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Multiple Cracked Beam Modeling and Damage Detection
using Frequency Response Function

Z.G. Guo1 and Z. Sun1

Abstract: An efficient approach to identify multiple cracks in a slender beam
using the frequency response function data is presented. It is formulated in a gen-
eral form from the dynamic stiffness equation of motion for a structure and then
applied to a slender beam. The cracks are modeled by rotational springs and the
frequency response function is computed based on a spectral element model by the
spectral finite element. The procedure gives a linear relationship explicitly between
the changes of the measured frequency response function and crack parameters.
The inverse problem is solved iteratively for the depths and locations of the cracks
through the sensitivity-based model updating. Some numerically simulated tests on
beam examples are provided for validating the feasibility of the method to identify
the cracks. The results are generally agreement with the target values. Finally, the
effect of noise on the damage identification is discussed in the numerical examples.

Keywords: Cracks, Spectral element, Inverse problems, FRF, Vibration measure-
ment.

1 Introduction

Due to deterioration of materials, overloading, severe environment condition and
insufficient maintenance, the performance of civil infrastructural systems will de-
grade during their service life. Cracks or crack-like damage are observed in the
components of the degraded structure. The dynamic characteristic of the cracked
components should be monitored more carefully. This has generated many re-
searches on the vibration monitoring of components with one or more cracks (O.S.
Salawu(1997), A.C. Chasalevris and C.A. Papadopoulos(2006), A.S.Sekhar(2008)).

The majority of studies in the crack identification of a beam concern single crack
problem (H.P.Lin(2004)). Generally, crack is not singly distributed in a structural
component. The case of multiple cracks is received the same degree of attention
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(X.Q.Zhang et al (2010), D.P.Patil and S.K.Maiti (2003, 2005)), recently. Lee
(2009a) applied the Newton-Raphson method to identify k cracks using 2k natural
frequencies of the cracked beam, and he (2009b) had also used this method to detect
multiple cracks in a beam using the vibration amplitudes instead of the natural
frequencies.

The FRF-data (U.Lee and J.Shin(2002a, 2002b), S.J.Araujo et al (2005) ) had also
been used for the past two decades because of some advantages over using the
natural frequencies or modal shape. The major advantage of using FRFs is more
damage information can be obtained in a desired high frequency range than modal
shape. For structural numerical modeling and dynamic characteristic analysis in
high frequency range, the spectral element method is more attractive than the clas-
sical FEM method. The spectral element method uses the frequency dependant
shape functions in contrast to the constant polynomial shape functions employed
by finite element analysis to construct the element mass and stiffness matrices.
Thus it can accurately model structural dynamic characteristic in high frequency
range.

The objective of this study is to present a simple method for modeling transverse
vibration of beams with multiple cracks based on massless rotational spring model
and spectral element method. The formulation helps to calculate response data and
estimate cracks parameters through sensitivity-based model updating technique.

2 Crack modeling

The problem considered here is a beam element with a transverse crack (as shown
in Fig.1). The element has two nodes and two degrees of freedoms per node which
are transverse displacement and rotation. The length of element isL, and its area
of cross-section isA. The normalized depth and location of a crack are β1 = L1/L
andα1 = hd1/h, respectively. The cracks can be represented by massless rotational
springs. The equivalent spring stiffness for open crack (T.G.Chondros et al (1998))
is given by

K =
EI

6πh(1− v2) f (α)
(1)

f (α) =0.6272α
2−1.04533α

3 +4.5948α
4−9.973α

5 +20.2948α
6

−33.0351α
7 +47.1063α

8−40.7556α
9 +19.6α

10 (2)

where h is height and b is width of the beam. E, I and v are Young’s modulus,
moment of inertia and Poisson ration, respectively.
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The objective of this study is to present a simple method for modeling transverse vibration of beams with 
multiple cracks based on massless rotational spring model and spectral element method. The formulation 
helps to calculate response data and estimate cracks parameters through sensitivity-based model updating 
technique. 

2 Crack modeling 

The problem considered here is a beam element with a transverse crack (as shown in Fig.1). The element 
has two nodes and two degrees of freedoms per node which are transverse displacement and rotation. The 
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where h is height and b is width of the beam. E , I and v  are Young’s modulus, moment of inertia and 
Poisson ration, respectively. 
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Fig. 1. Beam element with a crack simulated by rotational spring 

For spectral element modeling, the elemental displacements have the following form for the left and right 
parts of the beam 

 1 1 2 3 4

2 5 6 7 8

sin cos sinh cosh

sin cos sinh cosh

u a kx a kx a kx a kx

u a kx a kx a kx a kx

= + + +
= + + +

 (3) 

where 4 2 /k m EIω=  is the wavenumber, , ( 1, 2, 8)ia i =   is the coefficients of the element given by 
boundary conditions. 

When 0x = , at the left end of the element 
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When 1x L= , at the crack location of the element 

Figure 1: Beam element with a crack simulated by rotational spring

For spectral element modeling, the elemental displacements have the following
form for the left and right parts of the beam

u1 = a1 sinkx+a2 coskx+a3 sinhkx+a4 coshkx
u2 = a5 sinkx+a6 coskx+a7 sinhkx+a8 coshkx

(3)

where k = 4
√

ω2m/EI is the wavenumber, ai,(i = 1,2, · · ·8) is the coefficients of
the element given by boundary conditions.

When x = 0, at the left end of the element

u1(x) = q1,
∂u1(x)

∂x
= q2 (4)

When x = L1, at the crack location of the element

u1(x) = u2(x)

K(
∂u2(x)

∂x
− ∂u1(x)

∂x
) = EI

∂ 2u1(x)
∂x2

∂ 2u1(x)
∂x2 =

∂ 2u2(x)
∂x2

∂ 3u1(x)
∂x3 =

∂ 3u2(x)
∂x3

(5)

When x = L, at the right end of the element

u2(x) = q3,
∂u2(x)

∂x
= q4 (6)
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From Eqs. (3)-(6), the boundary conditions can be written in a matrix form as

q1
q2
0
0
0
0
q3
q4


=



0 1 0
k 0 k

sinkL1 coskL1 sinhkL1
KT k coskL1− k2 sinkL1 −KT k sinkL1− k2 coskL1 KT k coshkL1 + k2 sinhkL1

−k2 sinkL1 −k2 coskL1 k2 sinhkL1
−k3 coskL1 k3 sinkL1 k3 coshkL1

0 0 0
0 0 0

1 0 0 0
0 0 0 0

coshkL1 −sinkL1 −coskL1 −sinhkL1
KT k sinhkL1 + k2 coskL1 −KT k coskL1 KT k sinkL1 −KT k coshkL1

k2 coshkL1 k2 sinkL1 k2 coskL1 −k2 sinhkL1
k3 sinhkL1 k3 coskL1 −k3 sinkL1 −k3 coshkL1

0 sinkL coskL sinhkL
0 k coskL −k sinkL k coshkL

0
0

−coshkL1
−KT k sinhkL1
−k2 coshkL1
−k3 sinhkL1

coshkL
k sinhkL





a1
a2
a3
a4
a5
a6
a7
a8


(7)

Eq. (7) can be simplified to be

q = P ·A (8)

The nodal forces at the two sides of the element is expressed in the matrix form as
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follows by Eq. (3)
F1
F2
F3
F4

=


−k3 0 k3 0 0 0 0 0

0 k2 0 −k2 0 0 0 0
0 0 0 0 k3 coskL −k3 sinkL −k3 coshkL −k3 sinhkL
0 0 0 0 −k2 sinkL −k2 coskL k2 sinhkL k2 coshkL





a1
a2
a3
a4
a5
a6
a7
a8


(9)

Eq. (9) can be simplified to be

F = Q ·A (10)

Eliminating the coefficients vector A from Eq. (8) and Eq.(10), the nodal forces to
nodal displacements relation can be obtained

F = Q ·P−1 ·q = z ·q (11)

where z is the dynamic stiffness matrix of the spectral element with a crack.

The elemental stiffness matrix is obtained and then assembled into the global stiff-
ness matrix. The compatibility of the elemental stiffness matrix is satisfied by
constraining each element displacement to match the displacement at the nodes.
Hence,

F = Z ·q (12)

where Z is the global dynamic stiffness matrix, which is the reciprocal of the trans-
fer function. This matrix includes the information of the crack, and is frequency
dependent.

3 Sensitivity based crack detection

For the detection of k cracks, the vector of updating parameters is

θ = [α1,β1,α2,β2, . . . ,αk,βk]T .
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The measurement vector is denoted to be q0 = [q0
11,q

0
12, . . . ,q

0
mn]

T , where m is the
number of excitation frequency points, n is the number of vibration amplitude
points selected. The corresponding vibration amplitude computed from the nu-
merical model isq = [q11,q12, . . . ,qmn]T .

The procedure for crack detection is applied as follows:

Assume initial parameters of α1,β1,α2,β2, . . .αk,βk;

Compute the vibration amplitude using Eq. (12) and the residual error is δq =
q0−q.

The sensitivity matrix, S, is the first derivative of q with respect to the updating
parameters θθθ . The sensitivity matrix S

S =


∂q11
∂α1

∂q11
∂β1

∂q11
∂α2

∂q11
∂β2

· · · ∂q11
∂αk

∂q11
∂βk

∂q12
∂α1

∂q12
∂β1

∂q12
∂α2

∂q12
∂β2

· · · ∂q12
∂αk

∂q12
∂βk

...
...

...
...

...
...

∂qmn
∂α1

∂qmn
∂β1

∂qmn
∂α2

∂qmn
∂β2

· · · ∂qmn
∂αk

∂qmn
∂βk

 (13)

and the derivatives for ∂q11/∂α1 is readily computed as

∂q11

∂α1
=

q11(α1 +δ ,β1,α2, · · · ,βk)−q11(α1,β1,α2, · · · ,βk)
δ

(|δ | � 1) (14)

Solve the equation

S ·δθθθ = δq (15)

The perturbation in the parameter vector is given as

δθθθ = [STS]−1ST
δq (16)

Update the crack parameters

θθθ new = θθθ old +δθθθ (17)

To avoid overshoots in the early stage an underrelaxation is achieved during the
foremost iterations ..#.

θθθ new = θθθ old +0.25δθ (18)

Solving Eq. (16) is equivalent to minimizing the function

J(δθθθ) = ||Sδθθθ −δq||2 (19)
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Iterate the procedures (b)-(e) until the following criterion is fulfilled

||θθθ k+1−θθθ k||
||θθθ k||

≤ tolerance (20)

where k denotes the kth iteration. The tolerance is taken as 1×10−9 in this study.

4 Numerical Tests

To validate the efficiency of the method, some numerically simulated damage iden-
tification tests are used to evaluate the feasibility of the presented method. A pro-
gram is written in Matlab to compute the displacement qi j when the beam is ex-
cited at frequency fi just as presented in Eq. (12). The length, height, width,
density, Young’s modulus and the Poisson ration of a cantilever beam are L=0.8m,
h=0.02m, b=0.02m, ρ=7850kg/m3, E=181GPa and v=0.29, respectively.

Fig.2 shows the depths and locations of the double cracks placed on the cantilever
beam. Analytically predicted FRFs are used for the numerically simulated cracks
estimation tests. The vibration amplitude at x = 0.24,0.4,0.64m are computed by
applying a harmonic point force atx = 0.8m. It is worthwhile to note that how to
choose the excitation frequency points is very important for the successful damage
identification. Lee and Shin (2002b) recommended to choose the frequency points
near the resonance peaks in the low-frequency range. Therefore, the excitation
frequencies are set to be f1 = 80Hz, f2 = 160Hz, f3 = 240Hz and f4 = 320Hz.

(g) Iterate the procedures (b)-(e) until the following criterion is fulfilled 

 1|| ||

|| ||
k k

k

tolerance+ −
≤  (20) 

where k  denotes the kth iteration. The tolerance is taken as 91 10−×  in this study. 

4 Numerical Tests 

To validate the efficiency of the method, some numerically simulated damage identification tests are used 
to evaluate the feasibility of the presented method. A program is written in Matlab to compute the 
displacement ijq  when the beam is excited at frequency if  just as presented in Eq. (12). The length, 

height, width, density, Young’s modulus and the Poisson ration of a cantilever beam are L=0.8m, 
h=0.02m, b=0.02m, ρ =7850kg/m3, E=181GPa and v=0.29, respectively.  

Fig.2 shows the depths and locations of the double cracks placed on the cantilever beam. Analytically 
predicted FRFs are used for the numerically simulated cracks estimation tests. The vibration amplitude at 

0.24, 0.4, 0.64 mx =    are computed by applying a harmonic point force at 0.8 mx =  . It is worthwhile to note 
that how to choose the excitation frequency points is very important for the successful damage 
identification. Lee and Shin (2002b) recommended to choose the frequency points near the resonance 
peaks in the low-frequency range. Therefore, the excitation frequencies are set to be 1 80Hzf = , 2 160Hzf = , 

3 240Hzf =  and 4 320Hzf = . 

L

β 2

β 1

α1 α2

=Measurenment points =Excitation point  
Fig. 2. Cantilever beam with double cracks considered for numerically simulated tests 

Table 1 presents a typical set of multiple damaged cases and the predicted values. The depth and location 
of cracks are generated as random numbers. The accuracy of predictions shown in Table 1 indicates that 
the method can accurately identify the depth and location of multiple cracks. 

Table 1 Multiple damage detection cases and results without noise 

Actual data Initial guess Estimated data 
Case no. 

1α  2α  1β  2β  1α 2α 1β 2β 1α 2α  1β  2β  

1 0.18 0.3 0.46 0.62 0.1 0.1 0.4 0.6 0.18 0.3 0.46 0.62 

2 0.39 0.41 0.33 0.65 0.1 0.1 0.4 0.6 0.39 0.41 0.33 0.65 

3 0.21 0.16 0.31 0.78 0.1 0.1 0.4 0.6 0.21 0.16 0.31 0.78 

4 0.21 0.18 0.48 0.6 0.1 0.1 0.4 0.6 0.21 0.18 0.48 0.6 

5 0.17 0.35 0.32 0.63 0.1 0.1 0.4 0.6 0.17 0.35 0.32 0.63 

6 0.21 0.18 0.21 0.22 0.1 0.1 0.4 0.6 0.21 0.18 0.21 0.22 

7 0.22 0.32 0.26 0.70 0.1 0.1 0.4 0.6 0.22 0.32 0.26 0.70 

Figure 2: Cantilever beam with double cracks considered for numerically simulated
tests
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Table 1 presents a typical set of multiple damaged cases and the predicted values.
The depth and location of cracks are generated as random numbers. The accuracy
of predictions shown in Table 1 indicates that the method can accurately identify
the depth and location of multiple cracks.

Table 1: Multiple damage detection cases and results without noise

Case no.
Actual data Initial guess Estimated data

α1 α2 β1 β2 α1 α2 β1 β2 α1 α2 β1 β2

1 0.18 0.3 0.46 0.62 0.1 0.1 0.4 0.6 0.18 0.3 0.46 0.62
2 0.39 0.41 0.33 0.65 0.1 0.1 0.4 0.6 0.39 0.41 0.33 0.65
3 0.21 0.16 0.31 0.78 0.1 0.1 0.4 0.6 0.21 0.16 0.31 0.78
4 0.21 0.18 0.48 0.6 0.1 0.1 0.4 0.6 0.21 0.18 0.48 0.6
5 0.17 0.35 0.32 0.63 0.1 0.1 0.4 0.6 0.17 0.35 0.32 0.63
6 0.21 0.18 0.21 0.22 0.1 0.1 0.4 0.6 0.21 0.18 0.21 0.22
7 0.22 0.32 0.26 0.70 0.1 0.1 0.4 0.6 0.22 0.32 0.26 0.70
8 0.28 0.30 0.35 0.46 0.1 0.1 0.4 0.6 0.28 0.30 0.35 0.46
9 0.35 0.34 0.27 0.35 0.1 0.1 0.4 0.6 0.35 0.34 0.27 0.35
10 0.20 0.17 0.29 0.45 0.1 0.1 0.4 0.6 0.20 0.17 0.29 0.45
11 0.47 0.23 0.25 0.45 0.1 0.1 0.4 0.6 0.47 0.23 0.25 0.45
12 0.27 0.21 0.31 0.58 0.1 0.1 0.4 0.6 0.27 0.21 0.31 0.58
13 0.22 0.23 0.44 0.51 0.1 0.1 0.4 0.6 0.22 0.23 0.44 0.51
14 0.31 0.20 0.40 0.50 0.1 0.1 0.4 0.6 0.31 0.20 0.40 0.50
15 0.14 0.21 0.37 0.65 0.1 0.1 0.4 0.6 0.14 0.21 0.37 0.65
16 0.26 0.13 0.44 0.53 0.1 0.1 0.4 0.6 0.26 0.13 0.44 0.53
17 0.37 0.36 0.34 0.45 0.1 0.1 0.4 0.6 0.37 0.36 0.34 0.45
18 0.18 0.25 0.47 0.89 0.1 0.1 0.4 0.6 0.18 0.25 0.47 0.89
19 0.45 0.17 0.41 0.62 0.1 0.1 0.4 0.6 0.45 0.17 0.41 0.62
20 0.34 0.20 0.41 0.57 0.1 0.1 0.4 0.6 0.34 0.20 0.41 0.57

To investigate the robustness of the presented algorithm, random experimental
noise is simulated in the numerical studies. An e% random noise is added to the
simulated structural FRFs. Structural FRF contaminated with e% random noise can
be described as

q̄ = q
(

1+
e

100
× randn

)
(21)

where q̄ and q are structural FRF with noise and without noise respectively; and
randn is the random number with a mean equal to zero and a variance equal to one
which can be generated by random number generator function in Matlab.
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The approach is also applied to estimate the depth and location of double cracks
using the contaminated data. The level of noise is controlled and four level of e
are set to be 0.1, 0.2, 0.5 and 1, respectively. The parameters α1, α2, β1 and β2
are 0.2, 0.3, 0.3175 and 0.6813, respectively. The crack parameters are estimated
twenty times for each noise level, and the mean values and standard deviations for
each noise level are given in Table 2. It shows that the accuracy of damage identi-
fication decreases gradually as the level of random noises in FRF increases. Thus,
to eliminate the effect of noise and successfully estimate the depth and location of
cracks, it is certainly required to acquire accurate experimentally measured FRFs
and average the identified results.

Table 2: Mean values and standard deviations of the crack parameters with noise

e ᾱ1 σα1 ᾱ2 σα2 β̄1 σβ1 β̄2 σβ2

0.1 0.19902 0.00699 0.30048 0.00306 0.31777 0.01364 0.68202 0.00429
0.2 0.21003 0.01625 0.29874 0.00786 0.31216 0.02856 0.68186 0.00963
0.5 0.21915 0.03518 0.29299 0.01474 0.32260 0.02774 0.68314 0.01843
1 0.25090 0.03528 0.27862 0.02272 0.32763 0.03890 0.68602 0.02396

5 Conclusions

A efficient method for estimation both the depth and location of cracks in beams
has been presented. The open edge crack is modeled as a rotational spring. A new
spectral element modeling of a beam with a transverse open crack has been success-
fully elaborated. The changes in the frequency response function of the beam due
to the crack are used, which are computed using the spectral element method based
on Euler-Bernoulli beam theory. The sensitivity-based model updating method has
been used for the estimate of the depth and location of cracks. The numerical re-
sults indicate the current approach is capable of detecting the size and location of
double cracks. Moreover, the cracks can be accurately estimated even if the mea-
surements are polluted with random noise. The accuracy of damage identification
decreases gradually as the level of random noises in FRF increases.
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