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Implement and validation of Viscous Numerical Wave
Flume Based on Finite Element Method and CLEAR-VOF
Method

L. Lu' and B. Teng’? and B. Chen?

Abstract: This work describes the numerical implements of a two-dimensional
viscous Numerical Wave Flume (NWF), which is based on the Finite Element
Method (FEM), Computational Lagrangian-Eulerian Advection Remap Volume of
Fluid Method (CLEAR-VOF), internal wave generation and artificial wave damp-
ing. Owning to the inherent consistence of CLEAR-VOF with FEM, it allows the
simulations to be conducted in the context of irregular mesh partition. The present
numerical wave flume is validated by the problems of standing wave trains in front
of vertical wall, liquid sloshing in container with multi-baffles, solitary wave prop-
agation and diffusion over vertical step, wave-induced fluid resonance in narrow

gaps.

Keywords: Numerical wave flume, N-S equation, Finite Element Method, CLEAR-
VOF.

1 Introduction

Numerical simulations based on viscous fluid theory have become more and more
popular in ocean engineering. One of the great achievements is the development of
Viscous Numerical Wave Flume (VNWF) in two-dimensional space or the coun-
terpart of 3-D Viscous Numerical Wave Tank (VNWT). These numerical models
have been widely used in the field of wave action on and interaction with maritime
structures, attributed to the fast development computer capacity and computational
technique. The numerical simulations allow us to understand well the details of
velocity field and pressure field, and the complicated physical phenomena behind,
for example, the boundary layer separation, turbulent properties, vortex shedding
and viscous damping. These problems remain difficulties in laboratory measure-
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ments and field observations. Nowadays, Computational Fluid Dynamics (CFD) is
a powerful tool for the community of water wave mechanics.

The necessary components of a VNWF include (1) Navier-Stokes solver (2) free
surface capture (3) wave generator and (4) wave absorber. The grid-based numeri-
cal methods developed so far are the Finite Difference Method (FDM), Finite Ele-
ment Method (FEM) and the Finite Volume Method (FVM). The FDM requires the
orthogonal rectangular meshes and hence has limitations for the problems involv-
ing complex boundary configurations. This restriction can be alleviated by using
FVM, but the numerical accuracy is degraded. The FEM is free of the mesh topol-
ogy, giving the great advantage over the FDM. In addition, considering the wide
application of FEM in the structural analysis, it is desirable to develop VNWF
(VNWT) in the frame of FEM for the purpose of investigating the coupled wave-
structure interactions. However, the most popular interface capture technique of
Volume of Fluid (VOF) method is originally designed for the FDM and inherently
requires the regular mesh partition although other interface simulation techniques
are available so far, for example, the cut-cell method, level-set method and moving
grid method, etc. Therefore, the great challenge remained in the FEM-VOF based
VNWF (VNWT) is the implementation of VOF with irregular mesh. This will be
addressed in this article.

2 Numerical Implements

The fluid flow is assumed to be incompressible and homogeneous, the Navier-
Stokes equations read,
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where u; is the velocity component in the i-th direction, ¢ the time, p the pressure,
v the fluid viscosity, p the fluid density and f the body force. In Eq. (1), a source
term g (X, ¢) is introduced, which is activated in the source region € for the wave
generation, that is, the internal wave maker. Alternatively, the incident wave can
also be generated by describing the velocities along the inlet boundary while forc-
ing g (x, t)= 0 throughout the computational domain.

For the linear monochromatic water waves the source function takes the form as
follows,

q(t) = CHsin(wt)/S 3)
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where C is the phase speed, H wave height, ® wave frequency and S the area of
Q.

In the present VN'WE, artificial spongy layers are employed to reduce the reflected
waves, where a damping force term is introduced into the body force of N-S equa-

tions, that is,
fi=gi+R; “4)

where g; is the gravity acceleration (g,=0, g,=-9.81 m/s?), R; denotes the damping
force,

Ry = —2y-uy = —k[(x—x;)/Dp)* (b — )/ (V6 — yn)ty (5)

where x; is the coordinates of the start points of spongy layers, D, is the total
length of the damping zone, y, and y;, are the elevations of the local seabed and free
surface, respectively, and /, is the damping coefficient. For the sake of numerical
stability, R, = 0 is adopted for the horizontal (wave traveling) direction.

When the reflected waves do not have significant disadvantages on the physical
problem, the Sommerfeld-Olansky radiations condition is used along the outlet
boundary,

9D/t +Cy-9®/dn =0 (6)

where @ is used to denote the velocity, pressure and wave profile, Cy is the local
flow speed.

The governing equations are discretized by the three-step FEM (Jiang et al. 1993).
The resulting linear system for velocity is solved by the lumped mass method and
the Poisson-type pressure equation is solved by the preconditioned BI-CGSTAB
method. For the detailed numerical discritization, it is referred to Lu et al. (2010).

In order to capture the free surface, the CLEAR-VOF method (Ashgriz et al., 2004)
is adopted, which is inherently consistent with the FEM and the unstructured irreg-
ular computational meshes. As for the phase of fluid advection in CLEAR-VOF,
the fluid bulk is moved in a Lagrangian sense based on a concept of fluid polygon,

Ax* = ul At (7

where Ax“ is the displacement of vertex ¢ of the fluid polygon, u? is the velocity
vector of vertex o at the time instant ¢, Az is the time step increment. The fractions
of VOF in the computational mesh cells are obtained by the computational geome-
try operations for the intersection and overlapping of the moved fluid polygon and
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the fixed background Eulerian meshes. As for the second phase of interface recon-
struction, the Piece-wise Linear Interface Construction (PLIC) method is used. The
free surface in an interface element is approximated by a line segment g (X),

g(®) —=ii-T+b=0 ®)

where 7 is the local normal outward unit vector of the interface, evaluated by the
local gradient of VOF function and b is a constant determined by an interactive
procedure.

As far the water wave problem is concerned, it is desirable to neglect the viscous
effects at the free surface and then a simple normal dynamic free surface boundary
condition p = 0 can be imposed. However, the velocity boundary conditions on
the interface have to be extrapolated from the internal fluid domain as suggested by
Yang et al. (2006). At the solid wall, the non-slip boundary condition is applied,
i.e., u = 0. The numerical simulations commonly starts from the still water state,
which leads to the static water pressure and the flow velocity u (x, 0) = 0.

3 Validation and application
3.1 Wave reflection against vertical wall

A linear water wave with amplitude A = 3 cm, period 7' = 1.57 s and wave length L
=3 m is generated by using the internal wave maker. The water depth is 4= 0.5 m.
The centre of source region is located at (-8 m, 0.38 m), occupying a rectangular
area of 8 cmx 6 cm. The left boundary (x = -14 m) is set to be the solid wall, while
Sommerfeld B.C is imposed at the right-end x = 1 m. The wave profiles during
20T ~21T with an interval of T/30 are shown in Fig. 1. It can be observed that the
standing waves are well developed in the left half domain due to the wave reflection
against the vertical wall. The standing waves have an amplitude of A = 6 cm, which
is two times of the incident wave amplitude. The numerical results are in good
agreement with the analytical solutions. It is confirmed that the reflected waves
travel out of the right boundary without significant reflection, which indicates that
the present Sommerfeld B.C. works well.

3.2  Water sloshing in partially filled container with baffles

A rectangular tank attached with two identical rigid thin baffles on the both vertical
walls is forced to oscillate on the flat plane. The movement of tank follows,

(1) = —xow?sin (1) )

where xp=0.002 m and @ =5.29 rad/s, respectively. The tank width, liquid depth,
baffle breadth and the distance between baffle and container bottom are 1.0 m,
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0.5 m, 0.3 m and 0.35 m, respectively. We compared the time-series of the wave
elevation { along the right wall from the present VNWF with those obtained by
Biswal et al. (2006) using the non-linear potential flow model, as shown in Fig. 2.
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Figure 2: Comparison of wave elevations in oscillating container with baffles

It can be seen that the two sets of numerical results are generally in good agreement
with each other. However, the wave amplitude from the potential model is found
to be slightly greater than that of the present viscous model. This is because that
potential flow model can not consider the energy dissipation due to the viscous
damping and vortex shedding in this problem.

3.3 Solitary wave passing abrupt step

The soliton diffusion over abrupt step is simulated using the present VNWE. The
water depth, step height are & = 0.2 m and d; = 0.1 m, respectively. The solitary
wave with an amplitude of A = 3.65 cm is generated by describing the velocity
components along the inlet boundary, located at 4 m upstream of the step, as fol-
lows,

1 1 K2 3 271 92%n-
u—e@{n*—4en*2+3cz [1—2<Z) } ag } (10)
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where € =A/h, n*=n/A and 7 is the wave profile. At the outlet, the Sommerfeld
boundary condition is imposed.

The numerical results are validated by comparing with experimental data (Seabra-
Santos, et al. 1987) and numerical results (Liu and Cheng, 2001), as shown in Fig.
3 and Fig. 4.
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Figure 3: Wave profile evolution at 7 m downstream of step
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Figure 4: Wave profile evolution at 10 m downstream of step

Fig.3 and Fig. 4 illustrate that the present numerical results are generally in agree-
ment with the previous experimental and numerical results. The soliton diffusion
over shelf is simulated successfully. As for the position of 10 m (Fig. 4) some small
discrepancies are observed. This is also reported by other researchers, for example,
Shen and Chan (2010).

3.4 Fluid resonance in narrow gap formed by twin boxes

According to the laboratory tests (Saitoh et al., 2006), two identical boxes are fixed
in a wave flume with water depth & = 0.5 m. The two boxes are arranged side-by-
side leaving a small gap B, = 11 cm in width between them. The breadth and
draft of the twin bodies are B = 0.5 m and D = 0.155 m, respectively. In the
numerical simulations, the internal wave maker is used to generate the target waves
with amplitude of H = 2.4 cm covering a broad frequency band and the spongy
layers are used to damping the reflected waves at the both ends of the computational
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domain. The performance of spongy layer, for example, the left end under wave
length L = 2m is shown in Fig. 5.
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Figure 6: ariation of wave height in narrow gap with incident wave frequency

Some trivial numerical tests show that two times of the incident wave length of the
damping zone together with the damping coefficient A, = 30 may lead to satisfying
wave reduction. The numerical results of the variation of non-dimensional wave
amplitudes in the narrow gaps (H,/H) with incident wave frequency (kh, where k
is the wave number) are compared with the experimental data, as shown in Fig. 6.
It shows that the very large amplitude of wave oscillation in the narrow gap can
be excited by the incident wave at the particular frequencies, that is, the resonant
frequency. The numerical results of this work agree well with the experimental
data (Saitoh et al., 2006). The resonant wave height in narrow gap is predicted
accurately by the present VNWEF, while it is over-estimated excessively by the con-
ventional potential theory based model (Lu et al, 2010; Lu et al. 2011).
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