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Theory, Analysis and Design of Fluid-Shell Structures
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Abstract: This paper review focuses mainly on development and application of
a hybrid finite element approach used for linear and geometrically nonlinear vibra-
tion analysis of isotropic and anisotropic plates and shells, with and without fluid-
structure interaction. Development of a hybrid element for different geometries of
plates and shells is briefly discussed. In addition, studies dealing with particular
dynamic problems such as dynamic stability and flutter of plates and shells cou-
pled to flowing fluids are also discussed. This paper is structured as follows: after
a short introduction on some of the fundamentals of the developed model applied
to vibrations analysis of shells and plates in vacuo and in fluid, the dynamic anal-
ysis of anisotropic structural elements is discussed. Studies on dynamic response
of plates in contact with dense fluid (submerged and/or subjected to liquid) follow.
These studies present very interesting results that are suitable for various applica-
tions. Dynamic response of shell type structures subjected to random vibration due
to a turbulent boundary layer of flowing fluid is reviewed. Aeroelasticity analysis
of shells and plates (including the problem of stability; divergence and flutter) in
contact with light fluids (gases) are also discussed.

Keywords: Plates, Shells, Hybrid Finite Element, Anisotropic, Vibration, Aeroe-
lasticity, Turbulent Boundary Layer

1 Introduction

Shells and plates are widely used as structural elements in modern structural design
i.e. aircraft construction, ship building, rocket construction, the nuclear, aerospace,
and aeronautical industries, as well as the petroleum and petrochemical indus-
tries (pressure vessels, pipelines), etc. In addition, anisotropic, laminated com-
posite shells are increasingly used in a variety of modern engineering fields (e.g.,
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aerospace, aircraft construction) since they offer a unique advantage compared to
isotropic materials. By optimizing the properties, one can reduce the overall weight
of a structure. Also, it worthy of note that Fluid-Structure Interaction (FSI) oc-
curs across many complex systems of engineering disciplines ranging from nuclear
power plants and turbo machinery components, naval and aerospace structures,
and dam reservoir systems to flow through blood vessels to name a few. The forces
generated by violent fluid/structure contact can be very high; they are stochastic in
nature (i.e. boundary layer of turbulent flow induces a random pressure field on the
shell’s wall) and thus difficult to describe. They do, however, often constitute the
design loading for the structure. The problem is a tightly-coupled elasto-dynamic
problem in which the structure and the fluid form a single system. Solution of these
problems is obviously complex and technically challenging. One wide spread and
complex FSI subclass is the category that studies non-stationary behavior of incom-
pressible viscous flows and thin-walled structures exhibiting large deformations.
Free surface motion of fluid often presents an essential additional challenge for this
class of problems.

It is very important therefore, that the static and dynamic behavior of plate and shell
structures when subjected to different loads be clearly understood in order that they
are used safely in industry. The analysis of thin elastic shells under static and/or dy-
namic loads has been the focus of a great deal and research by Prof. Lakis and his
research group for more than 40 years. These structural components (cylindrical,
spherical, and conical shells as well as circular and rectangular plates) have been
studied in light of such different factors as; large deformation (geometrical non-
linearity), thickness variation, residual stresses, rotary inertia, material anisotropy,
initial curvature and the effect of the surrounding medium (air, liquid). We have
developed a hybrid type of finite element, whereby the displacement functions in
the finite element method are derived from Sanders’ classical shell theory /or first
order and higher order shear shell theory in the case of non-isotropic materials.
This method has been applied with satisfactory results to the dynamic linear and
non-linear analysis of plate and shell structures. The displacement functions are
obtained by exact solution of the equilibrium equations of the structure instead
of the usually used and more arbitrary interpolating polynomials. The structural
shape function, mass and stiffness are derived by exact analytical integration. The
velocity potential and Bernoulli’s equation are adopted to express the fluid dynamic
pressure acting on the structure. Integrating this dynamic pressure over the struc-
tural shape function results in the fluid-induced force components (inertia, Coriolic
and centrifugal). In doing so, the accuracy of the formulation is less affected as the
number of elements used is decreased, thus reducing computation time.
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2 Background of the hybrid finite element method

Accurate prediction of the dynamic response (or failure characteristics) reached
by the finite element displacement formulation depends on whether the assumed
functions accurately model the deformation modes of structures. To satisfy this
criterion, Lakis and Paidoussis (1971, 1972a) developed a hybrid type of finite ele-
ment, whereby the displacement functions in the finite element method are derived
from Sanders’ classical shell theory. This allows us to use thin shell equations in
full for determination of the displacement functions, mass and stiffness matrices,
which are derived from precise analytical integration of equations of motion of
shells. This theory is much more precise than the usual finite element method. The
velocity potential and Bernoulli’s equation have been adopted to describe an analyt-
ical expression for the fluid dynamic pressure whose analytical integration over the
displacement functions of solid elements yields three forces (inertial, centrifugal
and Coriolis) of the moving fluid. The shell is subdivided into several cylindrical
elements (instead of the more commonly used triangular or rectangular elements)
defined by two nodes and the boundaries of the nodal surface, see Figure 1.

The general displacement shape functions (in cylindrical co-ordinates in the axial,
tangential and radial directions, taking into account their periodicity in the circum-
ferential direction) are given by:

U =
∫

n
Aeλx/r cos(nθ) ; V =

∫
n

Beλx/r sin(nθ) ; W =
∫

n
Ceλx/r cos(nθ) (1)

Where n is the number of circumferential modes, x is the co-ordinate along the
x-axis of the shell, θ is the co-ordinate in the circumferential direction, r is the
average shell radius and A, B, C, and λ are the complex numbers. Substituting
the above displacement functions into the equations of motion and solving for a
non-trivial solution results in a characteristic eighth order equation [see Lakis and
Paidoussis (1971)]:

h8λ
8 +h6λ

6 +h4λ
4 +h2λ

2 +h0 = 0 (2)

Each root of (2) constitutes a solution of the equilibrium equations and the complete
solution is a linear combination of these equations. After finding these solutions
and carrying out a large number of the intermediate manipulations, which are not
displayed here, the following equations can be derived that define the structural
shape functions:

U
V
W

= [N]
{

δi

δ j

}
(3)
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Where δ i is the displacement vector of node i, see Fig. 1

{δi}=


uni

wni

(dwn/dx)i
vni

 (4)

The mass and stiffness matrices are then expressed as a function of (3)

[ks] =
∫∫

[B]T [P] [B]dA [ms] = ρt
∫∫

[N]T [N]dA (5)

Where ρ and t are density and thickness of the shell. [N] and [B] are given by Lakis
and Paidoussis (1971).

To model the fluid domain, a mathematical model has been developed based on the
following hypotheses: the fluid is incompressible, the motion of the fluid is irro-
tational and inviscid, only small vibrations (linear theory) need to be considered,
and the pressure of the fluid inside the shell is taken to be purely radial. The ve-
locity function Φ, considering the aforementioned assumptions, in the cylindrical
coordinate system is expressed as:

∂ 2Φ

∂ r2 +
1
r

∂Φ

∂ r
+

1
r2

∂ 2Φ

∂Θ2 +
∂ 2Φ

∂x2 = 0 (6)

The components of the flow velocity are given by:

Vx = Ux +
∂

∂x
, Vθ =

1
r

∂Φ

?θ
, Vr =

∂Φ

∂ r
(7)

Where Ux is the velocity of the fluid through the shell section and Vx, Vθ , and Vr

are, respectively, the axial, tangential and radial components of the fluid velocity.
Using Bernoulli’s equation for steady flow:(

∂Φ

∂ t
+

V 2

2
+

P
ρ f

)
r=ζ

= 0 (8)

Substituting for V2 from (7), the dynamic pressure ‘P’ can be found as:

Pi,e =−ρ fi,e(
∂Φi,e

∂ t
+Uxi,e

∂Φi,e

∂x
+

U2
xi,e

2
+

1
2

[(
∂Φi,e

∂x

)2

+
1
r2

(
∂Φi,e

∂Θ

)2

+
(

∂Φi,e

∂ r

)])
r=Ri,e

(9)
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In which the subscript i, and e represent internal and external locations of the struc-
ture. A full definition of the flow requires that a condition be applied to the shell-
fluid interface. The impermeability condition of the shell surface requires that the
radial velocity of the fluid on the shell surface should match the instantaneous rate
of change of the shell displacement in the radial direction. This condition implies
a permanent contact between the shell surface and the peripheral fluid layer, which
should be:

(Vr)r=R =
(

?Φ

∂ r

)
r=R

=
(

∂W
∂ t

+Ux
∂W
∂x

)
r=R

(10)

The radial displacement, from shell theory, is defined as:

W (x,θ , t) =
∫

∞

j=1
C j exp

[
λ jx
R

+ iωt
]

cosθ (11)

The separation of variable method is used to obtain the velocity potential function,
which is then substituted into (9) and results in the following Bessel’s homogeneous
differential equation:

r2 d2R j(r)
dr2 + r dR j(r)

dr +R j (r)
[
i2m2

jr
2−n2

]
= 0

m2
j =
(

λ j
R

)2
− 1

C2
f

(
ω +Ux

λ j
R

)2 (12)

By solving the above differential equation, one can find the following explicit ex-
pression for dynamic pressure:

P =
∫ 

[
ρeReZY

q (mqR)−ρiRiZ
J
i (mqR)

]
∂ 2Wq
∂ t2 +

2
[
ρeReUxeZY

q (mqR)−ρiRiUxiZJ
i (mqR)

]
∂ 2Wq
∂x∂ t +[

ρeReU2
xeZY

q (mqR)−ρiRiU
2
xiZ

J
i (mqR)

]
∂ 2Wq
∂x2

 (13)

See Lakis and Paidoussis (1971, 1972a) for more details.

Substituting the nodal interpolation functions of the empty shell (3) into the dy-
namic pressure expression (13) and carrying out the necessary matrix operations
using the proposed method, the mass, damping, and stiffness matrices for the fluid
are obtained by integrating the following integral with respect to x and θ :

Ff =
∫∫

[N]T {P}rdrdθ = [m f ]
{

δ̈

}
+[C f ]

{
δ̇

}
+[k f ]{δ} (14)

After superimposing the mass, damping and stiffness matrices for each individual
element, and applying the given boundary conditions the following dynamic equa-
tion is obtained for the coupled fluid-structure system. The dynamic response of



160 Copyright © 2011 Tech Science Press SL, vol.6, no.3, pp.155-185, 2011

the system can be investigated by solving this equation:

([Ms]− [M f ])
{

δ̈

}
− [C f ]

{
δ̇

}
+([Ks]− [K f ]){δ}= 0 (15)

Extensive results are given by Lakis and Paidoussis (1971, 1972a) to illustrate the
dynamic behavior of uniform and non-uniform cylindrical shells partially or com-
pletely filled with liquid, as well as subjected to internal and external flowing fluid.

 

Figure 1: Geometry of cylindrical frustum element

3 Dynamic behavior of anisotropic plates and shells coupled with fluid

Use of advanced composite materials is expanding into a variety of industries due to
their high strength and stiffness-to-weight ratios; this has led to a rapid increase in
the use of these materials in structural applications during the past decades. Struc-
tural elements made of advanced fiber-reinforced composite materials offer unique
advantages over those made of isotropic materials. They are now extensively used
in high and low technology areas, e.g. the aerospace industry, where complex shell
configurations are common structural elements. The filament-winding techniques
for manufacturing composite shells of revolution have recently been expanded in
aircraft, shipbuilding, petroleum and other industries. In general, these materials
are fiber-reinforced laminate, symmetric or anti-symmetric cross- and angle-ply,
which consist of numerous layers each with various fiber orientations. Although
the total laminate may exhibit orthotropic-like properties, each layer of the lam-
inate is usually anisotropic; thus the individual properties of each layer must be
taken into account when attempting to gain insight into the actual stress and stress
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fields. By optimizing the properties we can reduce the overall weight of a struc-
ture since stiffness and strength can be designed only where they are required. A
lower weight structure translates into higher performance. Since optimized struc-
tural systems are often more sensitive to instabilities, it is necessary to exercise
caution. The designer would be much better able to avoid any instabilities if, when
predicting a maximum load capacity, he either knew the equilibrium paths of the
structural elements or had accurate modeling of the load-displacement behavior of
the structure. Anisotropic laminated plates and shells have a further complication
which must be considered during the design process: potentially large directional
variations of stiffness properties in these structures due to tailoring mean that three-
dimensional effects can become very important. The classic two-dimensional as-
sumptions may lead to gross inaccuracies, although they may be valid for an iden-
tical shell structure made up of isotropic materials. Although they have properties
that are superior to isotropic materials, advanced composite structures present some
technical problems in both manufacturing and design. For computational reasons,
the study of composite materials involves either their behaviors on the macroscopic
level such as linear and non-linear loading responses, natural frequencies, buckling
loads, etc., or their micro-mechanical properties, including cracking, delaminating,
fiber-matrix debonding etc.

The general equations of motion of anisotropic plates and shells are derived by
Toorani and Lakis (2000). The equations, which include the effect of shear de-
formation and rotary inertia as well as initial curvature (included in the stress re-
sultants and transverse shear stresses), are deduced by application of the virtual
work principle, with displacements and transverse shear as independent variables.
These equations are applied to different shell type structures, such as revolution,
cylindrical, spherical, and conical shells as well as rectangular and circular plates.

In the following sections, a new hybrid element method combining the first-order
shear shell theory, classical finite element approach, and potential flow theory has
been developed for linear and non-linear vibration analysis of multi-layer compos-
ite open and closed cylindrical shells coupled with dense fluid (liquid). A multidi-
rectional laminate with co-ordinate notation of individual plies is shown in Figure
2. For mathematical modeling of the structure, the equations of motion of the shell
are derived based on first order shear shell theory, and then the shape function, stiff-
ness and mass matrices are developed by exact analytical integration. The shear de-
formations, rotary inertia, and initial curvature have been taken into account. The
velocity potential, Bernoulli’s equation and impermeability condition imposed at
the fluid-structure interface have been used to develop the fluid model and derive
the dynamic pressure and fluid force components including the inertia, centrifugal
and Corilois forces. Once these fluid forces are derived, they are combined with
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those of the structure in order to develop the dynamic equations of motion for a
coupled fluid-structure system. The non-linear differential equations of motion are
solved by a fourth-order Runge-Kutta numerical method.

 
Figure 2: (a) Multi-directional laminate with co-ordinate notation of individual
plies, (b) a fiber reinforced lamina with global and material co-ordinate system

The shell is subdivided into finite segment panels, Figure 3, with two nodal lines
having five degrees of freedom at each node. The general strain-displacement re-
lations are expressed in arbitrary orthogonal curvilinear coordinates to define the
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strain-displacement relations. The same approach as described in Section 2 is fol-
lowed to develop the equations of motion. Note that in the case of isotropic materi-
als, the five differential equations of motion can be reduced to three equations since
two rotations can be expressed in terms of other displacement components. For
structural components made of composite materials, in which the shear deforma-
tion effect plays an important role, the rotations of tangents to the reference surface
are considered as independent variables therefore there are five degrees of freedom
at each nodal line compared to three DOFs for classical materials as explained in
Section 2. The proposed model is capable of solving the equations of motion of
fluid-filled shells for any combination of boundary conditions without necessitat-
ing changes to the displacement functions. See Toorani and Lakis (2000, 2001b)
for more details including a presentation of extensive results considering various
physical and geometrical parameters as well as the liquid depth ratios. These are
presented to show the reliability and effectiveness of the developed formulations.
A satisfactory agreement is seen between the numerical results predicted by this
theory and those of other available theories.

 

Figure 3: (a) Finite element discretization (N is the number of elements), (b) Nodal
displacement at node ‘i’ of a typical element

To develop the hybrid finite element method, the following displacement functions
are assumed:

U (x,θ) = A
[
cos
(mπ

L

)
x
][

eηθ
]
, βx (x,θ) = D

[
cos
(mπ

L

)
x
][

eηθ
]

V (x,θ) = B
[
cos
(mπ

L

)
x
][

eηθ
]
, βθ (x,θ) = E

[
cos
(mπ

L

)
x
][

eηθ
]

W (x,θ) = C
[
cos
(mπ

L

)
x
][

eηθ
] (16)
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The derived equations for the stress resultants and stress couple resultants for anisotropic
shell type structures are given as:

{N11N12Q11N22N21Q22M11M12M22M21}T = [P](10×10)
{

ε
0
1 γ

0
1 µ

0
1 ε

0
2 γ

0
2 µ

0
2 κ1τ1κ2τ2

}T

(17)

The Pi j’s elements are given in the Appendix and the interested reader is referred
to Toorani and Lakis (2000) for full details.

For the case of a coupled fluid-structure system, elastic structures subjected to fluid
flow can undergo excessive vibrations and consequently a considerable change in
their dynamic behavior. They may also lose their stability. Therefore, the in-
fluence of fluid velocity on structural stability has been also investigated. Both
static ‘buckling’ and dynamic ‘flutter’ instabilities are verified. Figure 4 shows the
non-dimensional frequency of a cylindric shell made of four symmetric cross-ply
laminates as a function of the circumferential and axial wave numbers. Mechan-
ical properties used for this example are E1=25E2; G23=0.2E2; G13=G12=0.5E2,
ν12=0.25; ρ=1.

 

Figure 4: Variation of non-dimensional natural frequencies in conjunction with
variation of m

The dynamic behavior of axisymmetric, beam-like and shell modes of anisotropic
cylindrical shells, Figure 5, have been investigated by Toorani and Lakis (2002a)
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under different physical and geometrical parameters while they are subjected to
mechanical and flowing fluid loads. Toorani and Lakis (2006a) studied the free
vibrations of non-uniform composite cylindrical shells as well.

 
Figure 5: Displacement and degrees of freedom at a circular node

Nuclear power plant reliability depends directly on its component performance.
The higher energy transfer performance of nuclear plant components often requires
higher flow velocities through the shell and tube heat exchanger and steam genera-
tor. Excessive flow-induced vibration, which is a major cause of machinery down-
time, fatigue failure and high noise, limits the performance of these structures.
Therefore, calculating the safety of a nuclear power plant’s components requires
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analysis of several possibilities of accident events. Considering a tube structure
carrying high-velocity flow under high pressure, examples of these events could
be: pressure oscillations in a nuclear reactor cavity, velocity oscillations of fluid
in a pipe due to external excitations and fluid-elastic instabilities etc. These tubes
could be subjected to a diodic leak condition (internal pressurization to the point
of tube yielding/swelling) that results in contact with their supports and an associ-
ated risk of structural degradation. Tube lock-up as a result of tube swelling due
to diodic leakage could potentially result in tubes being locked at the supports and
subject to wear. Locked supports will result in a loss of damping since the sup-
port damping is no longer active. The swelled tube will therefore be subjected to
fluid-elastic instability. The mathematical model developed by Toorani and Lakis
(2006b) for isotropic /and anisotropic cylindrical shells is also capable of modeling
structures that may be non-uniform in the circumferential direction. This allows the
model to address the effect of tube swelling caused by external and internal flowing
fluid on its dynamic response. The dynamic behavior of an open cylindrical shell,
empty or filled with liquid as a function of the number of circumferential modes is
shown in Figure 6a. For a given axial wave number ‘m’ the frequencies decrease
to a minimum before they increase as the number of circumferential waves ‘n’ is
increased. This behavior was first observed for a shell in vacuo by considering the
strain energy associated with bending and stretching of the reference surface. At
low ‘n’ the bending strain energy is low and the stretching strain energy is high,
while at higher ‘n’ the relative contributions from the two types of energy are re-
versed. A stability analysis of a distorted cylindrical shell simply supported at both
ends and subjected to internal flow is shown in Figure 6b. The natural frequencies
of the system are examined as a function of flow velocity. As the velocity increases
from zero, the frequencies associated with all eccentricity cases decrease. They re-
main real (the system being conservative) until, at sufficiently high velocities, they
vanish, indicating the existence of buckling type (static divergence) instability. At
higher flow velocity the frequencies become purely imaginary. The results show
that the first loss of stability occurs for e=1mm. It is concluded that distortion in
the cylindrical shells decreases the critical flow velocity and renders the system less
stable.

The influence of non-linearities associated with the wall (geometry non-linearity)
of the shell and with the fluid flow on the elastic, thin, orthotropic and non-uniform
cylindrical shells submerged and/or subjected simultaneously to an internal and
external fluid has been also studied by Toorani and Lakis (2002b, 2006c, 2009b).
For the case of anisotropic or laminated composite materials, first order and higher-
order shear theory have been applied in deriving the equations of motion of all shell
type structures. The exact Green strain relations are used in order to describe the
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Figure 6: (a) Natural frequencies of an empty and fluid-filled open cylindrical shell
as a function of circumferential mode number (b) Stability of a distorted cylindrical
shell as a function of flow velocity

non-linear terms, including large displacement and rotation, for anisotropic cylin-
drical shells. The coefficients of modal equations are obtained using the Lagrange
method. Thus, the non-linear stiffness matrices of the second- and third-order are
superimposed on the linear part of the equations to establish the non-linear modal
equations.

To develop the non-linear stiffness matrices of the second and third order, the fol-
lowing shell displacements are used as generalized products of coordinate sums
and spatial functions:

u =
∫

i
qi (t)Ui (x,θ) ; ; βx =

∫
i
qi (t)βxi (x,θ) ;

v =
∫

i
qi (t)Vi (x,θ) ; ; βθ =

∫
i
qi (t)βθi (x,θ) ;

w =
∫

i
qi (t)Wi (x,θ) .

(18)

And, the deformation vector is written as a function of the generalized coordinate
by separating the linear part from the non-linear part:

{ε}= {εL}+{εNL}=
{

ε
o
x ,γo

x ,µ
o
x ,εo

θ ,γo
θ ,µ

o
θ ,κx,τx,κθ ,τθ

}T (19)

Using (??) and Hamilton’s principle leads to Lagrange’s equations of motion in the
generalized coordinate system qi (t):

d
dt

(
∂T
∂ q̇i

)
− ∂T

∂qi
+

∂V
∂qi

= Qi (20)
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Where T is the total kinetic energy, V the total elastic energy of deformation and the
Qi’s are the generalized forces. After developing the total kinetic and strain energy
and then substituting into the Lagrange equation and carrying out a large number
of the intermediate manipulations (not displayed here), the following non-linear
modal equations are obtained.∫

j
mi jδ̈ j +

∫
j
kL

i jδ j +
∫

j

∫
k
kNL2

i jk δ jδk +
∫

j

∫
k

∫
s
kNL3

i jks δ jδkδs = Qi, i = 1,2, . . . (21)

Where mi j, ki j
L, are the terms of mass and linear stiffness matrices and the terms

ki jk
NL2, and ki jks

NL3 represent the second-order and third order non-linear stiffness
matrices. These terms, in the case of anisotropic laminated cylindrical shells, are
given by Toorani and Lakis (2002b). The same approach explained in Section 2 is
applied to develop the fluid equations and then derive the coupled fluid-structure’s
dynamic equations.

Sloshing is a free surface flow problem in a structure which is subjected to forced
oscillation. Clarification of the sloshing phenomenon is very important in the de-
sign of vessels destined to contain liquid. Violent sloshing creates localized high
impact loads on the structure which may cause damage. An analytical approach
has also been presented by Lakis et al. (1997, 2009a) to investigate the effect of
free surface motion of fluid (sloshing) on the dynamic behavior of thin walled, both
horizontal and vertical, cylindrical shells. The free surface has been modeled for
different fluid heights; Figures 7 and 8. The structure is modeled as explained in
Section 2 but the displacement functions change in the case of horizontal shells to
become:

U (x,θ)= Aeηθ cos
(mπ

L

)
x; V (x,θ)= Beηθ sin

(mπ

L

)
x; W (x,θ)=Csin

(mπ

L

)
x

(22)

For sloshing analysis of a vertical shell, the following model is considered and
the same displacement functions as reported in Section 1 are used to develop the
mathematical model.

4 Dynamic analysis of plates in interaction with fluid

Structural components (like nuclear power plant components, piping systems and
tube heat exchangers) that are in contact with fluid can fail due to excessive flow-
induced vibrations which continue to affect their performance and reliability. Fluid-
elastic vibrations have been recognized as a major cause of failure in shell and tube
type heat exchangers and steam generators. Fluid elastic vibrations result from cou-
pling between fluid-induced dynamic forces and motion of the structure. Depend-
ing on the boundary conditions, static (buckling) and dynamic (flutter) instabilities
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Figure 7: Sloshing model of a horizontal shell (a) Modeling of free surface, (b)
Free surfaces of a fluid finite element

 

Figure 8: Sloshing model of a vertical shell

are possible in these structures at sufficiently high flow velocities. The nature of
fluid-elastic instability can be illustrated as a feedback mechanism between struc-
tural motion and the resulting fluid forces. A small structural displacement due
to fluid forces or an alteration of the flow pattern induces a change in the fluid
forces; this in turn leads to further displacement, and so on. When the flow velocity
becomes larger an impact phenomenon occurs that can lead to unacceptable tube
damage due to fatigue and /or fretting-wear at tube support plate locations in crit-
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ical process equipment. Therefore, evaluation of complex vibrational behavior of
these structural components is highly desirable to avoid such problems.

 

Figure 9: (a) Geometry and displacement field of a typical element, (b) Fluid-solid
element

To address the aforementioned design issues, a semi-analytical approach has been
developed by Kerboua et al (2007, 2008a to 2008c) for dynamic analysis of rect-
angular plates. The mathematical model is developed based on a combination of
Sanders’ shell theory and the classic finite element method. A typical finite element
in its local coordinate is shown in Figure 9. Each element is represented by four
nodes and six degrees of freedom at each node consisting of three displacements
and three rotations. The in-plane membrane displacement components are modeled
by bilinear polynomials. The out-of-plane, normal to mid-surface displacement
component is modeled by an exponential function that represents a general form
of the exact solution of equations of motion. The displacement field used in this
model is defined as:

U (x,y, t) = C1 +C2
x
A

+C3
y
B

+C4
xy
AB

V (x,y, t) = C5 +C6
x
A

+C7
y
B

+C8
xy
AB

(23)

W (x,y, t) =
∫ 24

j=9
C jeiπ( x

A + y
B)eiωt

The shape functions, mass and stiffness matrices are determined by exact analytical
integration to establish the plate’s dynamic equations. The velocity potential and
Bernoulli’s equation are adopted to express the fluid dynamic pressure acting on
the structure for various boundary conditions of the fluid and structure. The prod-
uct of the dynamic pressure expression and the developed structural shape function
is integrated over the structure-fluid interface to assess the inertial, Coriolis and



Theory, Analysis and Design of Fluid-Shell Structures 171

centrifugal fluid forces. The dynamic pressure has been derived for different fluid-
structure interfaces e.g. (i) fluid-solid element subject to flowing fluid with infinite
level of fluid; (ii) fluid-solid finite element subject to flowing fluid bounded by
rigid wall and (iii) fluid-solid model subject to flowing fluid bounded by elastic
plate. The developed theory is also capable of modeling a set of parallel /or radial
plate assemblies, Figure10. These types of systems are used in many industrial ap-
plications such as turbine blades. Parallel plates consist of many thin plates stacked
in parallel between which there are channels to let fluid flow through. When the
channel height is relatively low the kinetic energy of the solid travels through the
fluid from one plate to another. Vibrations of the plates modify the distributions of
pressure and velocity along the channel. Therefore, the fluid in the channels enters
in interaction simultaneously with the higher and lower plates. The effect of various
geometrical parameters and boundary conditions, fluid height and velocity (which
strongly influence the dynamic response of the plates used as hydraulic turbine /or
turbo reactor blades) on the dynamic responses of the rectangular plates has been
explored.

 

Figure 10: (a) A set of parallel plates fixed at one side, (b) A set of radial plates

The dimensionless frequency variation of a clamped plate subjected to axial flowing
fluid is plotted as a function of the dimensionless velocity of flow for the first three
modes, Figure 11. Note that the plate becomes increasingly vulnerable to static
instability as the rate of flow increases. Beyond the critical velocity, we expect a
large deflection of the plate to occur.

Circular plates are widely used in engineering. Some examples are; by the aerospace
and aeronautical industry in aircraft fuselage, rocket and turbo-jets, by the nuclear
industry in reactor vessels, by the marine industry for ship and submarine parts, by
the petroleum industry in holding tanks, and by civil engineering in domes and thin
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Figure 11: (a) Plate clamped on two opposite edges subjected to flowing fluid, (b)
Variation of frequency versus fluid velocity

shells. To respond to these needs, the static and dynamic analysis of thin, elastic,
isotropic non-uniform circular and annular plates has been conducted by Lakis and
Selmane (1997). The displacement functions for circular element, Figure 12, are
defined as:

U (r,θ) =
∫

∞

n=0
Cy(λ−1)/2cos(nθ)

V (r,θ) =
∫

∞

n=0
By(λ−1)/2sin(nθ) (24)

W (r,θ) =
∫

∞

n=0

(
C3yn +C4yn+2)cos(nθ)

The displacement functions for an annular element, Figure 12, are defined as:

U (r,θ) =
∫

∞

n=0
Cy(λ−1)/2cos(nθ)

V (r,θ) =
∫

∞

n=0
By(λ−1)/2sin(nθ) (25)

W (r,θ) =
∫

∞

n=0

(
C5yn +C6y−n +C7yn+2 +C8y−n+2)cos(nθ)

The dynamic behaviour of 3D thin shell structures partially or completely filled
with or submerged in inviscid incompressible quiescent fluid was studied numer-
ically by Esmailzadeh et al (2008). A finite element was developed using a com-
bination of classic thin shell theory and finite element analysis, in which the finite
elements are rectangular four-noded flat shells with five degrees of freedom per
node; three displacements and two rotations about the in-plane axes. The displace-
ment functions were derived from Sanders’ thin shell equations. The structural
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Figure 12: Displacement and degrees of freedom (a) Finite element of the circular
plate type (b) Finite element of the annular plate type

mass and stiffness matrices were determined by exact analytical integration. Since
the transverse displacement function is derived from thin shell theory, this method
may easily be adapted to take hydrodynamic effects into account. The fluid pres-
sure applied on the structure was determined by combining potential flow theory
and an impermeability condition, and expressed as a function of the acceleration
of the normal displacement of the structure. Analytical integration of the fluid
pressure over the element produced the virtual added-mass matrix of the stationary
fluid. An in-house program was developed to calculate eigenvalues and eigenvec-
tors of 3D thin shell structures in a vacuum, containing and/or submerged in fluid.
A rectangular reservoir partially and completely filled with fluid as well as a sub-
merged blade was studied. The developed method can be utilized to investigate
non-uniform structures under various boundary conditions.
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5 Vibration analysis of plates and shells subjected to a turbulent boundary-
layer-induced random pressure field

Thin shells are major components in industrial structures such as skins of aircraft
fuselage, hulls of ships and blades of turbines. These structures are commonly
subjected to excitation forces such as turbulence, which are intrinsically random.
Random pressure fluctuations induced by a turbulent boundary layer are a frequent
source of excitation and can cause small amplitude vibration and eventual fatigue
failure, therefore determination of the response of shell structures to these pressures
is of importance. An investigation was carried out by Lakis and Paidoussis (1972b)
to determine the total root mean square displacement response of cylindrical shells
to turbulent flow. Esmailzadeh et al. (2009) studied the dynamic response of shell
type structures subjected to random vibration due to a turbulent boundary layer of
flowing fluid. They introduced a method that is capable of predicting the total root
mean square (rms) displacement response of a thin plate to an arbitrary random
pressure field. The method was then specialized for application to the case where
the pressure field originates from a turbulent boundary layer of subsonic flow. This
method uses a combination of classical thin shell theory and finite element anal-
ysis in which the finite elements are flat rectangular elements with six degrees of
freedom per node, representing the in-plane and out-of-plane displacements and
their spatial derivatives. This method is also capable of calculating both high and
low frequencies with high accuracy. Wetted natural frequencies and mode shapes
in a vacuum obtained using the method previously developed by the authors are
incorporated into the calculation of random response. A continuous random pres-
sure field is transformed into a discrete force field acting at each node of the finite
element. Structural response to turbulence-induced excitation forces is calculated
using random vibration theory. Description of the turbulent pressure field is based
on the Corcos formulation for the cross spectral density of pressure fluctuations.
Root mean square displacement is found in terms of the cross spectral density of
the pressure. A theoretical-numerical approach is proposed to obtain the magni-
tude of the random response of shell structures. Exact integration over surface
and frequency leads to an expression for the response in terms of the structure and
flow characteristics. The total root mean square displacement response is obtained
by summation over all significant modes of vibration. The total root mean square
displacements of a thin plate under different boundary conditions subjected to a
turbulent boundary layer are then calculated. Accuracy of the proposed method is
also verified for a cylindrical shell. To validate the method, a thin cylindrical shell
subjected to internally fully developed turbulent flow is also studied and compared
favorably with the results obtained by Lakis and Paidoussis (1972b) using cylin-
drical elements and a hybrid finite element. It is observed that the maximum total
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RMS displacement is directly proportional to free stream velocity and inversely
proportional to the damping ratio. It is noted that the maximum total RMS dis-
placements are small for the set of calculations. Such small amplitudes are mainly
of concern for fatigue considerations and must be below acceptable levels. Fur-
thermore, the proposed method is capable of predicting the power spectral density
(PSD) of the displacement. The power spectral densities of the membrane and ra-
dial displacements of an SFSF plate subjected to fully developed turbulent flow is
studied. The spectrum shows the dominant peaks representing the coupled natural
frequencies of the system. It is observed that the lower natural frequencies con-
tribute significantly to the PSD of response. An in-house program based on the
presented method is developed to predict the RMS displacement response of thin
shell structure to a random pressure field arising from a turbulent boundary layer.

The dynamic behavior of a structure subjected to arbitrary loads is governed by the
following equation:

[[Ms]− [M f ]]
{

δ̈

}
+[[Cs]− [C f ]]

{
δ̇

}
+[[Ks]− [K f ]]{δg134}= {F(x, y, t)} (26)

where F(x, y, t) is a vector of external forces as a function of space and time. The
continuous random pressure field of the deformable body is approximated using a
finite set of discrete forces and moments acting at the nodal points. The plate is
subdivided into finite elements, each of which is a rectangular flat element, Figure
13. A pressure field P is considered to be acting on an area Sc surrounding the node
c of the coordinates lc and dc as shown in Figure 13. This area Sc is delimited by
the positions l′c and l′′c with respect to the origin in the x-direction and d′c and d′′c
with respect to the origin in the y-direction. It is therefore possible to determine the
pressure distribution acting over the area Sc in terms of a lateral force. The lateral
force acting at an arbitrary point, A, on the area Sc is given by (see Fig. 13):

FA (t) =
∫ d

′′
c

d′c

∫ l
′′
c

l′c
P(x,y, t)dxdy (27)

Where P(x, y, t) is the instantaneous pressure on the surface. The force FA(t) acting
at point A is transformed into one force and two moments acting at node c as
illustrated in Figure 13.

The external load vector acting at a typical node c, Fc associated with the nodal
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Figure 13: Transformation of a continuous pressure field into a discrete force field
and the equivalent discrete force field acting at node c. Pressure fluctuations are
also illustrated laterally on the area surrounding node c.

displacements can be written in the following form:

Fc (t) =



0
0
Fn

My

Mx

0


=



0
0

−
∫ d
′′
i

d′i

∫ l
′′
i

l′i
P(xi,yi, t)dxidyi

−
∫ d
′′
p

d′p

∫ l
′′
p

l′p
(xp− lp)P(xp,yp, t)dxpdyp

−
∫ d
′′
j

d′j

∫ l
′′
j

l′j
(x j− l j)P(x j,y j, t)dx jdy j

0


(28)

Where Fn is the lateral force in the z-direction, and Mx and My are the moments in
the x- and y-directions acting at node c, respectively.

The computational process used in determining the dynamic response of structure
to turbulent boundary-layer pressure fields is presented in Figure 14.

The power spectral density of the radial displacement of an SFSF plate subjected
to fully developed turbulent flow from one side where flow is along its long sides is
plotted against excitation frequency in Figure 15. The PSD of the radial displace-
ment is calculated for a free stream velocity of 30 ms−1 and a damping ratio of
0.001 at the node at which the maximum total rms radial displacement is obtained.
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Figure 14: Flow chart of the computational process for calculation of root-mean
square displacement response

6 Aeroelasticity analysis of plates and shells

It is notable that shells and plates are among the key structures in aerospace ve-
hicles. For example, large numbers of these elements are used in the fuselage
and engine nacelles of airplanes and in the skin of the space shuttle. As they are
exposed to external air flow and particularly supersonic flow, dynamic instability
(flutter) may occur, and is therefore one of the practical considerations in the design
and analysis of skin panels. Cylindrical shells can also show this kind of aeroelastic
instability, and prevention of this behavior is one of the primary design criteria and
technical challenges faced by aeronautical engineers. An investigation of super-
sonic flutter of an empty or partially fluid-filled truncated conical shell, cylindrical
shells (under combined internal pressure and axial compression) and panels is also
required. The motivation for conducting research in this field stems from the need
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Figure 15: PSD of radial displacement of an SFSF plate subjected to fully devel-
oped turbulent flow

for precise and fast convergence of finite element computer codes for aeroelastic
analysis of shell components used during the design of aerospace structures. The
developed mathematical model can be used very effectively for aeroelastic analy-
sis of shells of revolution, cylindrical and truncated conical shells and permits the
designer; i) to predict the buckling condition of shells of revolution due to external
pressure and axial compression, ii) to model the fluid-structure interaction effect
in the presence of fluid inside the container, iii) to describe the effect of shell and
flow parameters on the flutter boundaries and iii) to model the aerodynamic load-
ing without the complexity of CFD methods. In mathematical modeling, the Piston
theory with and without a correction factor for curvature is applied to derive the
aerodynamic damping and stiffness matrices while also taking into consideration
the influence of stress stiffness due to internal pressure and axial loading.

Sabri and Lakis (2010a) have conducted aeroelastic analysis of a truncated coni-
cal shell, Figure 16, subjected to external supersonic airflow. The structural model
is based on a combination of linear Sanders’ shell theory and the classical finite
element approach as explained in Section 2. Linearized first-order potential (pis-
ton) theory with the curvature correction term is coupled with the structural model
to account for pressure loading. The influence of stress stiffening due to internal
and/or external pressure and axial compression is also taken into account. The fluid-



Theory, Analysis and Design of Fluid-Shell Structures 179

filled effect is considered as a velocity potential variable at each node of the shell
elements at the fluid-structure interface in terms of nodal elastic displacements.
Aeroelastic equations using the hybrid finite element formulation are derived and
solved numerically. The analysis is accomplished for conical shells of different
boundary conditions and cone angles. In all cases the conical shell loses its sta-
bility through coupled-mode flutter. This developed hybrid finite element method
can be used efficiently for design and analysis of conical shells employed in high
speed aircraft structures. The displacement functions used in this model are given
by Sabri and Lakis (2010a):

U (r,x,θ) =
∫

∞

n=0
A
(x

l

)(λ−1)/2
cos(nθ)

V (r,x,θ) =
∫

∞

n=0
B
(x

l

)(λ−1)/2
cos(nθ) (29)

W (r,x,θ) =
∫

∞

n=0
C
(x

l

)(λ−1)/2
sin(nθ)

 

Figure 16: Geometry of a truncated conical shell

Figure 17 shows the frequency and damping (in terms of pressure) of a shell that
is free at both ends. As seen, the real part of the complex frequency for the first
mode decreases as the freestream static pressure increases, while the imaginary
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part remains positive. The existence of a zero real part and a negative imaginary
part of the complex frequency indicates that the shell diverges statically. Further
increasing the freestream static pressure, the second mode remains stable but the
real parts of third and fourth modes merge into a single mode and their imaginary
parts bifurcate into two branches and one of them becomes negative. At this point,
the shell loses stability due to coupled-mode flutter because a negative imaginary
part makes the vibration amplitudes grow.

 

Figure 17: (a) Real part and (b) imaginary part of the complex frequencies versus
freestream static pressure

Another model has been developed by Kerboua et al. (2010) to predict the dynamic
behaviour of anisotropic truncated conical shells conveying fluid. It is a combina-
tion of the finite element method and classical shell theory.

Sabri and Lakis (2010b) have applied the hybrid finite element model to supersonic
flutter analysis of circular cylindrical shells as shown in Figure 1. The displacement
functions used for this model are defined as:

U (x,r,θ) =
∫

n
un cos(nθ)

V (x,r,θ) =
∫

n
vn cos(nθ) (30)

W (x,r,θ) =
∫

n
wn cos(nθ)

Aeroelastic equations in the hybrid finite element formulation are derived and solved
numerically. Different boundary conditions of the shell geometry and flow param-
eters are investigated. In all study cases, the shell loses its stability due to coupled-
mode flutter and a travelling wave is observed during this dynamic instability. The
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results are compared with existing experimental data and other analytical and fi-
nite element solutions. This comparison indicates the reliability and effectiveness
of the proposed model in aeroelastic design and analysis of shells of revolution in
aerospace vehicles. Figure 18 shows some typical complex frequencies versus free
stream static pressure, P∞, for n=25. Only the first and the second axial modes are
shown (m=1, 2). In Figure 18, the real part of the complex frequency for the first
mode increases, whereas for the second mode it decreases as P∞ increases. For
higher values of P∞ these real parts eventually merge into a single mode. If P∞ is
increased still further, the shell loses stability at P∞=3592 Pa. This instability is
due to coupled-mode flutter because the imaginary part of the complex frequency
(which represents the damping of the system) crosses the zero value, Figure 18b,
and makes the vibration amplitude grow.

 

Figure 18: Eigenvalues of system vs freestream static pressure

Sabri and Lakis (2010c) adopted the hybrid finite element approach to investigate
the dynamic stability of a partially fluid-filled circular cylindrical shell under con-
stant lateral pressure and a compressive load. The shell model is shown in Figure 1
and displacement functions used in this formulation are defined by (??). Nodal dis-
placement functions are derived from exact solution of Sanders’ shell theory. Initial
stress stiffness in the presence of shell lateral pressure and axial compression are
taken into account. The parameter study is carried out to verify the effect of shell
geometries, filling ratios of fluid, boundary conditions, and different combinations
of lateral pressure and axial compressions on the stability of structure. The effect
of shell internal pressure on the mode shape is reported in Figure 19 for different
liquid filling ratios.

Effects of sloshing on flutter prediction of partially liquid-filled circular cylindri-
cal shells and aerothermoelastic stability of functionally graded circular cylindrical
shells have also been studied by Sabri and Lakis (2010d, e).
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Figure 19: Variation of radial model shape (n=5, m=1) with filling ratio of a
clamped-clamped shell under internal pressure Pm=1000 Pa; a) H/L=0; b) H/L=0.4;
c) H/L=0.6; solid line: pressurized shell; dashed line: unpressurized shell

7 Conclusion

The dynamic analysis of the shell type structures subjected to flowing fluid is highly
desirable in different sectors of industry, e.g. nuclear, aerospace. The study pre-
sented in this paper shows an analytical approach that has been developed to study
the linear and non-linear flow-induced vibrations of these structures. This method
is also capable to predict the total root-mean-square displacement response of a thin
structure to an arbitrary random pressure field originated from a turbulent bound-
ary layer of a subsonic flow. In addition, the semi-analytical model developed in
this paper is applied to analyze the aeroelastic stability of different shell geometries
subjected to a supersonic flow.

An efficient hybrid finite element method, Sanders and shearable shell theories and
linear potential flow have been used to develop the dynamic equations of the cou-
pled fluid-structure system. This theory has been developed for both isotropic and
anisotropic shell type structures in which the rotary inertia and shear deformation
effects are taken into consideration that tend to reduce the frequency parameters
specially for laminated anisotropic shell. The shell can be uniform or non-uniform
in the axial and/or circumferential direction.

The predicted results by this theory, which are in good agreement with those of
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other theories and experiments, show the reliability and effectiveness of the devel-
oped model.
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