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Design of auxetic microstructures using topology
optimization

N.T. Kaminakis', G.E. Stavroulakis'

Abstract: Microstructures can lead to homogeneous materials with negative Pois-
son’s ratio, the so-called auxetics. An automatic way to create such microstructures
is provided by topology optimization for compliant mechanisms. Nonconvexity is
addressed by a suitable hybrid algorithm, based on differential evolution. This
technique is demonstrated in the present paper with numerical examples.
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1 Microstructure, homogenized behaviour and auxetics

The microstructure influences the homogenized overal behaviour of a material. The
link is provided and studied by the theory of homogenization. In elasticity, Pois-
son’s ratio measures the change of length (deformation) of an elastic material in
the perpendicular to the loading direction. Materials with negative Poisson’s ra-
tio are characterized as auxetic materials, from the greek word ’afxetos’, meaning
the one that increases its shape or size Alderson and Alderson (2007). A number
of mechanisms have been proposed for the construction of auxetic models Theo-
caris, Stavroulakis, and Panagiotopoulos (1997); Stavroulakis (2005). The auto-
matic design of microstructures that lead to a specific homogeneour behaviour can
be addressed by means of topology optimization, as it is shown here for the case of
auxetic materials (see Kaminakis and Stavroulakis (2012) as well).

2 Topology optimization of structures and compliant mechanisms

A quite general structural optimization problem was formulated as an optimal ma-
terial distribution problem inside a given design domain by, among the first, in
Bendsoeand Kikuchi (1988). This way the form and the structural system of the
resulting optimal structure does not depend on the initial choise, i.e. the experience

! Technical University of Crete, Chania, Greece.
Email: nkaminakis @gmail.com; gestavroulakis @ isc.tuc.gr



2 Copyright © 2012 Tech Science Press SL, vol.8, no.1, pp.1-6, 2012

and the imagination of the design engineer. This flexibility is of great importance
for the design of innovative micro- and nano-structures. Topology optimization can
be used for the design of compliant mechanisms that deliver motion in a predefined
way Rahmatalla and Swan (2005). The deformation form of a periodicity cell used
in numerical homogenization can be expressed by using this formulation.

The topology optimization problem is a "0-1" discrete optimization problem. First,
the design domain is discretized into finite elements. Each finite element is equiped
a design variable which is the density of the material. The problem can be relaxed
by substituting the integer variables of density with continuous variables powered,
for example, in penalty value p > 3 leading the design variables near to the ide-
ally desired descrete values 0 and 1. The method is called SIMP (Solid Isotropic
Material with Penalization).

Figure 1: Star shaped, two dimensional representative cell made of beams and
deformed shape indication an auxetic homogeneous.

3 Hybrid algorithm for the topology optimization problem

Topology optimization problems have many design variables and therefore are not
suitable for general purpose numerical optimization algorithms. For certain cases
(mainly flexibility optimization without additional constraints) the construction of
local, element-wise update techniques can be very effective, following the lines of
the old fully stressed design and optimality criteria methods.

Using the iterative local search method for the solution of the topology optimiza-
tion problem we found out that the algorithm is very sensitive to the starting point.
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In fact, starting from random initial material distributions, the algorithm ends at
different final material distributions. This is due to the nonconvex nature of the
underlying optimization problem, which may have several local minima. A global
optimization algorithm is needed. Genuine global optimization techniques or evo-
lutionary algorithms are not suitable for large scale problems.

For this purpose a hybrid algorithm is used here, which is based on Differen-
tial Evolution, for the global optimization part, and classical local iteration steps
within each evaluation of the evolution algorithm (see Kaminakis and Stavroulakis
(2012)).

4 Results using truss and plane elasticity discretizations

The conceptual design of a microstructure that macroscopically works as an aux-
etic material is presented. The microstructucture can be simulated by a compliant
mechanism in such a way that when axial tensile forces are applied along onte di-
rection, it expands in the perpendicular direction. The objective is to maximize the
Poisson’s ration that can be expressed as the fraction of the output displacement
over the input displacement. The design domain is discretized by means of truss or
plane elasticity finite elements. The input force is applied at teh lower left corner
of a one forth of a rectangular periodicity cell with direction to the left. The de-
sign should produce and upward movement at the upper right corner. The design
variables are the cross section areas of each element or the density of each twodi-
mensional finite element. The goal is to determine the design variables in order to
maximize the output displacement, subjected to the constraint that the volume of
all material used is a fraction of the totally available volume.

For the iterative local search the maximum number of iterations was set equal to
200 and the penalty parameter was set equal to 3. For the DE, the maximum number
of generations was 100, and the population size was 16, the mutation factor 1,5 and
the recombination factor 0.9, respectivelly (see Kaminakis and Stavroulakis (2012)
for technical details).

The implementation has been done with Matlab R2009b on a 8-core, 64bit work-
station running Windows Server Enterprice, with the sparse matrix option and the
parallel computing offered by Matlab.

4.1 Design domain definition

The design domain is defined as a square ABCD. Input forced is placed on point
"D". The output of the mechanism is placed on point "B" on the vertical axis. The
domain is illustrated in figure 2.
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Figure 2: Design Domain
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Figure 3: Results: 12x12 subcells, Volume fraction: 8.3% (3x3 : 30%)
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4.2 A 12x12 cell using truss elements and volume fraction equal to 8.3 per cent

In figure 3 are shown the results for the 12x12 mesh with volume fraction 8.3%.
Each subcell has length and width equal to 2.5 unit. The Poisson’s ratio is equal to
-0.611.

4.3 A 30x30 cell using plane stress elements and volume fraction equal to 30%

Figure 4 demostrates the results for a 30x30 plane finite elements design domain.
The goal in this case is filling the 30% of the whole domain with material.
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Figure 4: A resulted topology for a 30x30 design domain, with Volume goal at 30%
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Figure 5: A resulted topology for a 60x60 design domain, with Volume goal at 30%
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4.4 A 60x60 cell using plane stress elements and volume fraction equal to 30%

Figure 4 demostrates the results for a 60x60 plane finite elements design domain.
The goal in this case is filling the 30% of the whole domain with material.

5 Conclusions

Topology optimization for compliant structures, taking into account nonconvexity
issues, has been used for the design of microstructures leading to auxetic behaviour.
Mesh refinement lead to much richer microstructures. Systematic convergence to
a given microstructure would require additional precautions and will be studied in
the future. Extension to other, nonlinear or multiphysics problems is also possible.
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