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Thermal Bending of Circular Plates for
Non-axisymmetrical Problems
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Abstract: Due to the complexity of thermal elastic problems, analytic solutions
have be obtained only for some axisymmetrical problems and simply problems. Us-
ing the Green function, the boundary integral formula and natural boundary integral
equation for the boundary value problems of biharmonic equation is obtained. Then
based on bending solutions to circular plates subjected to the non-axisymmetrical
load, by the Fourier series and convolution formulae, the bending solutions under
non-axisymmetrical thermal conditions are gained. The formulas for the solutions
have high convergence velocity and computational accuracy, and the calculating
process is simpler. Examples show the discussed methods are effective.
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1 Introduction

Thermal elastic problems are important one of solid mechanics. Due to the com-
plexity of thermal elastic problems, analytic solutions have been obtained only for
some axisymmetrical problems and simply problems. For general loads and gen-
eral boundary conditions, the numerical computation is the main method. For bend-
ing problems of solid circular plates, Fu Bao-lian adopted the reciprocal theorem
and took the solution of the clamped circular plate as the basic solution to discuss
some bending solutions under axis-symmetrical loads. Wang An-wen introduced
the point source function to discuss the non-symmetrical bending problems under
the concentrated force; Yu De-hao discussed bending problems of plates with the
natural boundary element method. Using the above method, Li Shun-cai discussed
the bending problems of solid circular plates] and bending deflections for annular
infinite plates under the boundary loads. On the basis of the same method, expand-
ing the boundary slope into Fourier series, and using several convolution formu-
lae, the boundary integral formula and natural boundary integral equation for the
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boundary value problems of thermal bending of Circular Plates are obtained. The
formula for the solutions has high convergence velocity and computational accu-
racy, and the calculating process is simple. Examples show the discussed methods
are effective.

2 Boundary integral formula and natural boundary integral equation

The differential equation of elastic plate bending problems is:

∆
2u =

q(r,θ)
D

= f (r,θ) Ω (1)

Where, ∆ is the Laplacian operator, u is the deflection of the plate, q is the surface
density of external loads,D is the bending rigidity of the plate, Ω is the plate in a
circle domain. For convenient, suppose the circle is a unit circle.

Using the Green formula of the bending problems for thin plates, we get:

∫∫
Ω

(u∆
2v− v∆

2u)dp =
∫
Γ

(u
∂

∂n
∆v− ∂u

∂n
∆v+

∂v
∂n

∆u− v
∂

∂n
∆u)ds+

∫∫
Ω

v f dp (2)

Where dp = dxdy, Γ is the edge of the circular plate. Suppose u = u(p) satisfying
the biharmonic equation, and letv = G(p, p′), which is the Green function of the
biharmonic equation inΩ, and then the Poisson integral equation of the bending
problem of the plate can be found

u(p) =
∫
Γ

[
∂

∂n′
∆
′G(p, p′)u0(p′)−∆

′G(p, p′)un(p′)
]

ds′ +
∫∫
Ω

G(p, p′) f (p′)dp′,

p ∈ Ω, (3)

Where p = (x,y), p′ = (x′,y′), un = ∂u
∂n |Γ , dp′ = dx′dy’,∆′ is the Laplacian related

to p′. The Green function outer the unit circular domain can be obtained from the
basic solution of the biharmonic equation

G(p, p′) =
1

16π{[
r2 + r′2−2rr′ cos(θ −θ

′)
]

ln
r2 + r′2−2rr′ cos(θ −θ ′)

1+ r2r′2−2rr′ cos(θ −θ ′)
+(1− r2)(1− r′2)

}
(4)
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Where, P and P′ represent the polar coordinate (r,θ) and (r′,θ ′) respectively. Thus

−∆
′G
∣∣
r′=1 =− (1− r2)2

4π [1+ r2−2r cos(θ −θ ′)]

∂

∂n′
∆
′G
∣∣∣∣
r′=1

=
(1− r2)2 [1− r cos(θ −θ ′)]

2π [1+ r2−2r cos(θ −θ ′)]2

Hence, the Poisson integral formula of the bending circular plates

u(r,θ)=
(1− r2)2 [1− r cos(θ −θ ′)]

2π [1+ r2−2r cos(θ −θ ′)]2
∗u0(θ)− (1− r2)2

4π [1+ r2−2r cos(θ −θ ′)]
∗un(θ)

+
∫∫
Ω

G(r,θ ;r′,θ ′) f (r′,θ ′)r′dr′dθ
′

Where, ∗ is the convolution with regard to θ , u0(θ), un(θ) denotes the deflection
and slope at the edge. For the supported edge, u0 = 0, the above equation will be
educed to

u(r,θ) =
∫∫
Ω

G(r,θ ;r′,θ ′) f (r′,θ ′)r′dr′dθ
′− (1− r2)2

4π [1+ r2−2r cos(θ)]
∗un(θ) (5)

Suppose M is the differential boundary operator in the polar coordinate system, the
bending moment Mu

Mu =
[

µ∆u+(1−µ)
∂ 2

∂ r2 u
]

Γ

=−Mr

D
(6)

Where, µ is Poisson ratio. Let the boundary operator acts on Eq. (5), and use the
limit formula of generalized function, the natural boundary integral equation of the
bending problems [Li (2002)] can be obtained as

Mu =
∫∫
Ω

MG(r,θ ;r′,θ ′) f (r′,θ ′)r′dr′dθ
′−£1+ µ£un(θ)− 1

2π sin2(θ

2 )
∗un(θ)

(7)
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3 Thermal elastic equation and boundary conditions

The thermal elastic equation is

∆
2u =

q∗(r,θ)
D

= f (r,θ)

Where q∗ is the surface distribution density of the equivalent load. Suppose h is the
thickness of the plate, E is elastic modulus, α is the thermal expansion coefficient.
D is the bending rigidity. In general, suppose the thermal linear distribution along
the plate thickness:

q∗ =− 1
1−µ

∆MT , f (r,θ) =− 1
(1−µ)D

∆MT =−α(1+ µ)
h

∆T (r,θ)

WhereT (r, θ ) is the thermal distribution function on the surface of the plate,

MT = αE
∫ h

2

− h
2

T (r,θ)zdz =
αEh2

12
T (r,θ)

The equivalent boundary condition of the clamped bending plate is u|
Γ

= 0, un|Γ =
0 .The equivalent boundary condition of the simply bending plate is

u|
Γ

= 0,

Mu = - MT
D(1−µ) =−αT (1,θ)(1+µ)

h £ on Γ

If in the plate there is no heat source, ∆T (r,θ) = 0, q∗=0, for the simply plate,
u0(θ) = 0, equation (5) and (6), will be reduced to

u(r,θ) =− (1− r2)2

4π [1+ r2−2r cos(θ −θ ′)]
∗un(θ) (8)

−αT (1,θ)(1+ µ)
h

=
1+ µ

R2 un(θ)− 1
2πR2 sin2(θ

2 )
∗un(θ) (9)

For the clamped plate, if in the plate there is no heat source, ∆T (r,θ) = 0, q∗=0,
there are no deflections. The following are the plates on the head sources.
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Example 1 Suppose T (r,θ) = 1+ r

f (r,θ) = -
∆MT

D(1−µ)
=

α(1+ µ)
hr

£

For the clamped plate on the heat source, from eq. (5)

u(r,θ) =
2π∫
0

1∫
0

G(r,θ ;r′,θ ′) f (r′,θ ′)r′dr′dθ
′

u(r,θ) =
2π∫
0

1∫
0

G(r,θ ;r′,θ ′) f (r′,θ ′)r′dr′dθ
′ =

α£1+ µ)
h

2π∫
0

1∫
0

G(r,θ ;r′,θ ′)dr′dθ
′

The numerical computation is according to the axisymmetrical solution

u(r,θ) =
α£1+ µ)

2h

(
1
3

(
2
3

r3− r2
)

+
1
9

)
For the simply plate on the heat source, firstly using the following equation to get
un

Mu−
2π∫
0

1∫
0

G(r,θ ;r′,θ ′) f (r′,θ ′)r′dr′dθ ′ = 1+µ

R2 un(θ)− 1
2πR2 sin2( θ

2 )
∗un(θ)

MG(r,θ ;r′,θ ′) = £1−r2)2

4π(1+r′2−2r′ cos(θ−θ ′))

(10)

−αT (1,θ)(1+µ)
h + α£1+µ£

3h = (1+ µ)un(θ)
un(θ) =−5α

3h

Then using the convolution formula

1− r2

2π(1+ r2−2r cosθ)
∗ coskθ = rk coskθ
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We can get

u(r,θ) =− (1−r2)2

4π[1+r2−2r cos(θ−θ ′)] ∗un(θ)+
2π∫
0

1∫
0

G(r,θ ;r′,θ ′) f (r′,θ ′)r′dr′dθ ′

= 5α(1−r2)
6h − α£1+µ)

2h

(1
3

(2
3 r3− r2

)
+ 1

9

)
Example 2 Suppose the center of T (r,θ) is (1

2 ,0)

T (r,θ) =

√
r2 +

(
1
2

)2

−2r · 1
2

cosθ

f (r,θ)=− 1
(1−µ)D

∆MT =−α(1+ µ)
h

∆T (r,θ)=
α(1+ µ)

h
× 2√

4r2−4cosθ +1

Figure 1: Deflections of the clamped
circular plate

Figure 2: Deflections of the clamped
plate

For the clamped plate on the heat source, from eq. (5)

u(r,θ) =
2π∫
0

1∫
0

G(r,θ ;r′,θ ′) f (r′,θ ′)r′dr′dθ
′
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For the simply plate on the heat source, firstly using eq. (11) to get un, suppose

un(θ) =
∞

∑
m=0

bm cosmθ +
∞

∑
m=1

b′m sinmθ

The left of Eq. (11) is expanded to series

α(1+µ)
h ×T (1,θ)+

2π∫
0

1∫
0

2£1−r2)2r′

4π(1+r′2−2r′ cos(θ−θ ′))
√

4r′2−4cosθ ′+1
dr′dθ

=
∞

∑
m=0

am cosmθ +
∞

∑
m=1

a′m sinmθ

Substituting the above equation into Eq. (11) which is an integral with a strongly
singular Poisson kernel, and using the convolution formula, we can get

bk =
1

1+ µ +2k
akb′k =

1
1+ µ +2k

a′k

Then,

u(r,θ) =− (1−r2)2

4π[1+r2−2r cos(θ)] ∗
∞

∑
k=0

bk coskθ − (1−r2)2

4π[1+r2−2r cos(θ)] ∗
∞

∑
k=0

b′k sinkθ

+
2π∫
0

1∫
0

G(r,θ ;r′,θ ′) f (r′,θ ′)r′dr′dθ ′

=
∞

∑
k=0

ak(1−r2)rk

2(1+µ+2k) coskθ +
∞

∑
k=1

a′k(1−r2)rk

2(1+µ+2k) sinkθ +
2π∫
0

1∫
0

G(r,θ ;r′,θ ′) f (r′,θ ′)r′dr′dθ ′

Suppose µ=0.3, D=1, αÁ/h=1, the deflections of the circular plates from example
2 are following

4 Conclusions

Based on Green function method, the boundary integral formula and natural bound-
ary integral equation with strongly singular kernel are educed for the biharmonic
equation of the thermal bending problem of the plate supported at the boundary.
The convolution formulae are utilized to get the solutions of deflection and slope
directly for simple problems. As to complex problems, the Fourier series is be used
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to get the solutions which have nicer convergence velocity and computational ac-
curacy, and the calculating process is simpler. For the other complicated load, it
can be solved with the similar method or by the superposition with the solutions of
above examples.
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