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Vibrations of circular graphene mono-layer as mass sensor

A.S. Tsiamaki1, S.K. Georgantzinos1, N.K. Anifantis1

Abstract: This paper examines the vibrational behavior of a clamped circular
graphene sheet with and without a mass lying on it. For this reason, a spring-
based finite element (FE) model is formulated and utilized. Interatomic bonded
interactions and the relative movements between carbon atoms are simulated via
the use of appropriate spring elements expressing the corresponding potential ener-
gies provided by molecular theory. The formulated model represents the graphene
sheet-additional mass system and is analyzed using FE procedures. The effect of
design parameters as the graphene diameter as well as the additional mass magni-
tude on the vibration characteristics is investigated in order to predict the potential
response of the circular graphene sheet as mass sensor.
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1 Introduction

The development and exploitation of novel materials can lead to the progress of
new fields of research as well as new solutions to technological problems that could
not be resolved up to now. One of the most recent and promising material is the
graphene. It is an allotrope of carbon and its structure is one-atom-thick planar
sheets of sp2-bonded carbon atoms that are densely packed in a honeycomb crystal
lattice. Graphene is the basic structural element of some carbon allotropes includ-
ing graphite, charcoal, carbon nanotubes and fullerenes. Its structure combined
with the high strength of carbon-carbon bond create a material that is 200 times
stronger than steel [Lee, Wei, Kysar and Hone (2008)]. Beyond its superior me-
chanical behavior, graphene presents remarkable electronic, optical and thermal
properties. The combination of those properties, its small size and its low density
make graphene a very promising material for plenty of applications such as molecu-
lar gas detectors [Schedin, Geim, Morozov, Hill, Blake, Katsnelson and Novoselov
(2010)], transistors, integrated circuits, conductive ultra capacitors, advanced com-
posites [Wu, Shen, Jiang, Wang and Chen (2010)], etc. Graphene properties makes
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it ideal to be used in a huge number of applications in the future and the structures
consisted of it will be remarkably light. Also, it has small inertia and very high
frequencies and thus it can be used as mass sensor. It is found that graphene can lie
on a pore that has approximately circular shape, and consequently, a mass sensor of
circular shape may be easily developed. The present work is an attempt to simulate
using structural mechanics models, the vibrational analysis of a circular graphene
sheet. The interactions between the carbon atoms are modeled with a combination
of appropriate tensile-compressive spring elements [Georgantzinos, Giannopoulos
and Anifantis (2009); Georgantzinos and Anifantis (2010)]. Solving the free vi-
bration problem, mode shapes of vibration and natural frequencies are revealed for
the circular graphene sheet having a mass attached to it. The study has been done
for various values of mass and diameter and also for different positions of the mass
onto the graphene sheet. The results are in agreement with analytical solutions from
the theory of plates and can give extensive information for the graphene vibrational
behavior.

2 Graphene potential energy

The general expression of the potential energy for a covalent bond system was pre-
sented by Cornell et al. and depends on the relative positions of carbon atoms and
is equal to the sum of the energies that refer to different interatomic interactions.
The total energy is given by the equation below:

U = ∑Ur +∑Uθ +∑Uφ +∑Uω +∑Uvdw (1)

where Ur is the energy due to bond stretching, Uθ is the energy due to bond angle
bending, Uφ is the the energy due to dihedral angle torsion, Uω is the energy due
to out-of-plane torsion and Uvdw is the energy due to non-bonded van der Waals
interaction.

Ur =
1
2

kr(∆r)2, Uθ =
1
2

kθ (∆θ)2, Uτ =Uφ +Uω =
1
2

kτ(∆φ)2 (2)

Uτ is the sum of the dihedral angle torsion Uφ and the out-of-plane torsion Uω . kr,
kθ , kτ are the bond stretching, the bond angle bending and the torsional resistance
force constants respectively where kr = 6.52 x 10−7 N/nm and kθ = 8.76 x 10−10

Nnm/rad2.

3 Computational model

3.1 Interatomic interactions representation

The influence of the non-bonding interactions, i.e., van der Waals and electrostatic
interactions, are assumed to be negligible. Note that the potential energy term
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representing the bond stretching is completely equivalent to the potential energy of
a compression/extension of a spring of stiffness kr which is longitudinally deformed
by ∆r. Similarly, each of the remaining potential energy terms representing the
bond angle bending or torsional interactions are equivalent to the potential energy
of a torsion spring of stiffness kθ and kτ rotated by ∆θ or ∆τ , respectively. In
this way, the molecular mechanics force field constants can be straightforwardly
introduced into the model as spring stiffness coefficients. In order to represent the
bond stretching interactions between carbon atoms, the straight spring elements a
of stiffness kr are used. In order to represent the bending interaction, the axial
springs bi may be adopted, where i = 1,2 [14]. The stiffness of the specific springs
is given by the following equation:

kbi =

(
1

ac−c cos(90o− γi)

)2

kθ , i = 1,2, (3)

where ac−c is the distance between two neighboring carbon atoms and is equal to
0.1421 nm and γi = 30o in the hexagonal lattice of the graphene sheet.

In order to simulate the out of plane and dihedral torsion the following technique
is followed. When one carbon atom is up from the layer plane, it causes its three
neighbor atoms to resist in that displacement and so in that position appears the out-
of-plane and dihedral torsion. Regarding a specific bond with one neighbor carbon
atom, it is physically proved that exists only one out-of-plane torsion as well as two
dihedral angle torsion interactions. If those interactions are represented by only
one translational spring s in z-axis, then its stiffness can be found by the following
energy equation

Us = 2Uϕ +Uω (4)

where Us is the equivalent potential energy (or strain energy) of the equivalent out
of plane spring s. Hence, its stiffness is found by the following equation

ks = 2kϕ

(
1

ac−c

)2

+ kω

(
1

ac−c ∗ cos30◦

)2

(5)

To simulate inertial effects, a particle whose mass is equal to a half or whole carbon
atomic nucleus mass (m = 1.9943×10−26 kg) is added onto one node in particular
elements. The masses of electrons are neglected. An analytical description of the
spring-mass modeling is reported in [Georgantzinos, Giannopoulos and Anifantis
(2009)].
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3.2 Computer implementation

Using the above modeling technique, the global stiffness K and global mass M
matrices are assembled according the circular graphene geometry using FE proce-
dures. Considering undamped free vibration for the sheets, the equation of motion
becomes

MẌ+KX = 0 (6)

Applying the support conditions of graphene based mass sensor, the eigenvalue
problem can be solved. The solution of the eignevalue problem reveals the natural
frequencies of vibration and the corresponding mode shapes.

3.3 Analytical solution

As have already been written [Neek-Amal1 and Peeters (2010)], for a perfect plate
with clamped boundary condition as z(r) | r=R= 0 and dz

dr | r=R= 0 , the radial solu-
tion is a linear combination of the first [Jn(r)] and the second [In(r)] kind of Bessel’s
function,

z(r) =CJn(r)+DIn(r) (7)

Substituting the solution in the boundary conditions gives an equation for the nor-
mal frequencies. Values of the roots of Bessel’s function which are counted by the
integer m determine the natural frequencies. The function is given below:

fmn =
x2

mn

2πR2

√
Eh2

12ρ(1− v2)
(8)

where xmn are the roots, x11 = 3.196, x12 = 4.611, x21 = 6.306, etc. Using the
above equation, it is able to compare the numerical results with the corresponding
analytical ones.

4 Results and discussion

The frequencies of the clamped circular graphene plane are calculated using various
values for the Young’s modulus E and Poisson’s ratio ν obtained from the literature.
In first and second case we used the values for E and ν shown in the Tab. 1, while in
third case we used the information extracted from the solution of the static problem

implementing the present spring-based technique. Specifically, the values of E and
ν for different diameters of circular graphene sheets are evaluated as the mean value
of those parameters corresponding in the two directions of a square graphene, of
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Table 1: Young’ s modules and Poisson’s ratio for graphene

E N
Set 1 1.35 TPa 0.6
Set 2 0.75TPa 0.21

which the side is equal to the diameter of the circular graphene. Fig. 1 shows
the results concerning the fundamental frequency obtained from the present struc-
tural mechanics technique and the Eq.1. It is observed that the results received are
in a good agreement between them and, thus, the model developed can simulate
reasonably the vibrational behavior of graphene. As was expected, the larger the
diameter the lower the frequency. Concerning the graphene-added mass system,
Fig.2 presents the basic natural frequencies and shows their decreasing as the di-
ameter increases. Nevertheless, there are some eigenvalues for which the frequency
remains stable even if a mass is added at the center of the graphene membrane. This
happens due to the fact that the point where the mass lies, which is approximately
the center of the graphene sheet. For those eigenmodes, at this position, there is not
deformation with respect to its original position and, therefore, they are not affected
by the mass change.

Figure 1: (a) Fundamental frequency vs. diameter, (b) 3D, and (c) side view of
corresponding mode shape.l
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Figure 2: Frequency vs added mass

5 Conclusions

The graphene frequency decreases for larger diameters with and without mass at-
tached to it. However, there are some eigenmodes, for which the frequency does
not change with the presence of additional mass due to the mode shape of vibration.
Finally, the method is able to extract the frequencies and corresponding in-plane or
out-of-plane mode shapes of circular graphene appear that gives valuable knowl-
edge of graphene based mass sensor vibrations.
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