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A New Method to Achieve Equivalent Plastic Strain
Explicit Form of J2 Plastic Isotropic Kinematic Hardening

Model and Numerical Verification

Peng Cao1, Decheng Feng2 and Changjun Zhou3

Abstract: Based on the classic J2 Plastic Flow Theory, the explicit equation
of the equivalent plastic strain was derived elaborately utilizing the tensor analy-
sis method. And a modified method commenced with the plastic flow rule was
employed to obtain the same explicit equation. Finally, a subroutine written with
FORTRAN was imported into the ABAQUS-version6.11 to validate the robustness
of the numerical integrated scheme above The derivation procedure for the explicit
equation of the equivalent plastic strain based on J2 Plastic Flow Theory can be uti-
lized as an alternate method to solve complicated constitute integrated problems.
And the developed algorithm can save as much as 20% time on the same calculation
scale, compared to the traditional iterative method.
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1 Introduction

Plastic behavior is one of the most important characters of the structure, especially
for metal material which involves ductile behavior. The basic theory of plasticity
can be found in the standard textbooks and papers, such as Sokolnikoff (1956), Gur-
tine (1972), Hill (1950,1958), Koiter (1953,1960) and Maier (1970,1979). There
are various kinds of plastic constitute in solid mechanics, which can be employed
to simulate the elastoplastic response of various kinds of materials, such as con-
crete [Lee (1998); Lubliner (1998)], steel [Hill (1950,1958); Dugdale (1960)],
glass [Anand (1996,2003)], polymer [Boyce (1988); Donald (1997)] and so on.
The most famous and classical plasticity model is the J2 Plastic Flow Theory. The
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code of this theory is the Huber-Von Mises yield condition. Meanwhile this model
is widely used in almost every area in industry engineering because of its simple
mathematical form. However, since then, the J2 Plastic Flow Theory has developed
very slowly as boundary conditions are very complicated when solving plastic re-
sponse. Analytic solutions, when adopting to this J2 theory, can only be obtained
on structures with regular shapes. With the progress of computer science and nu-
merical technology, the nonlinear solid mechanics problem can be solved using
new numerical methods like Finite Element Method (FEM), Boundary Element
Method (BEM), Smooth Particle Hydrodynamic (SPH), Discrete Element Method
(DEM), Extended Finite Element Method (X-FEM), Free Mesh Method [Yagawa
(1996,2000)]. Meanwhile, many numerical forms for plastic models have been de-
veloped, including effective numerical integrated forms for J2 Plastic Flow Theory
in a state of plane stain, a state of a plane stress, or a three-dimensional condition.
However, the lack of details in derivation processes, which were neglected in most
papers, jeopardizes their popularity.

2 Objective and Scope

The aim of this paper is to develop an alternate and easy method to obtain the ex-
plicit equations of the equivalent plastic strain. The J2 Plastic Flow Theory was
utilized to derive the explicit equations and the robust of the numerical integrated
scheme above was validated by a simulation in ABAQUS-version 6.11 with a sub-
routine written in FORTRAN.

3 Methodology

Firstly, based on finite deformation theory, the concrete numerical process of classic
three-dimensional J2 Plastic Flow Theory with Kinematic hardening for concrete
was deduced in detail. Secondly, based on the plastic rule, the same explicit form
of equivalent plastic-strain was also concluded. Furthermore, a user defined mate-
rial subroutine was compiled on the software Finite Element platform (ABAQUS),
using previous integrated numerical algorithm.

4 Elastic Theory

Two material parameters, i.e. Young’s modulus E and Poisson’s ratioν are used
to calculate the isotropic elastic response. Nevertheless, these material parame-
ters could not reflect the relationship among shear, volume deformation and stress.
Therefore, another two material parameters were introduced as lame constants, as
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shown in eq.1.

λ =
Eν

(1+ν)(1−2v)
µ =

E
2(1+ v)

(1)

λ and µ are lame constants. The stress tensor σ̄ can been written with component
form as eq.2

σi j =

∣∣∣∣∣∣
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

∣∣∣∣∣∣ (2)

σ̄ can been decomposed as hydrostatic stress tensor σ0δ̄ (σ0 = σ11+σ22+σ33
3 ) and

deviatoric stress tensor S̄, which can be written with component forms as eq.3

σi j =

∣∣∣∣∣∣
σ0 0 0
0 σ0 0
0 0 σ0

∣∣∣∣∣∣+
∣∣∣∣∣∣

σ11−σ0 σ12 σ13
σ21 σ22−σ0 σ23
σ31 σ32 σ33−σ0

∣∣∣∣∣∣ (3)

and

σ0δi j =

∣∣∣∣∣∣
σ0 0 0
0 σ0 0
0 0 σ0

∣∣∣∣∣∣ (4)

Si j =

∣∣∣∣∣∣
σ11−σ0 σ12 σ13

σ21 σ22−σ0 σ23
σ31 σ32 σ33−σ0

∣∣∣∣∣∣ (5)

In eq.4, δ̄ is the Kronecker delta and second-order symmetric unit tensor. The stress
tensor ε̄ can be written with component form as eq. 6,

εi j =

∣∣∣∣∣∣
ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

∣∣∣∣∣∣ (6)

ε̄ can been decomposed as hydrostatic strain tensor ε̄0 (ε0 =
ε11+ε22+ε33

3 ) and devi-
atoric strain tensor ē, which could be written with component forms as eq.7.

εi j =

∣∣∣∣∣∣
ε0 0 0
0 ε0 0
0 0 ε0

∣∣∣∣∣∣+
∣∣∣∣∣∣

ε11− ε0 ε12 ε13
ε21 ε22− ε0 ε23
ε31 ε32 ε33− ε0

∣∣∣∣∣∣ (7)



196 Copyright © 2012 Tech Science Press SL, vol.8, no.3, pp.193-206, 2012

and

ε0δi j =

∣∣∣∣∣∣
ε0 0 0
0 ε0 0
0 0 ε0

∣∣∣∣∣∣ (8)

ei j =

∣∣∣∣∣∣
ε11− ε0 ε12 ε13

ε21 ε22− ε0 ε23
ε31 ε32 ε33− ε0

∣∣∣∣∣∣ (9)

ε0δi j and ei j are component forms of hydrostatic strain tensor ε̄0 and deviatoric
strain tensor ē respectively.

The elastic constitutive relationship between stress tensor rate and strain tensor rate
could been given in term of hooker law

˙̄σ = λ × ˙̄ε0 : I +2µ× ˙̄e (10)

Ī is called as identity tensor and a four-order symmetric unit tensor.

5 Constitutive Equations for Plastic Deformation

In this section we begin by summarizing the constitutive model for J2 plastic defor-
mation of Isotropic Kinematic hardening conditions occurring in metal materials.
This (isothermal) model is based on the finite deformation decomposition. The
J2 plastic model also involves two internal variables: the equivalent plastic strain
ε̄ pl ≥ 0 which defines isotropic hardening of the Von Mises yield surface, and back
stress tensor ᾱ ≥ 0 which defines the center of Von Mises yield surface in deviatoric
stress space.

Then, in terms of the variables

ᾱ−Back stress tensor, is the center of the yield surface in deviatoric stress space

ξ̄− The tensor is the stress measured from the center of the yield surface and is
written as eq.11

ε̄el− elastic strain tensor

ε̄ pl− plastic strain tensor

ε̄el
0 − hydrostatic elastic strain tensor

ε̄
pl
0 − hydrostatic elastic strain tensor (always zero during plastic deformation)

ēel− deviatoric elastic strain tensor

ēpl− deviatoric plastic strain tensor

γ̇− a plastic-scalar multiplier
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H− The slope of uniaxial yield stress versus plastic strain curve.

f (σ̄)− Huber-Von Mises yield condition, which can be defined as Equ.12.

R− The radius of the yield surface can be written as Equ.13.

Q̄− The normal to the Von Mises surface, which can be defined as Equ.14.

σY− The equivalent yield stress, when the stress tensor is on the yield surface.

σs− The virtual equivalent yield stress during the calculation process.

and the symbol definitions:

The superscript - represents a tensor;

The superscript ˆ represents an equivalent scalar;

The superscript · represents a rate form;

The subscript new represents the status at the end of preceding numerical integra-
tion;

The subscript old represents the status at present numerical integration.

ξ̄ = S̄− ᾱ (11)

f (σ̄) =

√
3
2
×ξ : ξ −σY (12)

R =

√
2
3

σY (13)

Q̄ =
3
2 × ξ

σY
(14)

It can be obtained from eq.12 that:

f (σ̄) = 0⇒
√

3
2
×ξ : ξ = σY (15)

When considering Levy-Saint Venant flow rule, it follows that the plastic-strain rate
is defined as:

˙̄ε pl = γ̇
∂ f (σ̄)

∂ σ̄
=

1
2
×

3
2 ×2ξ̄√
3
2 × ξ̄ : ξ̄

:
∂ (S̄− ᾱ)

∂ σ̄
(16)

eq.17 can be gotten from the definition of S̄ , and can be written as:

∂ (S̄− ᾱ)

∂ σ̄
= Ī (17)
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By substituting (12), (13) and (15) in (16), it obtains

˙̄ε pl = γ̇× ∂ f (σ̄)

∂ σ̄
= γ̇×

3
2 ×ξ√
3
2 ×ξ : ξ

= γ̇×
3
2 ×ξ

σY
(18)

so the relationship between ˙̄ε pl and Q̄ can be obtained

˙̄ε pl = γ̇× Q̄ (19)

meanwhile

Q̄ : Q̄ =
3
2 ×ξ

σY
:

3
2 ×ξ

σY
=

3
2
×

3
2 ×ξ : ξ

σY ×σY
=

3
2
× σY ×σY

σY ×σY
=

3
2

(20)

Based on finite deformation assumption,

ε̄ = ε̄el + ε̄ pl

ε̄0 = ε̄el
0 + ε̄

pl
0

ē = ēel + ēpl
(21)

and the equivalent plastic-strain rate, ˙̂epl , can be defined as

˙̂epl =

√
2
3
× ˙̄epl : ˙̄epl (22)

By substituting eq. (18), (19) and (20) in (22), a very important relation can be
deduced as eq.23.

˙̂epl =

√
2
3
× ėpl : ėpl =

√
2
3
× γ̇× Q̄ : Q̄× γ̇ =

√
2
3
× 3

2
× γ̇× γ̇ = γ̇ (23)

The evolution law for ᾱ (back stress tensor) is given as

˙̄α =
2
3
×H× Q̄ (24)

When considering the stress tensor relation between proceeding status and present
status, eq. 25 can be concluded.

σ̄new = σ̄old +λ × tace(∆ε̄) : I +2×µ×∆ε̄ (25)

From the definition of the hydrostatic elastic strain tensor, it can be found that ε̄
pl
0

has no effort on plastic deformation, so eq. 25 can be written as eq. 26.

S̄old = S̄new−2×µ×∆ε̄
pl = S̄new−2×µ×∆λ × Q̄ (26)
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When considering the back stress tensor and equivalent plastic strain relation be-
tween previous status and present status, eq. 27 and eq. 28 can be concluded.

ᾱnew = ᾱold +
2
3
×H×∆γ× Q̄ (27)

êpl
new = êpl

old +∆γ (28)

Furthermore,

Q̄ =
3
2 ×ξ√
3
2 ×ξ : ξ

=
3
2 ×ξ

σY
⇒ Q̄×σY =

3
2
×ξ

⇒ Q̄×σY =
3
2
× (S̄new− ᾱnew)⇒

2
3
× Q̄×σY = S̄new− ᾱnew

(29)

ᾱnew +
2
3
× Q̄×σY = S̄new (30)

ᾱold +
2
3
×H×∆γ× Q̄+

2
3
× Q̄×σY = S̄new−2×µ×∆γ× Q̄ (31)

(ᾱold +
2
3
×H×∆γ× Q̄+

2
3
× Q̄×σY ) : Q̄ = (S̄new−2×µ×∆γ× Q̄) : Q̄

⇒ ᾱold : Q̄+
2
3
×H×∆γ× Q̄ : Q̄+

2
3
× Q̄ : Q̄×σY = S̄new : Q̄−2×µ×∆γ× Q̄ : Q̄

⇒ ᾱold : Q̄+
2
3
×H×∆γ× 3

2
+

2
3
× 3

2
×σY = S̄new : Q̄−2×µ×∆γ× 3

2

⇒ 2
3
×H×∆γ× 3

2
+

2
3
× 3

2
×σY +2µ×∆γ× 3

2
= S̄new : Q̄− ᾱold : Q̄

⇒ H×∆γ +σY +3µ×∆γ = S̄new : Q̄− ᾱold : Q̄

⇒ H×∆γ +3×µ×∆γ = S̄new : Q̄− ᾱold : Q̄−σY

⇒ (H +3×µ)×∆γ = S̄new : Q̄− ᾱold : Q̄−σY

⇒ (H +3×µ)×∆γ = (S̄new− ᾱold) : Q̄−σY

⇒ (H +3×µ)×∆γ =
3
2
× (S̄new− ᾱold) :

(S̄new− ᾱold)

σs
−σY

⇒ (H +3×µ)×∆γ =
3
2
× (S̄new− ᾱold) : (S̄new− ᾱold)

σs
−σY

⇒ (H +3×µ)×∆γ =
σs×σs

σs
−σY

⇒ (H +3×µ)×∆γ = σs−σY

(32)
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Finally, the explicit equivalent plastic strain increment form can be concluded as
eq.33.

(H +3µ)×∆êpl = σs−σY

∆êpl =
σs−σY

H +3µ

(33)

6 Explicit Equivalent Plastic Strain Increment Equation

This equation for plastic-strain update could be concluded in another view point
listed as below.

σs−σY =

√
3
2
× (S̄new− ᾱnew) : (S̄new− ᾱnew)−σY (34)

Meanwhile,

σs−σY = ∆σs (35)

Based on plasticity theory, the equivalent plastic strain êpl is the only parameter of
the increment of equivalent yield stress, so the differential form of ∆σs could be
written as:

∆σs =
∂σs

∂ êpl ×∆êpl =
∂σs

∂ ēpl :
∂ ēpl

∂ êpl ×∆êpl (36)

combine eq. 36, 34 and 22, then can get:

∆σs =
3
2 × (S̄old− ᾱold)√

3
2 × (S̄old− ᾱold) : (S̄old− ᾱold)

:
∂ (S̄old− ᾱold)

∂ ēpl :
∂ ēpl

∂ êpl ×∆êpl (37)

The new status deviatoric stress tensor can be given as

S̄new = S̄old +2×µ× (∆ē−∆ēpl)

⇒ S̄old = S̄new−2×µ× (∆ē−∆ēpl)
(38)

ᾱnew = ᾱold +
2
3
×H×∆ēpl

⇒ ᾱold = ᾱnew−
2
3
×H×∆ēpl

(39)

∆σs =
3
2 × (S̄old− ᾱold)√

3
2 × (S̄old− ᾱold) : (S̄old− ᾱold)

: (2×µ +
2
3
×H)× I :

∂ ēpl

∂ êpl ×∆êpl (40)
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based on the flow rule,

˙̄epl = γ̇× ∂ f (ξ )
∂ (σ̄)

= γ̇×
3
2 × (S̄− ᾱ)

σY
(41)

˙̄epl = ˙̂epl×
3
2 × (S̄− ᾱ)

σY
(42)

∂ ēpl

∂ êpl =
3
2
× (S̄− ᾱ)

σY
(43)

∆σs =
3
2 × (S̄old− ᾱold)√

3
2 × (S̄old− ᾱold) : (S̄old− ᾱold)

: I :
(S̄old− ᾱold)

σY

× 3
2
× (2×µ +

2
3
×H)×∆ε̂

pl

⇒ ∆σs =
3
2 × (S̄old− ᾱold) : (S̄old− ᾱold)√

3
2 × (S̄old− ᾱold) : (S̄old− ᾱold)×σY

× (3×µ +H)×∆ε̂
pl

⇒ ∆σs =
σY ×σY

σY ×σY
× (3×µ +H)×∆ε̂

pl = (3×µ +H)×∆ε̂
pl

(44)

Finally, we could obtain the same form with Equ.33 using above method.

7 Numerical Validation

In order to validate the developed model, a standard example in ABAQUS was
simulated with the developed model and the results were compared with the ones
in the standard example.

A user defined material subroutine was inserted into the finite-element computer
program ABAQUS/Standard and the J2 plastic constitutive model was implemented
to simulate the elastoplastic performance of a slender beam under repeated loads.
The list of parameters using in numerical test are: E = 100Gpa; ν = 0.25; σY =
2Mpa; H = 1×109.

To numerically model the uniaxial tension cycling test, a long beam numerical
specimen with cross size 0.2m×0.2m, and the length 2m has been meshed with
40000 C3D8R (An 8-node linear brick, reduced integration, hourglass control),
shown as Fig.1. One cross is fixed the freedom of three-dimensional displacement,
and the other cross has been enforced cycling regular triangle displacement loading
with magnitude5× 10−5m. Thirteen minutes was consumed on a server with 4
CPUs and 8GB RAM memory.
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Figure 1: Geometry of the numerical specimen

Figure 2: Load-displacement curves in the subroutine and in the standard example
in ABAQUS

The convergence speed highly depends upon the numerical integration methods
The most widely used method is the generalized midpoint rule, as mentioned (1986).
For J2 plastic flow theory, Rice and Tracey (1973) has proposed the return map
which is two-order accurate. Furthermore, other return schemes have been in-
troduced to simulated different material by Krieg (1977); Schreyer, Kulak, and
Kramer (1979); and Yoder and Whirley (1984); Loret and Prevost (1986); and
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Figure 3: the relationship between stress and strain in middle of specimen

Lubliner (1972,1973,1984). In this paper, the return map numerical integrated
scheme has been employed.

Fig.2 has shown the relation between displacement and reaction force in the refer-
ence point of the loading cross. Fig.3 has shown the relationship between stress
and strain in middle of specimen. From Fig.2 and Fig.3, we can observe the
Bauschinger effect: this effect is characterized by a reduced yield stress upon load
reversal after plastic deformation has occurred during the initial loading. This phe-
nomenon decreases with continued cycling.

8 Conclusions

This paper has manifested the whole concrete detail and conduction process of
constitutive model for J2 plastic deformation of Isotropic Kinematic hardening.
Meanwhile based on Levy-Saint Venant flow rule, a new method has been proposed
to obtain the explicit form of equivalent plastic strain, and corresponding numerical
verification has also been accomplished using Finite element method. Furthermore
some conclusions can be summarized as follows:

1. Using tensor analysis method, the concrete detail of the deduction process is
given, which could take a reference for self-development numerical calcula-
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tion software to follow and accomplish program.

2. Based on the Levy-Saint Venant flow rule, explicit form for equivalent plastic
strain can been gotten, which has offered a new method to solve the consti-
tute integration problem, such as coupled plastic damage model and coupled
visco-elastic damage model.

3. The subroutine of J2 Plastic Flow Theory simulated the similar results with
the standard example in ABAQUS while the calculation time of it was about
20% less than the iterative methods.

4. A new user defined material subroutine has been developed using J2 plastic
deformation of Isotropic Kinematic hardening theory, which has been de-
duced in this paper, and this program has also manifest accurate stress and
strain response during the cycling loading conditions. At the same time, the
Bauschinger effect has also been manifested in numerical test using this pa-
per’s program.
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