no com-
mon recognized direct solution for the carrying capacity of pressure vessels yet and
this restrict the application of large deformation analysis in pressure vessel design.
This paper investigates the carrying capacity of pressure vessels under hydrostatic
pressure, based on the elastic-plastic theory. Firstly, to understand the large defor-
mation characteristic of pressure vessel, the expressions of pressure and strain of
thin-walled cylindrical and spherical vessels under internal pressure is reviewed.
Secondly, to investigate the solution of carrying capacity of pressure vessels, the
plastic instability criterion is derived. Further, the method to obtain the carrying
capacity of pressure vessels is given for all pressure vessel material and two repre-
sentative examples for analysis solutions of cylindrical and spherical pressure ves-
sel respectively are given. The proposed research can be used for the elastic-plastic
stress analysis method of pressure vessels safely.
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1 Introduction

To avoid accident of pressure vessels, the first pressure vessel standard was es-
tablished in 1914, it is based on the linear elastic analysis with the small defor-
mation assumption and is usually called Design by Formulae(DBF) or Design-by-
Rule(DBR) in the Volume VIII Part 1 of ASME Boiler and Pressure Vessel Code.
The Design-by-Analysis(DBA) concept based on stress analysis was first intro-
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duced in 1963 with the publication of the nuclear vessels code and was accepted in
1968 as the Volume ¢ø Part 2 of ASME Boiler and Pressure Vessel Code, but it is
still based on the small deformation assumption. The DBF and DBA are broadly
used in the world(Ling, 2000). The elastic-plastic stress analysis method as a part
of DBA approach, with the large deformation as a precondition, was first intro-
duced in the Volume VIII Part 2 of ASME Boiler and Pressure Vessel Code(2007)
that was promulgated in 2007, and it aroused a broad attention in the pressure ves-
sel area. In this method, Finite Element Method is used with considering true stress
vs. true strain relationship and large deformation. It is a technical breakthrough
as a milestone that considering strain hardening effect and structural deformation.
Anyway, large deformation analysis is much more complicated than small deforma-
tion analysis, there is not any well-recognized theoretical analysis method available
for the carrying capacity of pressure vessels, therefore, only FEM can be used for
large deformation analysis, that limits engineering application of large deformation
analysis and directly affects its widespread use.

Early on 1964, while summarizing design methods of pressure vessel, Langer(1963)
pointed out design methods of pressure vessel can be more rationalized if consid-
ering effects of material strain hardening and non-linear structural deformation.
In order to reduce safety factor in ASME code to lower cost of pressure ves-
sels, Upitis and MoKhtarian(1998) studied actual safety margin of pressure ves-
sels, and indicated that burst pressure of pressure vessel is related to structural
deformation and material strain hardening exponent in 1997. Many researchers
focus on study of plastic instability for cylindrical and spherical pressure vessels,
it represent the carrying capacity of pressure vessels under hydrostatic pressure.
For material with true stress vs. true strain relationship of σ = A · ε n, Sachs
and Lubahn(1946)¡¢Swift(1952) deduced plastic deformation instability criteria
for thin-walled cylindrical and spherical vessels under internal pressure respec-
tively. Cooper(1957) and Hill(1950) deduced plastic deformation instability strain
for thin-walled cylindrical and spherical vessels under internal pressure respec-
tively. For material with true stress vs. true strain relationship of σ = A · (B+ ε)n,
Mellor(1962) deduced plastic deformation instability criteria and plastic instabil-
ity strain for thin-walled cylindrical and spherical vessels under internal pressure.
Other researchers, such as Hillier(1965,1965,1966), Lankford and Saibel(1947),
George(1969), Davis(1945), Rawe and Corn(1969) studied instability strain for the
similar type of above pressure vessels. In 1958, Svensson(1958) provided plas-
tic instability pressure expressions for cylindrical and spherical pressure vessels for
material of σ = A ·ε n. Recently, Zhu and Leis(2006), Law(2007) worked on similar
topics. Truong and Blachut(2009) worked on plastic instability pressure of toroidal
shells. However, they are limited with typical material and lack of universality.
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In this paper, the expressions of pressure and strain of thin-walled cylindrical and
spherical vessels under internal pressure is reviewed firstly. Secondly the plastic in-
stability criterion for thin-walled vessels under internal pressure is analyzed. Then
the load carrying capacity of pressure vessels are analyzed. Finally, two conclu-
sions are given.

2 Expressions of equivalent stress and equivalent strain for structures under
plain stress proportional loading

Plain stress proportional loading can be expressed as:

σ3 = 0, σ2 = xσ1

where σ1, σ2, and σ3 are principal stresses, x is stress coefficient of proportion.

From Levy-Mises equation, strain increment tensor are proportional to stress devi-
ator tensor, i.e.

dε1

s1
=

dε2

s2
=

dε3

s3

where, ε1, ε2, ε3 are principal strain, s1, s2, s3 are principal value of stress deviator
tensor, and si = σi−σm (i = 1,2,3),σm is mean normal stress.

Simplifying above, then

s1 =
2− x

3
σ1, s2 =

2x−1
3

σ1, s3 =−1+ x
3

σ1

dε1

2− x
=

dε2

2x−1
=− dε3

1+ x
(1)

Equivalent stress is:

σ =
√[

(σ1−σ2)
2 +(σ2−σ3)

2 +(σ3−σ1)
2
]/

2

= σ1
(
1− x+ x2

)1/2
(2)

where σ is Mises equivalent stress.
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From equation (2),

dσ = dσ1
(
1− x+ x2)1/2 (3)

Equivalent strain increment is:

dε =
√

2
9

[
(dε1−dε2)

2 +(dε2−dε3)
2 +(dε3−dε1)

2
]

= dε1 · 2
2−x ·

(
1− x+ x2

)1/2
(4)

where ε is Mises equivalent strain¡£

From equation (1) and (4), then

ε

2(1− x+ x2)
1
2

=
ε1

2− x
=

ε2

2x−1
=− ε3

1+ x
(5)

3 Expressions of pressure and strain of thin-walled vessels under internal
pressure

3.1 Cylindrical vessels

If there is no shape change for pressure vessel, principal stress expressions are al-
ways tenable for thin-walled cylindrical and spherical vessels if substituting instant
diameter and instant thickness of the pressure vessel into principal stress expres-
sions.

Stresses for thin-walled cylindrical vessels are:

σ3 = 0,σ1 =
pr
t

,σ2 =
pr
2t

,x = 1/2

where p is internal pressure, r, t represent median radii and wall thickness respec-
tively, and they vary with internal pressure changes.

After integral of equation dε1 = dr
r for cylindrical vessels, then

r = rineε1

Similarly, from equation dε3 = dt
t , we can get
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t = tineε3

where rin and tin represent original mediate radii and wall thickness, respectively.

Then

σ1 =
pr
t

= p · rin

tin
· eε1−ε3 (6)

Substitute x = 1/2 into equation (5), then

ε√
3

=
ε1

3/2
=

ε2

0
=− ε3

3/2

Thus

ε1− ε3 =
√

3ε (7)

Substitute x = 1/2 into equation (2), then

σ =
√

3
2

σ1 (8)

Substitute equation (7) and equation (8) into equation (6), then

2√
3

σ = p · rin

tin
· e
√

3ε

i.e.

p =
2√
3
· tin

rin
·σ · e−

√
3ε (9)
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3.2 Spherical vessels

Stress expressions for thin-walled spherical vessels under internal pressure are:

σ3 = 0, σ1 =
pr
2t

, σ2 =
pr
2t

, x = 1

From r = rineε1 ,t = tineε3 , we can obtain

σ1 =
pr
2t

= p · rin

2tin
· eε1−ε3 (10)

Substitute x = 1 into equation (2), then

σ = σ1 (11)

Substitute x = 1 into equation(5), then

ε

2
=

ε1

1
=

ε2

1
=−ε3

2

Thus

ε1− ε3 =
3
2

ε (12)

Substitute equation (11) and (12) into equation (10), then

σ = p · rin

2tin
· e3/2ε

i.e.,

p = 2 · tin
rin
·σ · e−3/2ε (13)

Equation(9) and Equation (13) represent the relationship between internal pressure
p with Mises equivalent stressσ and equivalent strain ε for thin-walled cylinder and
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spherical vessels respectively under internal pressure. Since σ and ε are satisfied
true stress-true strain relationship of material under monotone loading, they are
not independent variables. In other words, σ can be obtained by function σ (ε) if
ε was defined. rin and tin are constants that represents original mediate radii and
thickness respectively. Thus equation (9) and (13) contain 2 variables, p and ε , i.e.
pressure and strain, they are expressions of pressure-strain relationship for thin-
walled cylinder and spherical vessels respectively under internal pressure and are
firstly deduced by Deng and Chen(2010).

When the deformation of pressure vessel is defined, the corresponding pressure
can be obtained if associated with material true stress-true strain curve. Thus, the
practical value of Equation(9) and Equation (13) is equivalent to principal stress
equations of thin-walled cylindrical and spherical vessels with considering non-
linear structural deformation effect.

4 Plastic instability criterion for thin-walled vessels under internal pressure

4.1 Cylindrical vessel

Differentiate equation (9), then

d p
dε

=
2√
3
· tin

rin
·
(

dσ

dε
· e−
√

3ε +σ · e−
√

3ε

(
−
√

3
))

Plastic instability criterion for thin-walled cylindrical vessels under internal pres-
sure is

d p
dε

= 0

Thus

dσ

dε
=

1
1/
√

3
σ (14)

4.2 Spherical vessel

Differentiate equation (13), then

d p
dε

= 2 · tin
rin
·
(

dσ

dε
· e−3/2ε +σ · e−3/2ε (−3/2)

)



72 Copyright © 2010 Tech Science Press SL, vol.4, no.2, pp.65-75, 2010

Plastic instability criterion for thin-walled spherical vessels under internal pressure
is

d p
dε

= 0

Thus

dσ

dε
=

1
2/3

σ (15)

Cooper(1957) and Hill(1950) and other researchers had derived plastic instability
criterion equation (14) and (15) for thin-walled cylindrical and spherical vessels
under internal pressure before. But the deriving process in this paper is the simplest
one, and it is based on equation (9) and (13), it is independent of material type.

5 Plastic instability pressures for thin-walled pressure vessels under internal
pressure

The pressure-strain curve can be obtained by calculations of equation (9) and (13).
The maximum pressure value from the curve is plastic instability pressure for thin-
walled pressure vessels under internal pressure. This is identical to the result that is
gotten from Finite Element analysis results. The method to calculate the pressure-
strain curve of pressure vessels in this paper is more efficient and clear than FE
analysis, and easy to be used in engineering applications.

By now, for all sorts of pressure vessel materials, plastic instability pressures of
thin-walled cylindrical and spherical vessel under internal pressure can be com-
pletely calculated individually. While true stress vs. true strain function of material
is known, equivalent strain and equivalent stress for thin-walled cylindrical and
spherical vessels under internal pressure in plastic instability can be calculated by
simultaneous equation (14) and (15). Substituting equation (9) and (13), the plastic
instability pressures for thin-walled pressure vessels under internal pressure can be
obtained directly.

For example, material which true stress vs. true strain relationship is σ = A · ε n,
the ultimate tensile strength of the material can be expressed as

σb = Anne−n

where σb is the ultimate tensile strength of material.
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When the thin-walled cylindrical vessels under internal pressure at plastic instabil-
ity, substituting σ = A · ε n to equation (14) for thin-walled cylindrical, the equiva-
lent strain and equivalent stress are:

σ = A ·
(

n√
3

)
n

ε =
n√
3

Substituting above three equations to equation (9), the plastic instability pressure
function for thin-walled cylindrical vessels under internal pressure can be expressed
as

pplin =
2(√

3
)n+1 ·σb ·

tin
rin

(16)

Similarly, combining with equation (15) and equation (10), the plastic instability
pressure function for thin-walled spherical vessels under internal pressure can be
expressed as

pplin =
(

2
3

)n

·2 ·σb ·
tin
rin

(17)

Svensson(1958) had derived equation (16) and equation (17) too, the expressions of
plastic instability pressure for thin-walled cylindrical and spherical vessels respec-
tively under internal pressure. In this paper, all the derivations for plastic instability
criterions and instability pressures are based on equation (9) and (13), and the pro-
cess is simple and clear. It would be quite easy to derive theoretical expressions
of plastic instability pressure for thin-walled cylindrical and spherical vessels un-
der internal pressure with any other type pressure vessel materials by this paper
analysis method.

6 Conclusion

(1) The expressions of pressure and strain of thin-walled cylindrical and spherical
vessels under internal pressure are p = 2√

3
· tin

rin
·σ · e−

√
3ε and p = 2 · tin

rin
·σ · e−3/2ε
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respectively. And their practical value is equivalent to principal stress equations of
thin-walled cylindrical and spherical vessels with considering non-linear structural
deformation effect.

(2) For any sort of pressure vessel material, the instability pressures of thin-walled
cylindrical and spherical vessels under internal pressure can be obtained from the
pressure-strain curves according to the expressions of pressure and strain of thin-
walled cylindrical and spherical vessels, that is quite similar to Finite Element anal-
ysis method, but it is more efficient and easy to be used in engineering applications.

(3) The plastic instability criterions and instability pressures of thin-walled cylindri-
cal and spherical vessels are derived, and they are consistent with previous studies
of other researchers, but the deriving process is the simplest one, and the analysis
method can be easily applied to all type pressure vessel materials when the true
stress vs. true strain relationship of pressure vessel material is known.
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