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On Effective Permeability of Heterogeneous Porous Media
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Abstract: The conventional procedures for describing fluid flow in porous media
largely rely on assumptions of spatial homogeneity and isotropy. In contrast, natu-
rally occurring porous geologic media display heterogeneity and anisotropy that is
scale-dependent. This paper summarizes results of recent research that uses exper-
imental techniques, mathematical analyses of the experimental configurations and
computational procedures for developing estimates for the effective permeability
of a heterogeneous porous geomaterial.
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1 Introduction

Naturally occurring geologic media have heterogeneous material characteristics
that are scale-dependent. The fluid transmissivity properties in such porous me-
dia are particularly sensitive to inhomogeneities that can exist at any scale. These
can range from inhomogeneities at the micro-scale resulting from defects such as
micro cracks and porous inclusions that can be present in the scale of a laboratory
test specimen to inhomogeneities at the regional scale, which can result from frac-
tures, stratifications, dissolution channels (Selvadurai et al., 2005). The methods
that can be used to accurately characterize and define the permeability characteris-
tics of such heterogeneous porous media become important to many areas of envi-
ronmental geosciences and geomechanics with key applications that focus on deep
geologic disposal of hazardous substances such as heat emitting nuclear waste, en-
ergy resources recovery, earthquake hazards along fault zones, geothermal energy
extraction and geologic disposal of carbon dioxide as a means of mitigating cli-
mate change through reduction of greenhouse gases. In these endeavours, perme-
ability of the geologic medium encountered in the geoenvironmental or geoscience
activity is regarded as the parameter of critical interest and governs much of the
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dominant phenomena. There are various approaches that have been proposed in
the literature for characterizing permeability in heterogeneous formations and ref-
erences to these can be found in the texts and articles by Cushman (1990), Adler
(1992), Gelhar (1993), Hornung (1997), Markov and Preziosi (2000), Selvadu-
rai (2010), Suvorov and Selvadurai (2010) and Selvadurai and Selvadurai (2010).
While the complete non-deterministic characterization of permeability heterogene-
ity is certainly possible, the use of such formulations in the computational solution
of large scale porous media flow problems can be complex if both heterogeneity and
anisotropy are simultaneously introduced to characterize such variability. Further-
more the parameter identification applicable to scale-dependent permeability that is
both position-dependent and direction dependent is not a straightforward exercise.
The more pragmatic approaches to characterization of permeability of heteroge-
neous porous geomaterials tend to retain the overall structure of a porous medium
that is either both homogeneous and isotropic or homogeneous and anisotropic and
then attempts to introduce the overall influences of heterogeneity by representing
the permeability by effective estimates. The influences of heterogeneities are thus
averaged out over a representative volume element. Even with such simplifications,
the separation of the influences of heterogeneity and anisotropy is not straightfor-
ward. For example, a stratified porous medium that is isotropic and heterogeneous
at one scale can be viewed as a porous medium that is homogeneous and anisotropic
at a different scale. In heterogeneous porous media therefore, the choice of the
Representative Volume Element (RVE) can also influence the model selected to
simulate flow through such a porous medium.

The estimation of effective permeability of a porous medium continues to be a
challenging research topic. The objective of this paper is to highlight recent de-
velopments (P.A. Selvadurai, 2010; Selvadurai and Selvadurai, 2010) that involved
the combined application of experimental techniques, mathematical and compu-
tational methods for examining the experimental procedures with the objective of
estimating the effective permeability of a cuboidal specimen of Indiana Limestone
measuring 504 mm. The near surface permeability of the cuboidal region was ex-
amined using novel experimental techniques involving an annular permeameter.
The experimental results were used to construct a spatial distribution of perme-
ability heterogeneity within the cuboidal specimen. Upon verification of the ab-
sence of dominant pathways for fluid flow through the cuboidal region, estimates
were obtained for the “Effective Permeability” of the cuboid using the mathemati-
cal relationships proposed by, among others, Wiener, Landau and Lifschitz, King,
Matheron, Journel et al., Dagan. The results of these estimates are compared with
the geometric mean based estimate for determining the effective permeability of a
porous medium with heterogeneity proposed by Selvadurai and Selvadurai (2010),
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through their computational studies.

2 Theoretical results

The basis of the experimental procedure is that the porous medium will exhibit
local isotropy and homogeneity such that the fluid flow through the medium can be
defined in relation to Darcy’s law

v(x) =−(K γw/µ)∇Φ (1)

where v(x) is the velocity vector, K is the isotropic permeability, γw is the unit
weight of water, µ is the dynamic viscosity, Φ is the reduced Bernoulli potential
and ∇ is the gradient operator. The mass conservation equation during flow through
the porous medium is given by∇ · v(x) = 0; this together with (1), gives rise to
Laplace’s equation, which takes the form

∇
2

Φ(x) = 0 (2)

where ∇2 is Laplace’s operator. The experimental configuration that is used to esti-
mate the surface permeability of the cuboidal block of Indiana Limestone involves
the application of steady flow to the central part of an annular sealed region (inner
radius a and outer radiusb) of a permeameter that can be placed at any location of a
plane face of the cuboid. The dimensions of the permeameter in terms of the ratio
b/a are such that the potential problem can be formulated as a three-part mixed
boundary value problem for a halfspace region. When the annular permeameter is
located centrally, the boundary conditions take the form

Φ(r,0)= Φ0 , r∈ (0,a); (∂Φ
/

∂ z)z=0 = 0 , r∈ (a,b); Φ(r,0)= 0 , r∈ (a,∞)
(3)

The three-part mixed boundary value problem defined by (3) can be solved using
a Hankel transform development of (2) (Selvadurai, 2000a) and the reduction of
the ensuing equations to a pair of Fredholm integral equations of the second-kind
(Selvadurai and Singh, 1984a, b). The details of the procedure are also given by
Selvadurai and Selvadurai (2010) and will not be repeated here. The result of pri-
mary importance to the research is the steady flow rate q from the central aperture
that is subjected to the potentialΦ0, which can be expressed in the form



124 Copyright © 2010 Tech Science Press SL, vol.4, no.3, pp.121-128, 2010

q = 4aΦ0
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wherec = (a/b) << 1 is the aperture ratio. Selvadurai and Selvadurai (2010) have
shown that this analytical result, albeit approximate, is in excellent agreement with
results obtained using alternative numerical solutions of the system of triple in-
tegral equations. Also it is noted that when c→ 0 the three-part boundary value
problem (3) reduces to a classical two-part mixed boundary value problem in po-
tential theory for a halfspace (Sneddon, 1972; Selvadurai, 2000b) and (4) reduces
to q = 4aΦ0(Kγw/µ),which is a compact result that can be used to estimate the
local permeability of the tested region.

3 Experimental modelling

An extensive set of experiments were conducted by P.A. Selvadurai (2010) to de-
termine the surface permeability of the cuboidal region of Indiana Limestone. The
experimental developments, the theoretical interpretations and the estimates ob-
tained for the surface permeability distributions are also documented by Selvadurai
and Selvadurai (2010). The surface permeability was determined at 9 locations on
each of the six surfaces of the cuboidal block of Indiana Limestone, to generate
surface estimates of permeability. The surface point estimates were in turn used to
generate, via a kriging procedure, estimates for the distribution of permeabilities at
the interior of the cuboidal block of Indiana Limestone (Figure 1). The fundamen-
tal assumption in the estimation of the local permeability of the porous medium
is that the permeability inhomogeneity in the cuboidal region as a whole has little
or no influence on the locally estimated value of the permeability. To assess this
assumption a computational model of a sub cube region was developed, with the
annular permeameter located on one surface of the region (Figure 2).

Two extreme cases of computational solutions were developed where the surfaces
were subjected to the following separate sets of boundary conditions in relation to
the sub-cuboidal region shown in Figure 2:i.e.

The boundary conditions simulate the extreme conditions that are likely to influ-
ence the hydraulic response of the permeameter. It is found (Selvadurai and Sel-
vadurai, 2010) that the difference between the two sets of extreme boundary con-
ditions is less than 5.5% for the two extreme cases. Consequently, the theoretical
developments that are used for the interpretation of local permeabilities using the
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Figure 1: The permeability inhomogeneity in the cuboidal block of Indiana Lime-
stone [Selvadurai and Selvadurai, 2010]

concept of local homogeneity are regarded as a suitable approximation, even for
cases involving extreme inhomogeneity.

4 Effective permeability

The spatial distribution of permeability determined through experiments (Figure 1)
can be used to estimate the effective permeability of the porous medium. Several
researchers have proposed theoretical relationships that can be used to estimate the
“effective permeability” of a heterogeneous porous medium and a complete discus-
sion of these estimates is given by Selvadurai and Selvadurai (2010). For a region
V0 with a permeability distribution K(x) the effective permeability is bounded by
the Wiener (1912) estimates for the effective values defined by the harmonic mean
(Kh) and the arithmetic mean (Ka).i.e.
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Figure 2: The sub-cube model of the porous medium with the annular permeameter.
[Selvadurai and Selvadurai, 2010]

(∫∫∫
V0

dV/
∫∫∫

V0

[K(x)]−1 dV
)

= Kh ≤Keff ≤ Ka =
(∫∫∫

V0

K(x) dV/
∫∫∫

V0

dV
)

(5)

Similar relationships for estimating the effective permeability of inhomogeneous
permeable media have been proposed by a number of researchers including of
Landau and Lifshitz, Matheron, Journel et al., King and Dagan. The associated
expressions for Keff are presented by Selvadurai and Selvadurai (2010) and will
not be repeated here. Selvadurai and Selvadurai (2011) also propose the following
conjecture for estimating the effective permeability: Consider a region V 0, with a
permeability distribution K(x), which is lognormal. We consider one-dimensional
permeabilities, measured in sub regions Vs ∈ V0 along any set of n arbitrary direc-
tions that do not display marked variations. The one-dimensional permeabilities
along the n directions are denoted by K1, K2, . . . , Kn. The effective permeability
can be estimated from the geometric mean. i.e.

KSS
eff = n

√
K1K2.......Kn (6)

The data for the spatial distribution of permeability within the cuboidal block of
Indiana Limestone and the expressions in (8) were used to determine the effective
permeability of the cuboidal specimen of Indiana Limestone. The results obtained
were as follows (the actual estimate for the permeability can be obtained by multi-
plying the values by 10−15 m2):
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(KW
eff)LB(= 62.16)≤ KSS

eff = 73.75≤ (KW
eff)UB(= 80.10) (7)

5 Concluding remarks

The estimation of the effective permeability of a heterogeneous porous medium
continues to be a problem of major interest and importance to environmental geo-
sciences and geoenvironmental engineering. The possibility of developing a single
isotropic measure of the permeability of a heterogeneous porous medium is partic-
ularly attractive if the model of the effective porous medium is to be used in other
types of problems including poroelasticity and in the study of advective transport
of contaminants in heterogeneous porous media. While several techniques for es-
timating the effective permeability of heterogeneous porous media have been pro-
posed in the literature, a canonical result relates to the geometric mean obtained
through one-dimensional flow properties within a representative volume element.
Within this representative volume element, the spatial distribution of permeability
should conform to a lognormal distribution.
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