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A New Combined Scheme of Discrete Element Method and
Meshless Method for Numerical Simulation of Impact

Problems
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Abstract: In the present paper, a combined scheme of discrete element method
(DEM) and meshless method for numerical simulation of impact problems is pro-
posed. Based on the basic principle of continuum mechanics, an axisymmetric
DEM framework is established for modeling the elastoplastic behavior of solid
materials. A failure criterion is introduced to model the transformation from a con-
tinuum to a discontinuum. The friction force between contact elements is also con-
sidered after the failure appears. So our scheme can calculate not only the behavior
of continuum and discontinuum, but also the transformation process from contin-
uum to discontinuum. In addition, a meshless interpolation method is adopted to
calculate the strain tensor, which is a non-local data fitting algorithm. Numeri-
cal simulations are carried out to validate our scheme. The numerical results agree
well with those obtained by the finite element method (FEM) and the corresponding
experiment respectively, which proves the feasibility and reliability of our compu-
tational scheme for analyzing the impact problems.

Keywords: Discrete element method; Meshless method; Impact problems; Ax-
isymmetric framework; Algorithm of strain tensor

1 Introduction

Various mechanical phenomena can be observed in materials and structures under
impact loading. Accurate description and modeling of those phenomena is a very
challenging task for traditional mesh relied and continuum-based numerical meth-
ods, such as the finite element method (FEM) and the boundary element method
(BEM). Some certain inherent drawbacks are well recognized: severe element dis-
tortion under large deformation; frequent re-meshing; mass losing while damage
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appears, etc. All the drawbacks are caused by their reliance on meshes and the
unsuitability for dealing with discontinuum.

The discrete element method (DEM), which was first proposed by Cundall [Cundall
(1971)], has been proved to be a powerful and versatile numerical tool for modeling
behaviors of discontinuum. In recent years, Liu et al. [Liu, Gao and Tanimura
(2004); Liu and Gao (2003); Liu and Liu (2006); Cheng, Liu and Liu (2009);
Shan, Cheng, Liu, Liu and Chen (2009)] established a framework for developing
the DEM as a general method.

The basic physical variables calculated in the DEM are internal forces between
contact elements and displacements of elements, rather than strain tensor and stress
tensor. An interpolation approach is adopted to determine the displacement gradi-
ent tensor, and then the strain tensor is calculated from the displacement gradient
tensor. Most of the currently used interpolation approaches are linear interpola-
tions, and a higher order interpolation approach is necessary to be introduced into
the DEM.

In recent years, many meshless methods are introduced, which have been used
in solving many engineering problems, such as elasto-statics and elasto-dynamics
problems [Atluri and Zhu (2000); Han and Atluri (2004); Gao, Liu and Liu (2006)].
The meshless interpolation methods used in meshless methods are non-local data
fitting algorithms entirely based on nodes, which are higher order interpolation
approach suitable to the DEM.

2 Elastoplastic DEM model

As shown in Fig. 1 (B), for the axisymmetric problem, a continuum is separated
into assemblages of circular ring elements which have the same section radius.
Each element is surrounded by six elements as illustrated in Fig.1 (A), which forms
regular hexagon lattice. The neighboring elements are linked by normal and tan-
gential links and each link is combined by a spring and a plastic link as shown in
Fig.1 (C).

As illustrated in Fig. 1 (D), taking the neighboring elements i and j into considera-
tion, we can set up two Cartesian coordinate systems, one of which is for the global
cylindrical coordinate system (r, z) and the other one is for the local coordinate
system (n, s). Similar to the derivation of equations of motion presented in the ref-
erence [Cheng, Liu and Liu (2009)], the equations of motion for the axisymmetric
problem can be derived.

Based on the basic principles of continuum mechanics, the spring constants kn, ks
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Figure 1: Discrete element model based on circular ring elements. A: discrete ele-
ment discretization of a continuum. B: an assemblage of circular ring elements. C:
normal and tangential links between neighboring elements. D: the global cylindri-
cal coordinate system and the local coordinate system.

and the parameters of plastic links λn, λs are:

kn = EVi
3R2

i (1+ν)(1−2ν) , ks = (1−4ν)EVi
3R2

i (1+ν)(1−2ν)

λn = 1
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3(1−6ν+8ν2)

, (1)

where Vi and Ri are the volume and the section radius of the circular ring element i,
respectively, E and ν are the Young’s modulus and the Poisson’s ratio, respectively.

The von Mises yield criterion and the flow rule of our DEM model can be expressed
as
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where fn = knun, fs = ksus, σs is the yield stress, G is the shear modulus, dup
n and

dup
s are the plastic displacement increments along normal and tangential direction,

respectively, φ is the subsequent yield surface, dλ is a positive proportionality co-
efficient.
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The loading and unloading function can be written as
ϕ( fn, fs) < 0 elasticity
ϕ( fn, fs) = 0,dϕ ≥ 0 loading
ϕ( fn, fs) = 0,dϕ < 0 unloading

(3)

3 Failure criterion and determination of friction force

We introduce the maximum tensile stress criterion and the maximum compressive
stress criterion as the failure criteria. For the numerical calculation after failure, the
friction force in the tangential direction between contact elements is also consid-
ered.

4 A new algorithm of strain based on meshless interpolation method

In our algorithm, we consider the center of the element in the DEM as the node
in the meshless method. Since displacements of all nodes have been calculated in
the DEM, a meshless interpolation method will be adopted to calculate the strain
tensor.

The trial function uh (x) at the point x = [x,y]T for the approximation of displace-
ment is

uh(x) = pT(x)A−1(x)B(x)uI, x ∈Ωx, (4)

where Ωx is a sub-domain around the point x, A(x) =
n
∑

I=1
wI(x)p(xI)p

T(xI), B(x) =

[w1(x)p(x1),w2(x)p(x2), · · · ,wn(x)p(xn)], p(x) = [p1 (x) , p2 (x) , · · · , pm (x)]T is a
complete basis vector, in which m is the number of terms in the basis, xI and uI

are the position vector and the displacement vector of node I, respectively, wI(x) =
w(x−xI) is the weight function. Then the strain tensor and the stress tensor can be
obtained.

5 Numerical examples and discussion

Taylor bar test is used to measure dynamics yield stress, which is firstly designed
by Taylor [Taylor (1948)]. We simulate a small cylindrical copper bar against a
rigid planar wall by using the elastoplastic DEM model for the axisymmetric prob-
lem. The bar has an initial radius 3.2mm and an initial length of 32.4mm. The
initial velocity of the bar is 227 m/s and the termination time of the problem is
80µs. In addition, the LS-Dyda software is also used to analyze this example. Tab.
1 lists the maximum radius and the residual length of the bar calculated by our
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scheme, the LS-Dyna and the corresponding experiment [Taylor (1948)], respec-
tively. The results calculated by the DEM scheme agree well with those calculated
by the FEM software and the experiment, which demonstrate that our DEM model
has the same reliability with the FEM. Fig. 2 shows the deformed shapes at time
80µs obtained by the DEM and the LS-Dyna respectively. The numerical results
show that the final deformed shape obtained by our scheme is in good agreement
with that obtained by the FEM software.

Table 1: The maximum radius and the residual length of the bar calculated by the
DEM, the LS-Dyna and the experiment.

The maximum radius (mm) The residual length (mm)
DEM 7.11 21.47

LS-Dyna 7.15 21.00
Experiment 7.21-7.24 21.42-21.44

      
(a)       (b) 

 
Figure 2: The deformed shapes at time 80µs. (a) The DEM result. (b) LS-Dyna
result.

Post compressive failure fragmentation (PCFF) occurs during the quasi-static com-
pressive tests of brittle material specimens. Fig. 3 shows the explosive fragmen-
tation of alumina cylinder under quasi-static compression obtained by the experi-
ment [Zhou and Wang (2009)]. We use the scheme proposed in the present paper
to simulate the PCFF process in the quasi-static compressive test of the alumina
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cylindrical specimen. The lower end of the cylinder is fixed and the upper end is
applied a uniform speed 0.01 mm/s. The explosive fragmentation at various stages
of the numerical simulation is shown in Fig. 4. The alumina cylinder explosively
bursts into small pieces, which occurs in a very short time. Comparing Fig. 4 with
Fig. 3, we can see that the numerical simulation results are in good agreement with
the experiment results.

 
Figure 3: The explosive fragmentation of alumina cylinder under quasi-static com-
pression obtained by the experiment [Zhou and Wang (2009)].

6 Conclusions

Summarizing the studies above, we can believe that the combined scheme of the
DEM and the meshless method proposed in this paper is efficient for the numer-
ical simulation of the impact problems. By comparing the numerical results with
the corresponding results obtained by the FEM and experiments, the feasibility and
reliability of our computational scheme are demonstrated. The numerical scheme
proposed in the present paper offers a number of attractive features in simulating
elastoplastic materials. Our combined scheme extends the application range of the
DEM and also creates a new way for simulating the impact problems. Extending
the present model to 3D problems and establishing computer models for viscoplas-
tic materials will be carried out in the future.
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Figure 4: The explosive fragmentation of alumina cylinder under quasi-static com-
pression obtained by the numerical simulation.
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