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Large Strain Consolidation Stochastic Finite Element
Method for Soft-clay Road Embankment Analysis

Li Tao1,2, Gao Jian2, Zhang Yi-ping3

Abstract: This paper presents a method for the large strain consolidation analy-
sis of soft-clay road embankment with stochastic parameters to random excitation.
Based on the large strain theory of continuum material, Biot consolidation theory
and Neumann stochastic finite element method (NSFEM), the large strain consoli-
dation NSFEM (LSC-NSFEM) has been established. A program of LSC-NSFEM
is designed to analyze soft-clay road embankment. The residue iteration method is
used to deal with the nonlinear fluctuating part of stiffness matrix, and the approx-
imate algorithm of the fluctuating part of stiffness matrix is designed to improve
LSC-NSFEM program efficiency.

Keywords: Soft-clay Road Embankment; Large Strain; Consolidation; Neumann
Stochastic Finite Element Method

1 Introduction

The deformation analysis is one of the most important research themes in geotech-
nical engineering, and the consolidation settlement analysis is the key to deal with
the deformation analysis for soft clay foundation. Since Terzaghi[15] put forward
the one-dimensional consolidation theory, the investigation of soil consolidation
settlement theory has been developing quickly. With the expansion of the computer
technologies, numerical methods are comprehensively used in settlement analysis,
and have improved the investigation of soil consolidation settlement theory.

With the enhancement of consolidation theory research, Biot consolidation method[1]

assuming low strain has been found unsuitable for the actual situation. There-
fore the issue of large strain consolidation analysis based on continuum mechanics
started in 1970’s and was researched widely. 2D large strain consolidation model
under the Eulerian description was built by Cater et al[3] in 1977, and analyzed
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by finite element method (FEM). The difficulty in this method is due to consti-
tutive equations built by Green strain rate tensor and Jaumann stress rate tensor.
Afterwards, Chopra and Dargush[4] derived a FEM for the large strain consolida-
tion problem based on the material description and virtual work principle. The
subjective tensor: first Piola-Kirchhoff stress tensor was employed in consolidation
equations, and other objective tensors were used in constitutive equations bringing
in the complexity. Based on the continuum model of saturated soils and the axiom-
atized theories in classic continuum mechanics, Ding[6] proposed a mathematical
framework of continuum consolidation theory taking variable-mass effect into ac-
count during consolidation process. Within the framework of Ding’s theory, Trues-
dell rate-type constitutive relation is introduced into the geometrically-nonlinear
consolidation analysis as well as simplified Jaumann stress rate-type and the other
cases.

In the last two decades, stochastic finite element methods (SFEM) have a rapid de-
velopment due to the spectacular improvement of computing power resources[12].
In conjunction with SFEM, the expansion of the inverse of the stochastic global
stiffness matrix in a Neumann series had been treated by several researchers, namely
Shinozuka, Yamazaki et al[14,16,17], and Ghanem and Spanos[7,8] in the late 1980’s.
Zhao Lei[18] presented a method of Neumann SFEM for the dynamic analysis of
structures with stochastic parameters to random excitation. Excellent agreement
between the results of this method and those obtained by the direct Monte Carlo
simulation (M.C.S.) indicate that this approach is satisfactory for dynamic analysis
of structures with stochastic parameters with respect to accuracy, convergence and
computational efficiency.

SFEM has also been applied to the analysis of stochastic geotechnical problems[10],
as well as to the analysis of structures with uncertain material, geometric parameters[2,9,11]

and uncertainties in time domain such as random loads[5]. Due to the complexity of
SFEM formulation, its application to nonlinear and multidimensional consolidation
in geotechnical engineering is still very limited. The settlement analysis based on
Biot consolidation theory has been initiated by Nishimura[13] using direct M.C.S.
Further development is made by Guo and Liu[10] using Taylor SFEM considering
the representation of stochastic field.

In this paper, we propose a finite element analysis method based on the large strain
theory of continuum material, Biot consolidation theory and Neumann SFEM.
Then, the results from Neumann SFEM are compared with those from the direct
M.C.S. with respect to accuracy, convergence and efficiency.
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2 LSC-NSFEM

2.1 Large strain Biot’s consolidation FEM

In the large strain Biot consolidation FEM, fundamental unknown variables are
displacements and excess pore pressure. Base on the equilibrium, virtual work,
geometry and constitutive equations, the large strain Biot FE equation within a
certain time interval has the following form:

K̃iδ∆ui = Ri (1)

Where i means the i-th time interval, K̃i indicates the large strain consolidation
stiffness matrix in this time interval; and Ri indicates the increment of equivalent
stress and flow in the same time interval. ∆ui is the unknown variables increment
in this time interval, so the unknown variables ui can be generated by:

ui =
i

∑
k = 1

δ∆uk (2)

2.1.1 FE equation linearization

Large strain consolidation FE equation is nonlinear because of stiffness matrix K̃i

dependence on ∆ui. K̃i linearized FE equation presents as

K̄iδ∆ūi = Ri (3)

Where K̄i indicates linearized stiffness matrix of soil skeleton, δ∆ūi is the lin-
earized unknown variables.

2.1.2 The residue iterative method

Based on δ∆ūi got from Eq.(3), the accuracy achieved in δ∆ui may be calculated
using the modified Newton-Raphson method.. This iterative method is popular in
solid and soil mechanics nonlinear total stress analysis method, and the calculation
of the out-of-balance force is the key of this method. In consolidation iteration
method, it is to calculate not only the out-of-balance force but also the out-of-
balance water pressure. Ding[6] brings up the out-of-balance quantity to describe
it. In the iterative processes, when the k-th iterative approximate solution ∆u(k)

i is
given, the out-of-balance quantity Φi

(
∆u(k)

)
can be calculated as follows:

Φi

(
δ∆u(k)

)
= K̃(k)

i δ∆u(k)
i −R(k)

i (4)
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Where δ∆u(k)
i means the k-th iterative approximate solution in LSC problem at the

i-th time interval, K̃(k)
i indicates nonlinear stiffness matrix of soil skeleton in LSC

problem that corresponds to δ∆u(k)
i , and R(k)

i is the increment of equivalent stress
and flow corresponding to ∆u(k)

i in i-th time interval. Φi
(
δ∆u(k)

)
is the out-of-

balance vector that weighs ∆u(k)
i deviation the balance.

If Φi
(
δ∆u(k)

)
6= {0}, ∆u(k + 1)

i can be expanded in the first order Taylor series of

δ∆u(k)
i .

δ∆u(k + 1)
i = ∆u(k)

i +φ

(
δ∆u(k)

i

)
(5)

Assumed that δ∆u(k + 1)
i can meet out-of-balance quantity being zero, then,

Φi

(
δ∆u(k+1)

)
= Φi

(
∆u(k)

)
+

(
dΦ

d(δ∆u)

)(k)

φi

(
∆u(k)

)
= 0 (6)

Where
(

dΦ

d(∆u)

)(k)
means the tangent stiffness matrix, and can be defined as follows:

K(k)
t =

(
dΦ

d(δ∆u)

)(k)

(7)

So φi
(
δ∆u(k)

)
, the amendment of k-th iterative approximate solution at the i-th

time interval, can be calculated as follows:

φi

(
δ∆u(k)

)
=−

(
K(k)

t

)−1
Φi

(
∆u(k)

)
=−

(
K(k)

t

)−1 (
K̃(k)

i ∆u(k)
i = Ri

)
(8)

Where K(k)
t indicates the tangent stiffness matrix that corresponds to δ∆u(k). We

use K(k)
t = K̃(k)

i for convenience, where K̃(k)
i is nonlinear stiffness matrix that corre-

sponds to ∆u(k)
i .

(
K̃(0)

i

)−1
can be used to replace of

(
K̃(k)

i

)−1
in modify Newton-

Raphson method. Where K̃(0)
i means the nonlinear stiffness matrix that corresponds

to ∆u(0)
i , and ∆u(0)

i = ∆ūi is gained from linearized FE equation.

2.2 Neumann SFEM

Neumann expansion method has developed and is applied to the equation for deriv-
ing the statistical solution within the framework of Monte Carlo simulation. In
conjunction with stochastic finite elements, the expansion of the inverse of the
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stochastic global stiffness matrix in a Neumann series, so called as NSFEM, is
presented by Shinozuka, Yamazaki et al[14,16,and17] and Ghanem and Spanos[7,8].

The stiffness matrix K1 is considered with random effect, and the increment vector
of equivalent stress and flow R isn’t. For reduced calculation, the stiffness matrix
Ki is decomposed into two matrices:

Ki = K0i+δKi (9)

Where K0i represents the part of quasi-static equivalent stiffness matrix in which
stochastic variables are replaced by their mean values, and K1 consists of compo-
nents representing the fluctuating part of the corresponding components in Ki. Via
Neumann expansion, K−1

i takes the following form:

K−1
i = (K0i +δKi)

−1 =
(
I = P+P2−P3 + · · ·

)
(K0i)

−1 (10)

Where I is the identity matrix, and P is written as

P = (K0i)
- 1

δKi (11)

The calculation of K−1
i cannot be generally performed efficiently in direct Monte

Carlo simulation. The Neumann expansion of inverse of the stochastic global stiff-
ness matrix has the advantage that only the non-fluctuating part of the stiffness
matrix has to be inverted and this is only once. Due to this, the need of CPU-time
can be greatly reduce.

The unknown variation δ∆ui may be given by the following form

δ∆ui = K−1
i Ri = δ∆u0i = Pδ∆u0i +P2

δ∆u0i−P3
δ∆u0i + · · · (12)

Once δ∆u0i = (K0i)
−1 Ri is obtained, every subsequent δ∆uri is determined from

δ∆uri == (K0i)
−1

δKiδ∆ur−1 (r = 1,2,3, · · ·) (13)

So δ∆ui can be written as

δ∆ui = ∆u0i +δ∆u1i +δ∆u2i +δ∆u3i + · · ·= ∑
r=0

δ∆uri (14)

2.3 LSC-NSFEM

We can combine the large strain consolidation FEM with the Neumann expan-
sion to establishing the SFEM, so-called LSC-NSFEM, for analysis soft soil with
stochastic parameters.
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Since the stiffness matrix Ki is nonlinear affected by large strain, δK and ∆uri in
Eq.(8) becomes nonlinear. Using (̃) to denote nonlinear, Eq.(8) now may be written
as

δ∆ũri =
(
K̃−1

0 δ K̃
)
(δ∆ũr−1)i (15)

To solve this nonlinear equation, the first step is linearizing Eq.(15).

Introducing (̄) denotes linearizing, therefore

δ K̄ = K̄− K̄0 (16)

Consequently, the linearized unknown variation δ∆ūi is given by

δ∆ūi = ∑
r=0

(δ∆ūr)i (17)

Where

(δ∆ūr)i =
(
K̃−1

0 δ K̄
)
(δ∆ūr−1)i (18)

The second step is using modify Newton-Raphson method to calculate δ∆ui. The
out-of-balance quantity Φ

(
δu(k)

)
can be computed

Φ

(
δu(k)

)
=

(
K̃0+δ K̃

)
δu(k−1) = R (19)

and the modified vector

φ

(
δu(k)

)
=−

(
K̃0+δ K̃

)−1
Φ

(
δu(k)

)
(20)

The iterative formulas of unknown variations increment can be written as

δu(k)= δu(k−1)+φ

(
δu(k)

)
(21)

2.4 The nonlinear part of fluctuating stiffness matrix

In LSD-NSFEM, the nonlinear unknown variations increment δu(k) need to be it-
erated for each simulation leading to an enormous amount of CPU time.

Approximatively, using the unknown variations increment of deterministic part re-
places in each simulated. Partially neglecting the nonlinear part of fluctuating stiff-
ness matrix can obviously improve the efficiency of LSC-NSFEM, it can be named
as “partial” LSC-NSFEM., and the method of considering the nonlinear fluctuating
part may be called “total” LSC-NSFEM.
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Furthermore, absolutely neglecting the nonlinear part of fluctuating stiffness ma-
trix, Eq.(13) can be written as

δur =
(
K̃−1

0 δ K̄
)

δur−1 (22)

It was called as “linear” LSC-NSFEM.

3 Numerical Example

3.1 Finite element model

The “partial” and “linear” LSC-NSFEM both would bring in the error of calculat-
ing. To elucidate LSC-NSFEM with respect to the accuracy and efficiency, a 2D
soil finite element model (Fig.1) is studied, and the deterministic and stochastic
parameters in Gaussian stochastic field are given in table 1.
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Figure 1: Finite element mesh

Where E is strain modulus, µ means the Poisson ratio of the soil, γw means weight
of dry soil and kx(y,z) is permeability coefficient.
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Table 1: The soil model parameters

Symbol Layer 1 Layer 2 Variation Coefficient
E E1 = 948(kPa) E2 = 1740(kPa) 0.3
µ µ1 = 0.301 µ2 = 0.301 0.25
γw γw1 = 16.3(kN / m3) γw2 = 17.4(kN / m3) 0
kx kx = 10−4(cm / s) kx = 10−4(cm / s) 0
ky ky = 10−4(cm / s) ky = 10−4(cm / s) 0
kz kz = 3×10−5(cm / s) kz = 3×10−5(cm / s) 0.25

(consolidation area) (consolidation area)
kz = 1×10−6(cm / s) kz = 1×10−6(cm / s)

3.2 Numerical results and analysis

Using 20000 samples, the results of the expected value of maximum surface set-
tlement vs. time computation by four methods (direct Monte-Carlo simulation,
“total” LSC-NSFEM, “partial” LSC-NSFEM and “linear” LSC-NSFEM) are com-
pared with the deterministic result shown in Figs 2, and the curve of load vs. time
is also shown in Fig.2. It shows that the results of all these methods are very close.

The contours of settlement standard deviation are plotted in Fig.3-6 with the results
of four methods. The small difference shows that the same accuracy of the LSC-
NSFEM is comparable to the direct M.C.S.

Table 2 compares the CPU time by four methods. The direct M.C.S (direct Monte-
Carlo simulation) requires more time than any other method, and the “linear” LSC-
NSFEM requires the least amount of CPU time, as expected. However, the “total”
and “partial” LSC-NSFEM requires by far greater amount of CPU time than the
“linear” method, though there is still much more efficiency than direct M.C.S.

Table 2: Comparison of CPU Time

direct M.C.S. “total” LSC-NSFEM “Partial” LSC-NSFEM “linear” LSC-NSFEM
5:27a 4:45 2:49 2:08

a Hour: minute

3.3 Conclusions

The research work was mainly concerned with the six following aspects:

(1) With the impact of large strain consolidation, the fluctuating part of stiffness ma-
trix is included in fundamental unknown quantity. The residual iteration method is
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used to deal with the nonlinear fluctuating part of stiffness matrix, and the approx-
imate calculation methods of fluctuating part of stiffness matrix were discussed.
The approximate algorithms are chosen to simplify FEM calculation, which im-
prove the efficiency and not damage the accuracy of solution.

(2) The FEM calculation of simplified soft-clay road embankment model was car-
ried out. The laws of time-dependent and distribution in special of mean and vari-
ance of settlement were analyzed in detail.

(3) Taking the 2D model for example, the result of LSC-NSFEM was compared
with Monte-Carlo direct simulation FEM. All results show that the program pre-
sented in this paper is validity and effective.

(4) The settlement standard deviation in consolidation reinforced area is higher than
the other place standard deviation in respect of the same depth. It is proved that the
settlement in consolidation area is more effected by soil parameters stochastic.

(5) The result of FEM shows that the settlement standard deviation is higher with
the increase of depth and minimum in shoulder.

(6) Comparing the CPU time by different methods, the direct M.C.S requires more
time than any other method, and the “linear” LSC-NSFEM requires the least amount
of CPU time, as expected. However, the “total” and “partial” LSC-NSFEM requires
by far greater amount of CPU time than the “linear” method, though there is still
much more efficiency than direct M.C.S.
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