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Radial Basis Functions Approximation Method for
Numerical Solution of Good Boussinesq Equation
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Abstract: An interpolation method using radial basis functions is applied for the
numerical solution of good Boussinesq equation. The numerical method is based
on scattered data interpolation along with basis functions known as radial basis
functions. The spatial derivatives are approximated by the derivatives of interpola-
tion and a low order scheme is used to approximate the temporal derivative. The
scheme is tested for single soliton and two soliton interaction. The results obtained
from the method are compared with the exact solutions and the earlier works.
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1 Introduction

In the last decade, the theory of radial basis functions (RBFs) has enjoyed a great
success as a scattered data interpolating technique. A radial basis function φ(x−
x j) = φ(||x− x j||) is a continuous spline which depends upon the separation dis-
tances of a subset of data centers X ⊂ Rn, {x j ∈ X , j = 1,2, . . . ,N}. Due to the
spherical symmetry about the centers x j, the RBFs are called radial. The distances
||x− x j|| are usually taken to be the Euclidean metric. Hardy (1971) was the first
to introduce a general scattered data interpolation method, called radial basis func-
tions method for the approximation of two-dimensional geographical surfaces. In
1982 Franke (1982) in a review paper made a comparison among all the interpola-
tion methods for scattered data sets available at that time, and the radial basis func-
tions outperformed all the other methods regarding efficiency, stability and ease
of implementations. Franke found that Hardy’s multiquadrics (MQ) were ranked
the best in accuracy, followed by thin plate splines (TPS). Despite MQ’s excellent
performance, it contains a shape parameter c, and the accuracy of MQ is greatly
affected by the choice of shape parameter c whose optimal value is still unknown.
Franke (1975) used the formula c2 = (1.25)2d2 where d is the mean distance from
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each data point to its nearest neighbor. Hickernell and Hon (1998); Golberg, Chen,
and Karur (1996) had successfully used the technique of cross-validation to obtain
an optimal value of the shape parameter. In 1990 radial basis functions scheme
was introduced by Kansa (1990a) to solve partial differential equations. The ex-
istence, uniqueness and convergence of this method was discussed by Micchelli
(1986); Madych and Nelson (1990); Franke and Schaback (1997). It was stud-
ied by Micchelli in 1986 that for distinct interpolation points system obtained in
multiqudric (MQ) method is always solvable. In the past decade RBFs interpola-
tion method have received increased attention for numerically solving partial dif-
ferential equations (PDEs) on irregular domains by global collocation approach
(see, Kansa (1990b); Hickernell and Hon (1998); Fasshuer (1999); Larsson and
Forenberg (2003) ect.). When proper attention is paid to boundaries, these meth-
ods can be spectrally accurate, they generally result in having to solve a large,
ill-conditioned, dense linear system. Some attempts have been made to resolve
this problem (see Fasshuer (1999); Kansa and Hon (2000); Ling and Kansa (2005)
and references therein). The RBFs scheme is truly a meshfree method which does
not require the generation of a mesh, and since the MQ is infinitely differentiable,
we can approximate the higher order spatial derivative directly by computing the
derivative of the basis functions. Due to the generality and simplicity, such tech-
nique and its variation have been successfully applied to many areas [Fasshuer
(1999); Fasshauer, Khaliq, and Voss (2004); Hon, Cheung, Mao, and Kansa (1999);
Hon and Mao (1999); Li, Hon, and Chen (2002); Power and Barraco (2002); Franke
and Schaback (1997); Zhou, Hon, and Li (2003); Li, Chen, and Pepper (2003); Haq
and Uddin (2010)]. However the stability issues have limited the use of RBFs for
time dependent problems and adapting the methods for non-linear equations has
proven to be difficult.

In this work, we use RBFs approximation method for the numerical solution of
good Boussinesq equation. The good Boussinesq equation is a nonlinear equation
which describes shallow water waves, propagating in both directions, is given by

∂ 2u(x, t)
∂ t2 =

∂ 2u(x, t)
∂x2 +q

∂ 4u(x, t)
∂x4 +

∂ 2(u2(x, t))
∂x2 , (x, t) ∈ [a,b]× [0,T ]. (1)

with the initial conditions

u(x,0) = u1(x),ut(x,0) = u2(x), (2)

and the boundary conditions

u(a, t) = g1(t),u(b, t) = g2(t). (3)

Where |q| = 1 is a real parameter, the value q = −1 leads to good Boussinesq or
well-posed equation (see [Bratsos (2008)] and the references there in), whereas
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for q = 1 gives bad boussinesq equation or ill-posed equation [Boussinesq (1871,
1872)]. The good Boussinesq equation describes motion of long waves in the shal-
low water under gravity. The Boussinesq equation has been solved numerically
by finite difference method [Bratsos (1998); Bratsos, Tsitouras, and Natsis (2005);
Bratsos (2008); Ismail and Bratsos (2003); El-Zoheiry (2003); Saucez, Wouwer,
Schiesser, and Zegeling (2004)], pseudospectral method [Daripa and Hua (1999)],
finite element method [Pani and Saranga (1997)], method of lines [Bratsos (1998);
Saucez, Wouwer, Schiesser, and Zegeling (2004)].

The structure of the present paper is organized as follows. In Section 2, the mesh-
free method for good Boussinesq equation and the stability of the scheme have
been discussed. Section 3, is devoted to the numerical tests of the method on the
problems related to the good Boussinesq equation. In Section 4, the results have
been concluded.

2 Analysis of the method

In this section, we consider a general time dependent boundary value problem

∂u
∂ t

+L u = f (x, t),x ∈Ω, Bu = g(x, t), x ∈ ∂Ω (4)

where L is the spatial derivative and B boundary operators. Ω and ∂Ω represent
interior and boundary of the domain respectively. We use the scheme for spatial
derivatives in the following form

Un+1−Un

∆t
+LUn = f (x, tn+1) (5)

In the above equation ∆t is the time step size, Un (n is non-negative integer) is the
approximate solution at time tn = n∆t. Let {xi}Nd

i=1 and {xi}N
i=Nd+1 be respectively

interior and boundary points among the collocation points {x}N
i=1 in the domain.

The solution of equation (4) can be approximated by

Un(xi) =
N

∑
j=1

ψ(ri j)λ
n
j , i = 1,2, . . . ,N. (6)

In the above equation ψ(ri j) are radial basis functions with Euclidean norm ri j =
||xi− x j|| between the points xi and x j and {λ j}N

j=1 are constants to be determined.
From Equations (5) and (6), we can write

N

∑
j=1

(
ψ(ri j)λ

n+1
j −ψ(ri j)λ

n
j

∆t
+[ψ(ri j)]λ

n
j

)
= f (x, tn+1), i = 1,2, . . . ,Nd , (7)
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N

∑
j=1

B(ψ(ri j))λ
n+1
j = g(xi, tn+1), i = Nd +1, . . . ,N. (8)

The equations (7)-(8) are N equations in N unknowns {λ j}N
j=1 which can be solved

by Gauss elimination method.

2.1 The good Boussinesq equation

We transform the good Boussinesq equation into coupled equations and is given by

∂u(x, t)
∂ t

= v(x, t),
∂v(x, t)

∂ t
=

∂ 2u(x, t)
∂x2 +q

∂ 4u(x, t)
∂x4 +

∂ 2(u2(x, t))
∂x2 ,(x, t) ∈ [a,b]× [0,T ]

(9)

with the boundary conditions

u(a, t) = f1(t),u(b, t) = f2(t),v(a, t) = g1(t),v(b, t) = g2(t), t > 0, (10)

and initial conditions

u(x,0) = f (x),v(x,0) = g(x), a≤ x≤ b. (11)

From equation (9) we can write[
Un+1−Un

∆t

]
=V n,

[
V n+1−V n

∆t

]
= [Un

xx +qUn
xxxx +2UnUn

xx +2(Un
x )

2], (12)

rearranging equation (12) we get

Un+1 =Un +∆tV n,V n+1 =V n +∆t(Un
xx +qUn

xxxx +2UnUn
xx +2(Un

x )
2) (13)

where tn+1 = tn +∆t. The RBFs approximations for the solutions u and v of equa-
tions in (9) are given by

Un(xi) =
N

∑
j=1

λ
n
1 jψ(ri j), V n(xi) =

N

∑
j=1

λ
n
2 jψ(ri j), i = 1,2, . . . ,N (14)

By using equation (13) along with the boundary conditions given in equation (10),
the system of equations in equation (13) can be written in matrix form as

Aλ
n+1
1 = Aλ

n
1 +∆tVn + fn+1,Aλ

n
2 +∆t(Un

xx +qUn
xxxx +2UnUn

xx +2(Un
x)

2)+gn+1,

(15)

where A = [ψ(ri j)]
N
i, j=1. In more compact form we can write equations in (15) as

λ
n+1
1 = A−1Aλ

n
1 +A−1Fn+1,λ n+1

2 = A−1Aλ
n
2 +A−1Gn+1. (16)
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Where

λ
n+1
i = [λ n+1

i1 ,λ n+1
i2 ,λ n+1

i3 , . . . ,λ n+1
iN ]T , i = 1,2,

fn+1 = [ f n+1
1 ,0,0, . . . , f n+1

2 ]T ,

gn+1 = [gn+1
1 ,0,0, . . . ,gn+1

2 ]T ,

Fn+1 = [fn+1 +∆tVn],

Gn+1 = [gn+1 +∆t(Un
xx +qUn

xxxx +2UnUn
xx +2(Un

x)
2)].

Equations in (14) can be written in matrix form as

Un = Aλ
n
1 ,V

n = Aλ
n
2 , or Un+1 = Aλ

n+1
1 ,Vn+1 = Aλ

n+1
2 (17)

Using the values λ n
i and λ

n+1
i , (i = 1,2) from equation (16) in equation (17), we

get

Un+1 = AA−1AA−1Un +AA−1Fn+1,Vn+1 = AA−1AA−1Vn +AA−1Gn+1. (18)

From here we can find the solution at any time level n.

It is shown by Hon and Schaback (n.d) that for the Euler time-stepping the system
of equation will be stable if it satisfy the condition δ t ≤ C(δx)2, where C is a
constant. Hence in our case the scheme in equation (18) will be stable if we keep
time step size δ t small enough to satisfy the above condition. This fact can be seen
from Table 5, where the accuracy increases with a decrease in time step size δ t.

3 Numerical examples

In this section, we apply the proposed method for the numerical solution of GB
equation. The accuracy of the meshfree method is tested in terms of L2, L∞ error
norms and the conservation of energy M(t) [Bratsos (2008)] of GB equation. These
error norms and energy are defined as

L2 = ||U−u||2 =

[
δx

N

∑
j=1

(U−u)2

]1/2

,

L∞ = ||U−u||∞ = max
j
|U−u|.

M(t) =
∫

∞

−∞

u(x, t)dx, (19)

where U and u denote the numerical and exact solution respectively. The test prob-
lems are given below.
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3.1 Problem 1. Single soliton:

We consider GB equation (1) as system of two equations given in (9). The exact
[Bratsos (2008)] solutions of the equations in (9) are given as

u(x, t) =−αsech2
(√

α

6
(x− x0−Ct)

)
−
(

β +
1
2

)
(20)

v(x, t) =−2αCsech2
(√

α

6
(x− x0−Ct)

)
tanh

(√
α

6
(x− x0−Ct)

)
,

C =±[−2(β +α/3)]1/2.

Table 1: Error norms and energy constant for single soliton, when ∆t = 0.0002, N =
241, C = 0.868332, α = 0.369, β = −0.5 in [−40,80] corresponding to problem
1.

t 1.2 3.6 9 36 72
MQ (c = 2) L∞ 1.904E-005 1.699E-005 2.801E-005 9.529E-005 2.130E-004

L2 1.881E-006 7.480E-006 1.840E-005 1.205E-004 4.738E-004
M(t) -2.975905 -2.975909 -2.975916 -2.975981 -2.975788
Amp. 0.368970 0.368656 0.368252 0.367786 0.369170

GA(c = 1) L∞ 1.904E-005 1.700E-005 2.805E-005 9.540E-005 2.085E-004
L2 1.397E-009 3.222E-009 4.725E-009 6.924E-005 3.484E-004

M(t) -2.975903 -2.975903 -2.975903 -2.975952 -2.975699
Amp. 0.368970 0.368656 0.368252 0.367786 0.369166

Ref. [Bratsos (1998)] L∞ 0.920E-001 0.943E-001
Ref. [Bratsos, Tsi-
touras, and Natsis
(2005)]

L∞ 0.269E-002 0.141E+000 0.130E+000

L2 0.370E-002 0.251E+000 0.323E+000
Ref. [Bratsos (2008)] L∞ 0.103E-003 0.146E-003

The initial conditions u(x,0) and v(x,0), the boundary conditions u(a, t), u(b, t),
v(a, t) and v(b, t) are obtained from the exact solutions in equation (20). We solved
the problem over the spatial domain −40 ≤ x ≤ 80. In our computations we used
three types of radial basis functions, the multiquadric (ψ(r) =

√
c2 + r2, c is a

shape parameter), the Gaussian (ψ(r) = exp(−cr2), c is a shape parameter) and
the spline basis (ψ(r) = r5). In order to demonstrate the accuracy of the method,
we calculated the L∞ the L2 error norms, the energy M(t) and the amplitude of the
approximate solution at different times and are given in Tables 1-2. The results are
compared with the relevant works in references [Bratsos (1998); Bratsos, Tsitouras,
and Natsis (2005); Bratsos (2008)] in Tables 1-2. In comparison the present method
performed better than the methods given in references [Bratsos (1998); Bratsos,
Tsitouras, and Natsis (2005); Bratsos (2008)]. The L∞, L2 error norms are also
calculated for different values of the parameters α , C and are given in Tables 3.
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In Table 4 the effect of time step size δ t is shown. It is observed that the solution
accuracy improves with a decrease in time step size δ t. It is shown in Table 5 and
figure 2 that the optimal values of MQ and GA shape parameters are in the intervals
(0,4.16), and (0,32) respectively. The motion of solitary wave is shown at times
different times in Fig. 1.

Table 2: Error norms for single soliton for different values of α and C, when ∆t =
0.00002, N = 241, MQ(c = 2), β =−0.5 in [−40,80] corresponding to problem 1.

α C t L∞(MQ) Ł∞(GA) L∞([Bratsos (2008)])
1.2 0.44721 67.7 1.576E-003 3.138E-001 blow-up
1. 5 0 20.7 3.130E-001 5.621E-006 blow-up

Table 3: Error norms for single soliton for different values of α and C, when
∆t = 0.0002, N = 241, MQ(c = 2), GA(c = 1), β = −0.5 at t = 1 in [−40,80]
corresponding to problem 1.

α C L∞(MQ) L∞(GA) L∞(r7)

0.15 0.94868 1.909E-006 1.909E-006 2.615E-006
0.5 0.81650 1.471E-005 1.471E-005 2.985E-004
1.2 0.44721 2.232E-005 2.244E-005 5.351E-003
1.5 0 1.134E-006 1.382E-008 1.121E-002

Table 4: Error norms and energy constant versus time step size ∆t for single soliton,
when MQ(c= 2), GA(c= 1), β =−0.5, N = 241, α = 0.369, C = 0.868332 at time
t = 1 in [−40,80] corresponding to problem 1.

∆t L∞(MQ) L∞(GA) |M(t)−M(0)|
0.1 4.426E-003 4.426E-003 2.3083E-007
0.01 4.589E-004 4.589E-004 2.2094E-007
0.001 4.604E-005 4.604E-005 2.2093E-007

0.0001 4.612E-006 4.615E-006 2.2093E-007
0.00001 8.757E-007 8.763E-007 2.2093E-007
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Figure 1: Single soliton: when ∆ = 0.0002, N = 241, c = 2, C = 0.868332, α =
0.369, β =−0.5 in [−40,80], up to time t = 72, corresponding to problem 1.

3.2 Problem 2. Two soliton interaction:

We consider the following initial conditions

u(x,0) =−
2

∑
i=1

[
αisech2

(√
αi

6
(x− xi)−

(
βi +

1
2

))]
, (21)

v(x,0) =−2
2

∑
i=1

αiCisech2
(√

αi

6
(x− xi)

)
tanh

(√
αi

6
(x− xi)

)
Ci =±[−2(βi +αi/3]1/2, i = 1,2.

The boundary conditions are chosen as u(a,0) = 0, u(b,0) = 0, v(a,0) = 0 and
v(b,0) = 0. The above initial conditions are the sum of two solitary waves initially
centered at x1 = −10 and x2 = 40 with the amplitudes α1 and α2. The two waves
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moves toward each other, with the speeds C1 and C2 respectively. In Figs. 3-4, the
interaction of two waves with equal and unequal amplitudes are shown. The inter-
action of the two waves is elastic, and after interaction the waves retain their shape
and amplitudes are shown in Fig. 3-4. We also calculated the energy constant for
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Figure 2: Single soliton: when time step size ∆t, t = 1, N = 241, C = 0.868332,
α = 0.369, β =−0.5 in [−40,80], corresponding to problem 1.

two solitons interaction which remains constant in time interval [0,60] see Table 6.

−40
−20

0
20

40
60

80

0

10

20

30

40

50

60

0

0.5

1

1.5

x

t

u

(a) Interaction of two waves with equal amplitudes (b) Contour plot of interaction of two waves

Figure 3: Two solitons interaction: when ∆t = 0.0004, N = 241, MQ(c = 2), C1 =
0.868332, C2 = −0.868332, x1 = −10, x2 = 40, α1 = 0.369, α2 = 0.369, β1 =
−0.5, β2 =−0.5 in [−40,80], up to time t = 60, corresponding to problem 2.
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Figure 4: Two solitons interaction: when ∆t = 0.0004, N = 241, MQ(c = 2), C1 =
0.81650, C2 = −0.94868, x1 = −10, x2 = 40, α1 = 0.5, α = 0.15, β1 = −0.5,
β2 =−0.5, in [−40,80] up to time t = 60, corresponding to problem 2.

Table 5: Error norms and energy constant versus MQ shape parameter c for single
soliton, when ∆t = 0.0002, N = 241, β =−0.5, α = 0.369, C = 0.868332 at time
t = 1 in [−40,80] corresponding to problem 1.

MQ GA
c L∞ c L∞

0.244720 3.156E-001 0.50 9.219E-006
0.489440 4.801E-002 1.50 9.130E-006
0.734160 3.302E-003 2.50 1.683E-003
0.978880 2.014E-004 3.50 1.232E-001
1.223600 4.373E-006 4.50 7.103E-001
1.468320 8.313E-006 20.50 3.709E-001
1.713040 9.156E-006 25.50 3.318E-001
1.957760 9.215E-006 12.50 1.001E-001
2.202480 9.219E-006 16.50 1.965E-001
2.447200 9.219E-006 20.50 3.709E-001
2.691920 9.219E-006 24.50 4.424E-001
2.936640 9.219E-006 28.50 2.575E-001
3.181360 9.219E-006 32.50 3.108E-001
4.160240 1.102E-001 36.50 1.135E+000

4 Conclusion

In this paper, the RBFs approximation is applied for the numerical solution of good
Boussinesq equation. We split the problem as system of two equations. We only
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Table 6: Energy constant for two solitons interaction, when ∆t = 0.0004, N = 241,
MQ(c = 2), GA(c = 1), C1 = 0.868332, C2 = −0.868332, x1 = −10, x2 = 40,
α1 = 0.369, α2 = 0.369, β1 = −0.5, β2 = −0.5 in [−40,80], corresponding to
problem 2.

MQ GA
t M(t) M(t)
0 -5.9518 -5.9518
15 -5.9519 -5.9518
35 -5.9521 -5.9520
50 -5.9523 -5.9544

displayed the solution u. The technique used in this paper provides an efficient
alternative for the solution of higher PDEs in time as well as in space. From appli-
cation viewpoints the implementation of this method is very simple and straight-
forward.
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