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Research on Active Vibration Isolation Based on Chaos
Synchronization
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Abstract: Line spectra are the most visible signs of the ships’ radiated noise spec-
trum. The potential of chaotifying vibration isolation systems to reduce line spectra
and improve its capability of concealment have been recently reported. Basically,
as the existing isolation system design is based on linear theory, it is difficult to
produce the nonlinear chaotic motion; and if the vibration isolation system(VIS)
is designed directly using the nonlinear theory, it is also difficult to produce the
chaotic motion because of the difficulties in accurate calculation of vibration iso-
lation device parameters. In this paper, a controller design method is put forward
using the Lyapunov stability theory to synchronize the outputs of a linear system
with persistent disturbances with those of a chaotic system. The controller design
method is applied in a double layer linear vibration isolation to produce a persistent
and steady chaotic motion by tracking the outputs of a chaotic Duffing system, the
force transferred to base is effectively reduced, and thus the isolation performance
is improved.

Keywords: chaos synchronization, active control, double layer vibration isola-
tion system, Duffing system.

1 Introduction

Since the seminal work of Pecora and Carroll [Pecora and Carroll (1990)] on the
synchronization of chaotic systems, synchronization phenomenon has formed a
new body of research activities and various synchronization schemes, such as adap-
tive control [Chen andLu¨(2002)], backstepping design [Tan (2003)], active control
[Lei (2005) and Lei (2006)] and nonlinear control [Huang (2004) and Chen (2005)],
have been successfully applied to chaos synchronization. Generalized projective
synchronization (GPS) is characterized by a scaling factor that defines a propor-
tional relation between the synchronized systems. The performance of projective
synchronization can be selected and manipulated by controlling the scaling factor
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[Park (2007) and Li (2007)], where the drive and response systems could be syn-
chronized up to a scaling factor a. It suggests that one can achieve control of this
synchronization in general classes of chaotic systems including non-partially-linear
systems. Projective synchronization is interesting because of its association with
projective synchronization and generalized one.

Linear spectra reduction is of great significance for improving the acoustic stealth
of submarines. Lou et al. [Lou (2005)] have studied the application of the chaos
in vibration isolation system design, and they discussed how line spectra water-
born noise of the warship can be reduced. It should be mentioned that there exist
two aspects of difficulties in the application of the method to practical engineer-
ing. The one is how to sustain the persistent chaotic motion of a vibration isolation
system; the other is how to preserve the performance of vibration isolation as the
system becomes chaotic. Liu et al. [Liu (2008)] presented the feedback control for
chaotifying vibration isolation systems based on the calculation of the Lyapunov
exponent. Unfortunately, the classical chaos criteria such as calculation of the Lya-
punov exponent and Melnikov method are infeasible in real time anti-control of
chaos under complex submarine circumstances. Yu et al. [Yu (2007)] proposed
the chaos synchronization method to make the chaotic signal to drive a vibration
isolation system persistent. The intensity of linear spectra at the primary harmonic
frequencies is effectively reduced. However, although the improvement of vibra-
tion isolation at a particular case of parameters is displayed by numerical simula-
tion, there is no guarantee in theory for the synchronization scheme to improve the
isolation performance of vibration while the chaotic motion is used to reduce line
spectra.

In this paper, the controller design method based on the Lyapunov stability theory
is put forward and applied in a double layer linear vibration isolation. The simu-
lation results show that the isolation system can generate chaos, effectively reduce
the force passed to the base and improve the system’s isolation performance by
reasonably choosing the output matrix of vibration isolation system. The rest of
the paper is organized as follows. Section 2 the controller is designed for chaos
synchronization between a linear system and a chaotic system. The double-layer
vibration isolation system model is introduced in section 3. The drive chaotic sys-
tem is introduced in section 4. Numerical simulations are carried out to confirm the
validity and stability of this method in Section 5.
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2 Controller design for chaotic synchronization

The state equation of Linear perturbed system:{
Ẋr = AXr +BU +EW
Yr = CrXr

(1)

Where Xr ∈ Rn is the state vector of linear system,U ∈ Rm is a controller to be
designed. Yr ∈ Rm is the output of linear system, A ∈ Rn×n, B ∈ Rn×m, E ∈ Rn×l ,
Cr ∈ Rm×n. W ∈ Rl is the outside disturbance, W is continuously differentiable,
and its dynamic characteristics is determined by the following external systems
(Exosystem) [Zheng D.Z.(2002)]{

ξ̇ (t) = Gξ (t) , t > 0
W = Hξ (t)

(2)

Chaotic drive system:{
Ẋd = fd (Xd (t) , t)
Yd = CdXd

(3)

where Xd ∈ Rp is the chaotic drive system state vector, fd is the nonlinear system
function, Yd ∈ Rm is the output of nonlinear chaotic system, Cd ∈ Rm×p.

Tracking error:

e(t) = Yr−Yd (4)

The error dynamic system:

ė(t) = Ẏr− Ẏd (5)

If:

lim
t→∞
|e(t)|= lim

t→∞
‖Yr−Yd‖= 0 (6)

the system is called output synchronization.

Theorem 1: System (1) and system (3) realize output synchronization, if

1) Yr and Yd are continuously differentiable in the Xr and Xdstate vector set;

2) [A Cr ] is observable. CrB is reversible. B is the linear transform of CT
r .
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3) Controller satisfy U̇ +KU =−φ ,

U = e−K(t−t0)U (t0)+ e−K(t)
∫ t

t0
eK(τ) [−φ (τ)]dτ

Where: K = (CrB)−1 (CrAB+CrB),

φ =

(CrB)−1 [
(
Cr +CrA+CrA2)X +(CrEH +CrAEH +CrEHG)ξ−Cd

(
Ẍd + Ẋd +Xd

)
]

Proof: choose Lyapunov function

V (e(t) , ė(t)) = e2 (t)+ ė2 (t) .

Then

V̇ = 2eė+2ėë

= 2
(
Ẏr− Ẏd

)(
Yr−Yd + Ÿr− Ÿd

)
= 2(CrẊr−CdẊd)(CrXr−CdXd +CrA2Xr +CrABU +CrBU̇

+(CrAEH +CrEHG)ξ −CdẌd)

(7)

Set

CrXr−CdXd +CrA2Xr +CrABU +CrBU̇ +(CrAEH +CrEHG)ξ −CdẌd

=−CrẊr +CdẊd

=−CrAXr−CrBU−CrEW +CdẊd

(8)

Transform the formula (8):

−CrBU̇−(CrAB+CrB)U =
(
Cr +CrA+CrA2)Xr +(CrEH +CrAEH +CrEHG)ξ

−Cd
(
Ẍd + Ẋd +Xd

)
(9)

Multiply −(CrB)−1 Equation (8) both sides then

U̇ +KU =−φ (10)

Where

K = (CrB)−1 (CrAB+CrB) .
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φ = (CrB)−1 [
(
Cr +CrA+CrA2

)
X

+(CrEH +CrAEH +CrEHG)ξ −Cd
(
Ẍd + Ẋd +Xd

)
]

equation (10) is the Nonhomogeneous linear differential equation, its solution is:

U = e−K(t−t0)U (t0)+ e−K(t)
∫ t

t0
eK(τ) [−φ (τ)]dτ

Set t0 = 0,U(0) = 0, then

U = e−K(t)
∫ t

t0
eK(τ) [−φ (τ)]dτ (11)

Substitute equation(11) to equation (7)

V̇ =−2(CrẊr−CdẊd)2 < 0 (12)

Proof end.

Different synchronization can be achieved by selecting drive system and response
system output matrix CdandCr, such as anti-chaos synchronization, chaos synchro-
nization projection.

3 Double-layer Vibration Isolation System

Double stage vibration isolation system is shown in Fig.1:{
m1ẍ1 + c1 (ẋ1− ẋ2)+ k1(x1− x2) = F
m2ẍ2 + c1 (ẋ2− ẋ1)+ k1(x2− x1)+ c2ẋ2 + k2x2 = Fu

(13)

Set µ = m1
m2

. ω1 =
√

k1
m1

. ξ1 = c1
2
√

m1k1
. ω2 =

√
k2
m2

. ξ2 = c2
2
√

m2k2
. f = F

k1
. fu = Fu

k1
.

The system equations change as following:{
ẍ1 +2ξ1ω1 (ẋ1− ẋ2)+ω2

1 (x1− x2) = ω2
1 f

ẍ2 +2µω1ξ1 (ẋ2− ẋ1)+ µω2
1 (x2− x1)+2ξ2ω2ẋ2 +ω2

2 x2 = µω2
1 fu

(14)

set X = [ x1 ẋ1 x2 ẋ2 ]T . Equations (1) can be written in matrix form:

Ẋ = AX +BU +E f (15)
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Figure 1: Double-layer Vibration Isolation System 
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The system equations change as following: 
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set [ ]1 1 2 2

T
X x x x x=   ，Equations (1)can be written in matrix form: 

X AX BU Ef= + +                                                 (15)     
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Choose the system output as following: 

r rY C X=                                                                 （16） 

Figure 1: Double-layer Vibration Isolation System

A =


0 1 0 0
−ω2

1 −2ξ1ω1 ω2
1 2ξ1ω1

0 0 0 1
µω2

1 2µξ1ω1 −
(
µω2

1 +ω2
2
)
−(2µξ1ω1 +2ξ2ω2)

 ,

B =


0
0
0

µω2
1

 , E =


0

ω2
1

0
0

 .

Choose the system output as following:

Yr = CrX (16)

From the demand of Theorem 1 we can get, the selection of Cr should make CrB
reversible and

[
A Cr

]
observable, B is the linear transform of CT

r ,choose Cr =[
0 0 0 1

]
satisfy the above conditions, then Yr = ẋ2.

4 Chaotic drive system

Duffing system is a typical nonlinear dynamic system, the following Duffing equa-
tion is selected:{

ẋd1 = xd2

ẋd2 =−axd2−bxd1− x3
d1 +qcos(ωt)

(17)
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When the parameters are set as a = 0.4. b =−1.1. ω = 1.8. q = 1.498, the system
become chaotic.

Figure 2: Duffing system xd1− xd2 phase portrait

The driving system output is chosen as: Yd = CdXd

where Cd =
[
cd 0

]
. Xd =

[
xd1 xd2

]T . then Yd = cdxd1.

5 Simulation

The parameters of the vibration isolation system are µ = 2. ω1 = 3.2113. ξ1 =
4.9038. ω2 = 10.7529 . ξ2 = 4.8978. f = 0.9091cos(6t). Cd =

[
10−3 0

]
.

The controller is designed according to Theorem 1. when the vibration isolation
system is uncontrolled, the ẋ2 is in periodic motion as shown in Figure 3; when
the control is applied to the vibration isolation system, synchronization is achieved
quickly as shown in Figure 4 in which the time histories of the errors is defined as
e = Yr−Yd . The time history of ẋ2 is shown in Figure 5, which indicates that ẋ2 is
not in periodic motion after control. As is known from the Theorem 1, the value
of cd directly affects the magnitude of ẋ2. The magnitude of ẋ2 deceases when cd
gets smaller, however the robustness to the initial disturbance of the system will
deteriorate whencdgets too small, so the value of cd is not necessarily the smaller,
the better.
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Figure 4: The time histories of the errors

6 Analysis the effect of vibration isolation

Since the external driving forces for passive isolation and active isolation are the
same, so the force size passed to the base system can directly reflect the effect of
vibration isolation. The force passed to the base by passive vibration isolation is

Fbase = k2x2 + c2ẋ2 (18)
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Figure 5: The time histories of ẋ2 controlled

Dimensionless transformation of equation (18) is as following:

fb = Fbase/m2 =
1

m2
(k2x2 + c2ẋ21) = ω

2
2 x2 +2ξ2ω2ẋ2 (19)

In Fig.6 the force passed to the base is periodic force when the system is uncon-
trolled. The force transmitted to the base caused by the spring and damping of
system can be expressed by equation (18) when the synchronization realized. The
time histories and the power spectrum of fb is shown in Fig.7 and Fig.8, which
shows that fb is chaotic, and the line spectrum does not appear in the power spec-
trum.

Because the actuator is installed between the m2 and the base, the force transmitted
to the base should consider the reaction force when active control is applied, which
can be written as:

Fbase = k2x2 + c2ẋ2 +Fu (20)

Where, Fu is the output of the actuator, dimensionless transformation of equation
(18) is as following:

fz = Fbase/m2 =
1

m2
(k2x2 + c2ẋ2 + fuk1) = ω

2
2 x2 +2ξ2ω2ẋ2 + µω

2
1 fu
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Figure 8 The power spectrum of bf  with chaos synchronization 

Because the actuator is installed between the m2 and the base, the force transmitted to the 
base should consider the reaction force when active control is applied, which can be 
written as: 

2 2 2 2base uF k x c x F= + +                                        （20） 

Where, uF is the output of the actuator, dimensionless transformation of equation (18) is 
as following: 

( ) 2 2
2 2 2 2 2 1 2 2 2 2 2 1

2

1
2z base u uf F m k x c x f k x x f

m
ω ξ ω μω= = + + = + +   

( )t s

bf  

Figure 7: The time histories of fb with chaos synchronization

From Figure 6 and Figure 9 the amplitude of the force passed to base is smaller
when chaos synchronization is applied. And Figure10 shows the amplitude of the
actuator output force is less than the amplitude of the external incentive system, it
means that the performance of vibration isolation system can be improved with less
energy. The power spectrum force transformed to base is shown in Figure 11, after
imposing active control synchronization, the force transformed to base is greatly
reduced, the power spectrum at the excitation frequency decreases by 25dB, but the
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Figure 8: The power spectrum of fb with chaos synchronization
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Figure 10 The output curve of actuator 
From Figure 6 and Figure 9 the amplitude of the force passed to base is smaller when 
chaos synchronization is applied. And Figure10 shows the amplitude of the actuator 
output force is less than the amplitude of the external incentive system, it means that the 
performance of vibration isolation system can be improved with less energy. The power 
spectrum force transformed to base is shown in Figure 11, after imposing active control 
synchronization, the force transformed to base is greatly reduced, the power spectrum at 
the excitation frequency decreases by 25dB, but the active vibration isolation system does 
not eliminate line spectrum characteristics. The main reason is that the actuator, which is 
installed between the lower quality and the base, generates the line spectrum. 
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Figure 9: The time histories of force passed to base with chaos synchronization

active vibration isolation system does not eliminate line spectrum characteristics.
The main reason is that the actuator, which is installed between the lower quality
and the base, generates the line spectrum.

7 Conclusion

Based on Lyapunov stability theory, a controller design method is put forward to
synchronize the outputs of a linear system with persistent disturbances with those
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Figure 11: The power spectrum of fore passed to base

of a chaotic system. The controller design method is applied in a double layer linear
vibration isolation to produce a persistent and steady chaotic motion by tracking the
outputs of a chaotic Duffing system.

1) The magnitude of ẋ2 deceases when cd gets smaller, however the robustness to
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the initial disturbance of the system will deteriorate when cd gets too small, so the
size of Cr should be selected considerably to ensure vibration isolation system has
both good vibration isolation performance and robustness.

2) It is verified that the power spectrum is a continuous spectrum and the character-
istics of line spectrum is eliminated when the double isolation system is in chaotic
motion. And additional line spectrum component is found in the power spectrum of
the force transmitted to the base, which produced by the actuator installed between
the lower mass and the base. However, the isolation performance is significantly
improved comparing with the passive isolation system.

3) As the theorem proposed in the paper indicates, the drive chaotic system for
vibration isolation system is not limited to Duffing system, other chaotic systems
can also be used as the drive system.
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