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ABSTRACT

Steady, laminar mixed convection inside a lid-driven square cavity filled with nanofluid is investigated numeri-
cally. We consider the case where the right and left walls are moving downwards and upwards respectively and
maintained at different temperatures while the other two horizontal ones are kept adiabatic and impermeable.
The set of nonlinear coupled governing mass, momentum, and energy equations are solved using an extensively
validated and a highly accurate finite difference method of fourth-order. Comparisons with previously conducted
investigations on special configurations are performed and show an excellent agreement. Meanwhile, attention is
focused on the heat transfer enhancement when different nano-particles: Cu, Ag, Al2O3, TiO2 and Fe3O4 are
incorporated separately in different base fluids such as: Water, Ethylene-glycol, Methanol and Kerosene oil. In
this framework, the numerical results related to several mixtures are presented and concern flow pattern and heat
transfer curves for various values of Richardson number [Ri = 0.1, 1 and 10]. It turns out that the choice of the
efficient binary mixture for an optimal heat transfer depends not only on the thermophysical properties of the
nanofluids but also on the range of the Richardson number. Special attention is devoted to shedding light on
the effect of the shape of the nanoparticles on the heat transfer in the case of Water-Ag nanofluid. It is concluded
that the spherical shape is more suitable for a better heat transfer enhancement in comparison to the cylindrical
ones.
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List of symbols:
CP: Specific heat Jkg�1K�1

� �
df : Average molecular diameter of the water mð Þ
dnp: Nanoparticles diameter size mð Þ
g: Gravity acceleration g ¼ 9:8 ms�2ð Þ
Gr: Grashof number
k: Thermal conductivity Wm�1K�1

� �
kB: Boltzmann constant kB ¼ 1:38066� 10�23 JK�1

� �
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L: Cavity length mð Þ
~p: Pressure Pað Þ
~P: Modified Pressure Pað Þ
Pr: Prandtl number
ReB: Brownian-motion Reynolds number
Rew: Reynolds number
Ri: Richardson number
~t: Time sð Þ
~T : Temperature Kð Þ
TC: Cold-wall temeprature Kð Þ
TH : Hot-wall temperature Kð Þ
TFr: Freezing temperature of water-based fluid TFr ¼ 273; 15 Kð Þ
~x;~yð Þ: Cartesian coordinates mð Þ
~u;~vð Þ: Velocity components ms�1ð Þ
V0: Characteristic velocity ms�1ð Þ

Greek symbols:
b: Thermal expansion coefficient K�1

� �
l: Dynamic viscosity Pasð Þ
q: Density kg m�3ð Þ
qCPð Þ: Heat capacitance Jm�3K�1

� �
v: Nanoparticles volume fraction
~G: Dimensional variable e:g:; ~T

� �
G: Dimensionless variable e:g:; Tð Þ

Subscripts:
C: Cold
f : Fluid
H : Hot
nf : Nanofluid
np: Nanoparticles
r: Relative thermophysical properties

1 Introduction

Fluid flow and mixed-convection heat transfer in nanofluid-filled enclosures represent a complicated
flow phenomenon due to wall motion that involves forced convection and temperature difference that
causes natural convection induced by buoyancy. This kind of flow is of great interest in many industrial
sectors, such as the industrial cooling systems applied either for heating or cooling, solar collectors,
chemical processing equipment, float glass production, drying technologies, etc. Conventional heat
transfer fluids such as water and ethylene glycol, with their low thermal conductivity, limit the
performance and compactness of many industrial and engineering electronic devices. Nanofluids are the
ideal solution for these equipments since the thermal conductivity of the nanoparticles projected in
suspension in the conventional fluid, improves the heat transfer. Different nature of nanoparticles are
concerned by this topic including metals (Al, Cu), oxides (Al2O3, TiO2, and CuO), carbides (SiC),
nitrides (AlN, SiN) or nonmetals (Graphite, carbon nanotubes) while the base fluid is usually a
conductive fluid, such as water, ethylene glycol or methanol depending on application field.
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Tiwari et al. [1] investigated numerically the heat transfer enhancement in mixed convection between
two-sided lid-driven differentially heated square cavity utilizing nanofluids. The nanofluid used by these
authors was Copper-Water nanofluid having Prandlt number Pr = 6.2 and solid volume fraction χ varied
up 12%. The upper and the bottom walls are considered thermally insulated while the left and the right
moving walls are maintained at different constant temperatures. It was found that the pattern formation
and the heat transfer in the cavity can be greatly influenced by both the Richardson number and the
direction of the moving walls.

Several studies have been interested by the same purpose in the literatures [2–5]. For instance, Rana
et al. [2] have numerically studied the heat transfer enhancement in steady mixed convection flow along a
vertical plate with heat source/sink utilizing nanofluids. They emphasized the effect of spherical and
cylindrical shaped nanoparticles on the heat transfer using different water-based nanofluids containing Cu,
Ag, CuO, Al2O3, and TiO2. It was proved that the use of nanotubes (cylindrical shaped nanoparticles)
have higher heat transfer enhancement as compared to spherical shaped nanoparticles. Also, it was shown
that Ag nanoparticles proved to have the highest cooling performance for this vertical plate problem
where TiO2 nanoparticles have the lowest. These results have been attributed according to these authors
to the high thermal conductivity of Ag and the low thermal conductivity of TiO2.

In the same framework but in the natural convection, Zaraki et al. [6] have performed a theoretical
analysis of boundary layer heat and mass transfer of nanofluids with emphasis on the effects of size,
shape and type of nanoparticles, type of base fluid and working temperature. The model adopted in their
analysis takes into account the effects of Brownian motion and thermophoresis. It was concluded that the
choice of material types of nanoparticles was crucial. Indeed, for some type of nanoparticles significant
enhancement of the heat transfer rate was observed, while some others can significantly deteriorate the
heat transfer from the surface. For example, the dispersion of 40 nm spherical zinc-oxide nanoparticles in
water enhances the heat transfer while dispersion of 43 nm of spherical alumina nanoparticles in water
leads to a deterioration of the heat transfer [6].

Raza et al. [7] have developed a house code to study the effect of different base fluids on the
hydrodynamic and thermal characteristics of Titania nanofluids in cylindrical annulus with discrete heat
source. He found that the impact of TiO2 nanofluid heat transfer is related to the basic fluid types.

In this paper, we extend the analysis performed by Tiwari and Das to investigating the heat transfer in
this system when different types and shapes of nanoparticles are incorporated in different base fluids. We
consider the case where the right wall moves down while the left wall moves to the top which represents
the case where the shear and the buoyancy forces act in opposite directions. Using highly validated
Fourth-order compact numerical method for the resolution of the nonlinear equations governing the
complex physics of the system, we attempt to shed light on the effect of the nature and the shape of the
nanoparticles dispersed in different types of base fluids on the heat transfer enhancement in the cavity.

This paper is organized as follows: The studied configuration and its related mathematical formulation
are defined in Section 2. Section 3 is devoted to presenting details of the numerical formulation used to solve
the heat transfer problem and comparison with the existing results in specific configurations. In Section 4,
pertinent results are discussed while the conclusion is addressed in Section 5.

2 Mathematical Formulation

The geometry of the present problem is shown in Fig. 1. It consists of a two-dimensional square cavity
with the height of L. The temperature of the right wall is considered to be maintained at high temperature of
Th as the left sidewall is kept at low temperature of Tc. The horizontal walls are adiabatic and impermeable.
The vertical walls are moving with the same velocities in different directions such as the right wall moves
downwards with the constant velocity Vp while the left one moves upwards with –Vp. The cavity is
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filled with a nanofluid with different nanoparticles immersed separately in different base fluids where their
pertinent thermophysical properties are given in Tabs. 1 and 2.

The flow is considered incompressible, steady and laminar and governed by the laws of conservation of mass,
momentum and energy. Taking into account these assumptions, these equations take the following form:

@eu
@~x

þ @ev
@~y

¼ 0 (1)

Figure 1: Configuration of the problem in the case of the mixed convection

Table 1: Thermophysical properties of nanoparticles

Physical properties Al2O3 Cu TiO2 Ag Fe3O4

CPðJ=Kg � KÞ 765 383 686.2 235 670

qðkg=m3Þ 3970 8933 4250 10500 5180

jðW=m � KÞ 40 400 8.9538 429 9.7

bðK�1Þ � 105 0.85 1.67 0.9 1.89 0.5

Table 2: Thermophysical properties of base fluids

Physical properties Water EG Methanol Kerosene oil

CPðJ=Kg � KÞ 4179 2349 2545 2090

qðkg=m3Þ 997.7 1132 792 783

jðW=m � KÞ 0.613 0.258 0.2035 0.145

bðK�1Þ � 105 21 57 149 99

Pr 6.2 137.48 7.38 21
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eu @eu
@~x

þ ev @ev
@~y

¼ � 1

qnf ;0

@eP
@~x

þ lnf
qnf ;0

D2eu (2)

eu @ev
@~x

þ ev @ev
@~y

¼ � 1

qnf ;0

@eP
@~y

þ vbsqs þ 1� vð Þqf bf
� �

qnf ;0
g ~T � ~T0

� �þ lnf
qnf ;0

D2ev (3)

~u
@~T

@~x
þ ev @~T

@~y
¼ anfD2~T (4)

anf is the thermal diffusivity of the nanofluid, given by

anf ¼ jeff
qCp

� �
nf

:

The density qnf , the heat capacity qCp

� �
nf , and the thermal expansion coefficient qbð Þnf , of the

nanofluid are obtained from the following equations, respectively:

qnf ¼ vqs þ 1� vð Þqf (5)

qCp

� �
nf ¼ v qCp

� �
s þ 1� vð Þ qCp

� �
f (6)

qbð Þnf ¼ v qbð Þs þ 1� vð Þ qbð Þf (7)

where v being the volume fraction of the solid particles and subscripts f, nf and s designate base fluid,
nanofluid and solid nanoparticles, respectively. The effective thermal conductivity of the nanofluid is
approximated by the Maxwell–Garnetts model [8] and lnf is the effective dynamic viscosity of the
nanofluid given respectively by:

jnf
jf

¼ js þ 2jf
� �� 2v jf � js

� �
js þ 2jf
� �þ v jf�js

� � (8)

lnf ¼
lf

1� vð Þ2:5 (9)

In order to proceed to the numerical solution of the system Eqs. (1)–(4) the following dimensionless
variables are introduced:

x ¼ ~x

L
; y ¼ ~y

L
; u ¼ eu

Vp
; v ¼ ev

Vp
;P ¼

~P

qnf Vp
2 ; t ¼

etVp

L
; T ¼

~T � TC
TH � TC

By substitution of Eqs. (5) into Eqs. (1)–(4), the following system of equation is derived:

@u

@x
þ @v

@y
¼ 0 (10)

u
@u

@x
þ v

@u

@y
¼ � @P

@x
þ lnf
mf qnf ;0

1

Re
D2u (11)

u
@v

@x
þ v

@v

@y
¼ � @P

@y
þ vbsqs þ 1� vð Þqf bf
� �

qnf ;0bf
Ri:T þ lnf

mf qnf ;0

1

Re
D2v (12)
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u
@T

@x
þ v

@T

@y
¼ anf

af

1

Pr:Re
D2T (13)

The dimensionless parameters appeared in the problem under consideration are:

Gr ¼ bf gH
3ðTh � TcÞ
n2f

; Grash of number

Pr ¼ mf
af

; Prandtl number

Re ¼ VpH

mf
; Reynolds number

Ri ¼ Gr

Re2
; Richardson number

and the boundary conditions are:

x ¼ 1; 0 � y � 1; u ¼ 0; v ¼ �1;T ¼ 1 Right wall
x ¼ 0; 0 � y � 1; u ¼ 0; v ¼ 1; T ¼ 0 Left wall
y ¼ 0; 0 � x � 1; u ¼ 0; v ¼ 0; @T@y ¼ 0 Bottom wall

y ¼ 1; 0 � x � 1; u ¼ 0; v ¼ 0; @T@y ¼ 0 Top wall

(14)

To go from the pressure-velocity formulation (u, v, p) to the stream function-vorticity formulation (ψ, ω)
where

u ¼ @w
@y

; v ¼ � @w
@x

and x ¼ @v

@x
� @u

@y
(15)

the system of equations governing the dynamics of the physical problem is written in the following
general form

@2w
@x2

þ @2w
@y2

¼ �x (16)

@w
@y

� �
@�

@x

� �
� @w

@x

� �
@�

@y

� �
¼ e

@2�

@x2
þ @2�

@y2

� �
þg

@T

@x

� �
(17)

where

� ¼ x

e ¼ lnf
mf qnf ;0

1

Re

g ¼ vbsqs þ 1� vð Þqf bf
� �

bf qnf ;0
Ri

8>>><>>>:
� ¼ T

e ¼ anf
af

1

Pr:Re
g ¼ 0

8<:
3 Numerical Method

For the first and second x-derivatives, the following discretizations with fourth order precision are
considered:
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@�

@x
¼ �x � Dx2

6

@3�

@x3
þ O Dx4

� �
(18)

@2�

@x2
¼ �xx � Dx2

12

@4�

@x4
þ O Dx4

� �
(19)

where �x and �xx are the standard second order centered discretizations in the x-direction.

Substituting the expressions (18) and (19) and their corresponding y-derivatives into the Eqs. (16) and
(17) yield the following form of the kinematic equation:

wxxþwyy�
Dx2

12

@4w
@x4

�Dy2

12

@4w
@y4

þO Dx4;Dy4
� �¼ �x (20)

while the general conservation equation becomes:

e�xxþe�yy�e
Dx2

12

@4�

@x4

� �
�e

Dy2

12

@4�

@y4

� �
þO Dx4;Dy4
� � ¼ wy�x�wx�y�Dy2

6
�x

@3w
@y3

� �
�Dx2

6
wy

@3�

@x3

� �
þDx2

6
�y

@3w
@x3

� �
þDy2

6
wx

@3�

@y3

� �
�gTxþg

Dx2

6

@3T

@x3

� �
þO Dx4;Dx2;Dy2;Dy4
� �

:

(21)

Considering the obtained form of the Eq. (20), one can remark that the fourth x and y-derivatives of the
stream function should be replaced by their expressions resulting from Eq. (16) where

@4w
@x4

¼ � @2x
@x2

� @4w
@x2@y2

(22)

@4w
@y4

¼ � @2x
@y2

� @4w
@y2@x2

(23)

And by using the standard form of second-order centered discretization, the Eqs. (22) and (23) can be
written as:

@4w
@x4

¼ �xxx�wxxyyþO Dx2;Dy2
� �

(24)

@4w
@y4

¼ �xyy�wxxyyþO Dx2;Dy2
� �

(25)

Taking into account these expressions, we obtain finally the following finite difference form of the
kinematic equation:

�xx þ�yy ¼ �x� Dx2

12
xxx � Dy2

12
xyy � Dx2

12
þ Dy2

12

� �
wxxyy þ O Dx4;Dx2;Dy2Dy4

� �
(26)

whose solution is a solution of the stream function Eq. (16) with a fourth-order spatial precision.

The same approach is applied to obtain the fourth-order approximation of the general conservation
equations along the (OxÞ and ðOyÞ axes. For instance, the third and the fourth x-derivative are written as:
@3�

@x3
¼ 1

e
@2w
@x@y

@�

@x
þ 1

e
@w
@y

@2�

@x2
� 1

e
@2w
@x2

@�

@y
� 1

e
@w
@x

@2�

@x@y
� g

e
@2T

@x2
� @3�

@x@y2
(27)
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@4�

@x4
¼ 1

e
@3w
@x2@y

@�

@x
þ 1

e
@2w
@x@y

@2�

@x2
þ 1

e
@2w
@x@y

@2�

@x2
þ 1

e
@w
@y

@3�

@x3
� 1

e
@3w
@x3

@�

@y
� 1

e
@2w
@x2

@2�

@x@y

� 1

e
@2w
@x2

@2�

@x@y
� 1

e
@w
@x

@3�

@x2@y
� g

e
@3T

@x3
� @4�

@x2@y2

(28)

The final form of our fourth order compact formulation (FOCF) scheme of the equations governing the
dynamics of the system is as follows:

wxxþwyy¼ �xþA (29)

e 1þ Bð Þ�xxþe 1þ Cð Þ�yy¼ wyþD
� 	

�x� wxþEð Þ�y� g
�1

TxþF (30)

with:

A ¼ �Dx2

12
xxx�Dy2

12
xyy� Dx2

12
þDy2

12

� �
�xxyy; B ¼ � 1

e
Dx2

6
�xy þ 1

e2
Dx2

12
�y�y

C ¼ 1

e
Dy2

6
�xy þ 1

e2
Dy2

12
�x�x

D ¼ Dx2

12
þ Dy2

12

� �
�xxy � 1

e
Dx2

12
�y�xy þ 1

e
Dy2

12
�x�yy

E ¼ Dx2

12
þ Dy2

12

� �
�xyy � 1

e
Dx2

12
�y�xx þ 1

e
Dy2

12
�x�xy (31)

F ¼ Dx2

12
þ Dy2

12

� �
wy�xyy� Dx2

12
þDy2

12

� �
wx�xxy� 1

e
Dx2

6
wxx�xyþDy2

6
wyy�xyþ 1

e
Dx2

12
þDy2

12

� �
wxwy�xy

� 1

e
Dx2

12
�Dy2

12

� �
�x�y� Dx2

12
þDy2

12

� �
�xxyyþg:G

where

G ¼ �2

�1

Dx2

12
wxyTxþ �2

�1
þ 1

�1
2

� �
Dx2

12
wyTxx��2

�1

Dx2

12
wxxTy� �2

�1

Dx2

12
þ 1

�1
2

Dy2

12

� �
wxTxy

� 1

�1

Dx2

12
þDy2

12

� �
Txyy

And

�1 ¼
lnf

mf qnf ;0

1

:Re
; �2 ¼ anf

af

1

Pr:Re

Note that if A, B, C, D, E and F vanishes, the Eqs. (29) and (30) are reduced to the second order
formulation. These equations associated to the boundary conditions are solved numerically by the implicit
scheme with alternating directions (ADI: Alternating directions Implicit) method established by Peaceman
et al. [9] in 1955 which consists in advancing half a step of time following x and then the second half
step following y.

Such iterative numerical algorithm requires pseudo time derivatives to be assigned to the equations
presenting the physical system such as:
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@2w
@x2

þ @2w
@y2

¼ �xþ @w
@t

(32)

@�

@t
þ @w

@y

� �
@�

@x

� �
� @w

@x

� �
@�

@y

� �
¼ e

@2�

@x2
þ @2�

@y2

� �
þg

@T

@x

� �
(33)

The solution of this system will not depend on the time derivative introduced by the numerical scheme
since we are dealing with a steady flow configuration where the source of unsteadiness does not exist.
Consequently, a first order (Δt) accurate which is an implicit Euler step is added to these pseudo time
derivatives as well as to the non-linear terms in the general conservation equation. In this framework, the
system of Eqs. (32) and (33) is rewritten as follows:

wnþDt
@2wnþ1

@x2
þDt

@2wnþ1

@y2
¼ �Dtxnþwnþ1 (34)

�nþ1 þ Dt
@wn

@y

� �
@�nþ1

@x

� �
� Dt

@wn

@x

� �
@�nþ1

@y

� �
¼ eDt

@2�nþ1

@x2
þ @2�nþ1

@y2

� �
þgDt

@Tnþ1

@x

� �
þ�n (35)

This approach has been used recently by Erturk et al. [10] where the solution of the Eqs. (34) and (35)
converge always toward that of the steady Eqs. (16) and (17). For avoiding any kind of repetition in this
paper, we will not present the different steps used by these authors and the reader should be referred to
[10] for more details.

In order to check the convergence of the obtained results during the iterations, several residuals factors
are calculated. We define the first residual expression related to the stream function and the general
conservation function respectively as follows:

RES1w ¼ max
wnþ1
i�1;j � 2wnþ1

i;j þ wnþ1
iþ1;j

Dx2
þ wnþ1

i;j�1 � 2wnþ1
i;j þ wnþ1

i;jþ1

Dy2
þ xnþ1

i;j � Anþ1
i;j














 !
(36)

RES1� ¼ max

e 1þ Bnþ1
i;j

� 	
�nþ1
i�1;j�2�nþ1

i;j þ�nþ1
iþ1;j

Dx2

� �
þ

e 1þ Cnþ1
i;j

� 	
�nþ1
i;j�1�2�nþ1

i;j þ�nþ1
i;jþ1

Dy2

� �
�

wnþ1
i;jþ1�wnþ1

i;j�1

2Dy þ Dnþ1
i;j

� �
�nþ1
iþ1;j��nþ1

i�1;j

2Dx

� �
þ

wnþ1
iþ1;j�wnþ1

i�1;j

2Dx þ Enþ1
i;j

� �
�nþ1
i;jþ1��nþ1

i;j�1

2Dy

� �
þ

g
�1

Tnþ1
iþ1;j�Tnþ1

i�1;j

2Dx � Fnþ1
i;j

� �













































0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
(37)

The value of RES1 is an indication related to the time derivatives introduced by the numerical procedure.
It would generally vanish since the solution converges to the steady state.

A second residual parameter, RES2, is defined by the following expressions presenting the difference in
absolute value between two successive iteration steps for the variables stream function, vorticity and energy:

RES2w ¼ max wnþ1
i;j � wn

i;j




 


� 	
(38)
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RES2� ¼ max �nþ1
i;j � �n

i;j




 


� 	
(39)

RES2 gives an indication of the significant digit on which the code is iterated.

The third residual parameter, RES3, is similar to RES2 except that it is normalized by the representative
value of the previous time step. This makes possible to get an indication later on the maximum percentage
variation of change in ψ and Γ at each iteration step. RES3 is defined as follows:

RES3w ¼ max
wnþ1
i;j � wn

i;j

wnþ1
i;j














 !
(40)

RES3� ¼ max
�nþ1
i;j � �n

i;j

�nþ1
i;j














 !
(41)

In our calculations and for all Rayleigh numbers, we consider that convergence is obtained when both
RES1w � 10�6 and RES1� � 10�6 are reached. This value is chosen to ensure an accurate precision of the
solution. At these convergence levels, the second residual parameters are of the order of RES2w � 10�10 and
RES2� � 10�11 which means that the stream function, vorticity and the energy equations are accurate to the
precision of 9 and 10 digits respectively after the decimal point, to a grid point and even more accurate to the
rest of the meshes. Similar convergence criteria is adopted for the other residuals where RES3w � 10�10 and
RES3� � 10�9. These small residues guarantee that our solutions are indeed very precise.

3.1 Boundary Condition for the Vorticity
Dimensionless boundary conditions for ψ are:

w ¼ 0 for X ¼ 0;X ¼ 1 and 0 � Y � 1 (42)

w ¼ 0 for Y ¼ 0;Y ¼ 1 and 0 � X � 1 (43)

For vorticity, Störtkuh et al. [11] have presented an analytical asymptotic solution near the corners of
cavity and using finite element bilinear shape functions and they also have presented a singularity-
removed boundary condition for vorticity at the corner points as well as at the wall points.

In this study, we follow Störtkuh et al. [11] for the boundary conditions and use the following
expressions for calculating vorticity values at the walls:

1

3Dh2

: : :
1
2 �4 1

2
1 1 1

24 35wþ 1

9

: : :
1
2 2 1

2

1
4 1 1

4

264
375x ¼ � V

Dh
(44)

1

3Dh2

: : :
: �2 1

2
: 1

2 1

24 35wþ 1

9

: : :
: 1 1

2
: 1

2
1
4

24 35x ¼ � V

2Dh
(45)

and at the corner points:

where V is the velocity of the walls. In our case, this velocity equals 1 for the left vertical wall, –1 for the right
vertical wall whereas 0 for the other horizontal walls.

In explicit notation, for the wall points shown in Fig. 2a, the vorticity is calculated as following:
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xb ¼ � 3

2Dh2
wd þ we þ wf

� 	
� 1

8
2xa þ 2xc þ xd þ 4xe þ xf

� �
(46)

Similarly, for the corner points shown in Fig. 2b, the vorticity is calculated as the following:

xb ¼ � 3

2Dh2
wf �

1

4
2xc þ 2xe þ xf

� �
(47)

The reader should be referred to Störtkuh et al. [11] for more details on the boundary conditions.

Nulocal ¼ hnf L

kf
¼ � knf

kf

� �
@h
@Y






Y¼0

(48)

Nu ¼
Z 1

0
� knf

kf

� �
@h
@Y






Y¼0

� �
dx (49)

The averaged and the local heat transfer rates at the left cold wall of the cavity are presented in terms of
the averaged Nusselt numbers, Nu and the local Nusselt number Nulocal defined respectively as follows.

3.2 Code Validation
A good concordance is found by comparing the results obtained by our numerical code with those of de

Vahl Davis [12], Markatos et al. [13], Hadjisophcleous et al. [14], Tiwari et al. [1], El Bouihi et al. [15],
Khanafer et al. [16], Barakos et al. [17], Fusegi et al. [18] and Goodarzi et al. [19]. This comparison is
performed on the problem of natural convection in a differentially heated square enclosure filled with air
having the Prandlt number Pr = 0.71. In Tab. 3, we report the numerical values of the average Nusselt
number obtained for different values of the Rayleigh number.

For giving more reliability to our code, we attempt to compare our numerical results with previous works
concerned by mixed convection in differentially heated cavity containing air where the top wall is moving
with a constant velocity and kept hot while the bottom wall is cooled. The two vertical walls are insulated. At
Gr =〘10〙̂2 and for different values of the Reynolds number the obtained results are summarized in Tab. 4.
As one can notice, excellent agreement is found by comparing the results obtained by Tiwari et al. [1], Sharif
[20], Waheed [21], Khanafer et al. [22], Iwatsu et al. [23] and Cheng [24].

4 Results and Discussion

4.1 Grid Test
Computations with reasonable accuracy require an optimum choose of the mesh. For that, we start by

shedding light on the influence of the size and nodes distribution on the average Nusselt number Nu and the
stream function �minj j. We report in Tab. 5 results related to these physical concepts for an assigned value of
the Richardson number Ri = 10² and the volume fraction χ = 10% with a uniform distribution of nodes. As

Figure 2: Grid points at the walls and at the corners: (a) wall points and (b) corner points
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one can notice, Nu and �minj j become independent to the number of nodes when the grid 104 × 104 is
reached. Consequently, this latter mesh size will be adopted in the rest of our calculations.

This grid test is performed on the framework of a mixed convection configuration using square cavity
filled with air (Pr = 0.71) with a vertical thermal gradient and moving upper horizontal wall.

4.2 Heat Transfer and Pattern Formation in Ag-Water Nanofluid
Our attention is focused on the mixed convective regimes where both forced and natural convections

coexist corresponding to a Richardson number range 0:1 � Ri � 10. Typically, the natural convection is
negligible, compared to the forced one, when Ri < 0.1 whereas it becomes predominant when Ri > 10.
However, when Ri = 0.1 we are in presence of mixed convection regime since both the Rayleigh and the
Reynolds numbers are involved in the system. In this case, the forced convection is slightly more

Table 3: Average Nusselt number comparison with previous works

Ra ¼ 103 Ra ¼ 104 Ra ¼ 105 Ra ¼ 106

De Vahl Davis [12], FDM 1.118 2.243 4.519 8.799

Markatos et al. [13], FDM 1.108 2.201 4.430 8.754

Hadjisophcleous et al. [14] 1.141 2.290 4.964 10.390

Tiwari et al. [1] FVM 1.087 2.195 4.450 8.803

El Bouihi et al. [15] ADI second ordre 1.042 2.024 4.520 8.978

Khanafer et al. [16], FVM 1.118 2.245 4.522 8.826

Barakos et al. [17], FVM 1.114 2.245 4.510 8.806

Fusegi et al. [18], 3-D FDM 1.105 2.302 4.646 9.012

Goodarzi et al. [19], LBM 1.108 2.210 4.456 8.756

Present work FOCF 1.117 2.242 4.922 9.917

Difference with [14] 2.10% 2.88% 0.84% 4.55%

Table 4: Comparison of the Nusselt number with previous works (C.V.M)

Re Our
results

Tiwari et al.
[1]

Sharif
[20]

Waheed
[21]

Khanafer et al.
[22]

Sharif
[20]

Waheed
[21]

100 2.052 2.10 – 2.0311 2.01 1.94 –

400 4.083 3.85 4.05 4.0246 3.91 3.84 4.14

1000 6.599 6.33 6.55 6.4842 6.33 6.33 6.73

Table 5: Values of the physical quantities Nu and �minj j for different grid values

Grid 34 × 34 44 × 44 64 × 64 84 × 84 104 × 104 124 × 124 144 × 144 164 × 164

Nu 6.29275 6.37389 6.36743 6.31079 6.25236 6.2512 6.251 6.2521

�minj j 0.1064 0.1064 0.1063 0.1063 0.1062 0.1062 0.1062 0.1062
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important in comparison to the natural one, which is also present, since Ra,Re2ðRa ¼ 0:1 Re2Þ. The
mixed convective regime is also considered when Ri = 10 but in this case the natural convection is more
important in comparison to the forced one since Ra.Re2ðRa ¼ 10 Re2Þ. The pure forced convection is
reached when Ri = 0 ðRa ¼ 0Þ while the pure natural one is reached when the Richardson number tends
to infinity ðRe ¼ 0Þ.

The configuration we considered in this study is when the left vertical wall moves constantly upward
while the right one moves downwards with the same velocity. Here, the buoyancy and shear forces are
opposing each other. The Grashof number is fixed at Gr ¼ 104 and variation of the Richadson number is
produced by a variation of the Reynolds number.

Fig. 3 illustrates the streamlines (left part) and the isotherms (right part) for Water and Water-Ag
nanofluid when gradually increasing the volume fraction (χ = 0.04, 0.2) when Ri = 0.1. As one can see
from the Figs. 3a–3c and 3e–3g, the flow pattern is not influenced by the presence of the nanoparticles
where only one convective roll is formed in the whole cavity. The direction of rotation of this cell is
clockwise as it can be deduced from the vertical velocity profile related to this case plotted at the mid-
plane x ¼ 1

2

� �
in Fig. 6a. This latter exhibits a symmetry point located at the center of the cavity, where

u x ¼ 1

2
; y

� �
¼ �u x ¼ 1

2
; 1� y

� �
8y 2 0; 1½ �: (50)

This symmetry property means that the flow, at this mid-plan, changes its direction from the upper half
of the cavity 1

2 � y � 0 to the lower one 0 � y � 1
2. It is to be noted, in addition, that the rotation’s direction of

the cell affects considerably the fluid flow in the cavity especially in the corners. Here, indeed, only the left-
upper and right-lower corners are occupied by the fluid in contrast to the other corners.

The isotherms related to this configuration are depicted in Figs. 3b–3d and 3f–3h where a strong
convection is noticed for all the values of the nanoparticle fractions. Similarly to the streamlines, the

A   

B

C

D

E

F

G

H

Figure 3: Streamlines (A, C, E, G) and isotherms (B, D, F, H) for Ri ¼ 0:1: (A) v ¼ 0%; (B) v ¼ 0%;
(C) v ¼ 8%; (D) v ¼ 8%; (E) v ¼ 16%; (F) v ¼ 16%; (G) v ¼ 20%; (H) v ¼ 20%
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isotherms are present in the left-upper and right-lower corners ensuring heat transfer in these regions. The
temperature at the horizontal mid-plane y ¼ 1

2

� �
is constant inside the cavity except near the vertical

boundaries due to the presence of two thermal boundary layers near the vertical walls as shown in the
Fig. 7a. The temperature function also exhibits the centre of the cavity x ¼ 1

2 ; y ¼ 1
2

� �
as a symmetry

point and it verifies the following law:

T x; y ¼ 1

2

� �
¼ 1� T 1� x; y ¼ 1

2

� �
8x 2 0; 1½ �= x1; x2½ �: (51)

The interval x1; x2½ � is a part of the cavity where the temperature is constant having the value T ¼ 0:5, an
average value between the temperatures of the vertical walls. In this Richardson number, x1 � 0:15 and
x2 ¼ 0:85.

Decreasing the Reynolds number until Ri =1 is reached, the flow pattern and the heat transfer
characteristics are changed as shown in Fig. 4. Indeed, secondary flow composed by three cells is
observed for v � 8%: two cells near the left and the right walls rotating in clockwise direction and a
main cell placed at the middle of the cavity rotating in the anti-clockwise direction, see Figs. 4a–4c and
4e–4g. In addition, an increase in the nanoparticles concentration beyond v ¼ 8% leads to a stabilization
of the flow in the sense that it reduces the three cells into one cell rotating in clockwise direction. This
feature is responsible of the appearance of phenomenon commonly known as flow reversal observed in
several flow configurations as the Couette-Taylor system with modulated rotation of the cylinders
[25–28]. Indeed, it concerns a change in the direction of the vortices and results in discontinuity in the
first derivative of the critical Taylor number as well as a jump in critical wave number. This phenomenon
can be clearly deduced from the velocity profile plotted at the vertical mid-plan x ¼ 1

2

� �
in Fig. 7b.

Meanwhile, we recover a dynamics similar to that where Ri < 1, a configuration in which the forced
convection is predominant than the natural one, and therefore, one can conclude that an increase in the
nanoparticle amount leads to a change in the convection mechanism in the sense that the secondary flow
becomes mainly due to forced convection. Moreover, the symmetry property given by the expression (50)
for Ri = 0.1 remains also valid for Ri = 1.
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D

E

F

G

H

Figure 4: Streamlines (A, C, E, G) and isotherms (B, D, F, H) for Ri ¼ 1: (A) v ¼ 0%; (B) v ¼ 0%; (C)
v ¼ 8%; (D) v ¼ 8%; (E) v ¼ 16%; (F) v ¼ 16%; (G) v ¼ 20%; (H) v ¼ 20%
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Regarding the isotherms, two thermal boundary layers are formed when v � 8% at the middle of the
cavity exactly at the junction of the two adjacent vortices discussed above from the streamlines curves,
see Figs. 4b–4d and 4f–4h. These boundary layers move towards the vertical walls by increasing the
nanoparticles concentration due to the disappearance of the central cell in the streamlines. At the
horizontal mid-plane y ¼ 1

2

� �
the temperature profile related to this case is displayed in Fig. 7b. As one

can see, the nanoparticles volume fraction affects the shape of the temperature profile. Indeed, for
v � 8% the temperature has the same characteristic as the case Ri = 0.1 except a shrink observed in the
region of the cavity where T ¼ 0:5 defined by the interval x1; x2½ �. In this case, the values x1 and x2 are
x1 � 0:25 and x2 � 0:65. This region is suppressed, however, in the case v. 8%, where the temperature
increases nonlinearly from T ¼ 0 to T ¼ 1 at x ¼ 0 and x ¼ 1 respectively. Consequently, its symmetry
property becomes

T x; y ¼ 1

2

� �
¼ 1� T 1� x; y ¼ 1

2

� �
8x 2 0; 1½ �: (52)

The case where natural convection becomes much more important than forced convection corresponds
to Ri = 10. Here, as it was mentioned by Tiwari et al. [1] it is expected that the nanoparticles do not affect
neither the fluid dynamics nor the heat transfer since their brownian motion is not taken into account in the
model. This feature can be clearly seen from Fig. 5 related to the streamlines and the isotherms. In fact, the
flow structure is composed by three cells similarly to the case where the natural and the forced convections
are with the same order of magnitude, Ri = 1, with weak amount of nanoparticles. One can also observe the
same velocity profiles at the mid-plane x ¼ 1

2

� �
plotted in Fig. 6c. The nanoparticles do not affect these

velocities except a slight increase observed at their maximums by increasing the volume fraction v. The
symmetry described by the expression (50) is also verified for this case, Ri = 10. The temperature inside
the cavity at y ¼ 1

2 increases generally in the x direction and exhibits an inflection point at the cavity

center x ¼ 1
2 ; y ¼ 1

2

� �
giving rise to the appearance of two symmetric extrema in the neighborhood of the

cavity. Here, a slight decrease of the temperature is observed, see Fig. 7c. The symmetry law given by
the expression (52) describes also the temperature profile in this case.

A
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D

E

F

G

H

Figure 5: Streamlines (A, C, E, G) and isotherms (B, D, F, H) for Ri ¼ 10: (A) v ¼ 0%; (B) v ¼ 0%; (C)
v ¼ 8%; (D) v ¼ 8%; (E) v ¼ 16%; (F) v ¼ 16%; (G) v ¼ 20%; (H) v ¼ 20%
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We will now discuss the heat transfer in our system by referring to the local Nusselt number Nu at the
cold wall located at the left side of the cavity. Fig. 8 displays the evolution of Nu for different values of
v and Ri. It is apparent from the Fig. 8 that the Nusselt number reaches a maximum value at the lower
part of the wall, y ¼ 0ð Þ. One can expect a maximal value of Nusselt number at the upper part of the
wall, y ¼ 1ð Þ if the left and the right walls are moving respectively downwards and upwards as it was
turned out in Tiwari et al. [1]. One can also notice a decrease in Nu versus the coordinatey. This behavior
is independent to the Richardson number and the nanoparticles volume fraction. However, for
Ri = 0.1 and Ri = 1 the effect of the nanoparticles volume fraction is observed only in the lower part of
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Figure 6: Vertical mid-plane u-velocity: (a) Ri ¼ 0:1; (b) Ri ¼ 1; (c) Ri ¼ 10
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the wall where the parameter v enhances the heat transfer by increasing the Nusselt number. It is to be noticed
that a great jump in Nu number is observed at Ri = 1 by increasing the amount of the nanoparticles where
Nu = 23 when v � 8% and Nu = 92 when v. 8% in contrast to the case Ri = 10 where the volume fraction
v weakly enhances the heat transfer along the wall except near the boundaries y ¼ 0 and y ¼ 1.
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Figure 7: Horizontal mid-plane temperature profile: (a) Ri ¼ 0:1; (b) Ri ¼ 1; (c) Ri ¼ 10
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4.3 Effect of the Nanoparticles Type
In this subsection, we shall concentrate our attention on highlighting the effect of the type of

nanoparticles on the pattern formation as well as in the heat transfer into the cavity. For that, five types of
nanoparticles are taken into consideration such as: Ag, Cu, TiO2, Fe3O4 and Al2O3. The obtained results
in this framework show that the fluid dynamics is not influenced by changing the type of the
nanoparticles in the sense that we obtain the same streamlines and isotherms discussed above for the Ag
nanoparticles. We will not here present these results for avoiding any kind of repetition in the paper.
However, the type of nanoparticles affects the heat transfer in the cavity as shown in Fig. 9 where
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Figure 8: Local Nusselt number at the left wall: (a) Ri ¼ 0:1; (b) Ri ¼ 1; (c) Ri ¼ 10
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evolution of the average Nusselt number versus the volume fraction is displayed for the five types of
nanoparticles and for the different values of Richardson. As one can see, we recover the classical
observation claiming that the presence of nanoparticles enhances the heat transfer in the cavity in
comparison to the pure base fluid independently on whether the natural convection is more or less
dominant in comparison to the forced convection. This effect depends on the nature of the nanoparticles
and becomes more pronounced in the high values of the volume fraction. Indeed, the parameter Nu is
more important for Al2O3 than the other nanoparticles when Ri = 0.1 since
NuAl2O3 .NuCu .NuFe3O4 .NuTiO2 .NuAg. By decreasing the Reynolds number up to Re = 100, which
correspond to Ri = 1, the heat transfer is not influenced by the type of the nanoparticles except for highly
concentrated solutions at v. 12% where a slight increase in the average Nusselt number is observed
following the same order NuAl2O3 .NuCu .NuFe3O4 .NuTiO2 .NuAg. However, this is not the case when
Ri = 10 where the parameter Nu increases nonlinearly with the nanoparticles volume fraction. The effect
of the type of the nanoparticles is not similar to the cases Ri = 0.1 and Ri = 1 where the average Nusselt
number is more important for metals nanoparticles, Cu and Ag, than the oxides ones such as
NuCu .NuAg .NuAl2O3 .NuFe3O4 .NuTiO2 .

These features can be explained of the basis of the thermophysical properties of each substance and there
implications depending on the mechanism driving the flow. Indeed, when Ri = 10 the flow is driven by
natural convection and consequently the thermal properties of the nanoparticles especially the thermal
conductivity, thermal expansion coefficient and heat capacity play a significant role and mainly contribute
in the flow dynamics as well as in the heat transfer in comparison to the hydrodynamical quantities such
as the dynamic viscosity and the mixture’s density. However, in the case of weak values of Ri the flow is
driven mainly by the walls velocities and hence the hydrodynamic quantities are more involved than the
thermal ones. In addition, the thermal behavior obtained in this study confirm that the nanofluids heat
transfer depends not only on the thermal conductivity of the nanoparticles and the dynamic viscosity of
the nanofluid as suggested by several studies in the literature but it depends on a combination of all the
thermophysical properties of these substances. To confirm this statement, one can observe from the Tabs.
1 and 2 that

CpAl2O3
.CpTiO2

.CpFe3O4
.CpCu .CpAg ;

bAg .bCu .bTiO2
.bAl2O3

.bFe3O4

and kAg . kCu . kAl2O3 . kFe3O4 . kTiO2

while for the average Nusselt number none of these orders is conserved.

One the other hand, the local Nusselt number at the left cold wall varies versus the vertical coordinate
with the same shape meaning that it always decreases versus y. Also, this transfer parameter is not remarkably
influenced by the type of the nanoparticles as shown in Fig. 10 at the volume fraction v ¼ 20%. In fact, a
slight effect is observed at Ri = 0.1 especially at the lower part of the wall 0:1, y � 0:3. For instance at
y � 0:12 the local Nusselt number varies between Nu � 58 for the Ag nanoparticles and Nu � 67 for
Al2O3. At this location we have NuAl2O3 .NuFe3O4 � NuTiO2 .NuCu.NuAg. The same behavior is
observed at the upper part of the wall 0:5, y � 1 when Ri = 10, see Fig. 10c. Indeed, at y ¼ 0:7 the
local Nusselt number varies between Nu � 1:8 for the Fe3O4 and TiO2 nanoparticles and Nu � 2:2 for
Ag. At this location we have NuAg .NuCu .NuAl2O3 .NuFe3O4 � NuTiO2 .

To conclude, the effect of the nature of the nanoparticles on the enhancement of the heat transfer
observed in this system cannot be understood on the basis of the present study. However, one can
confirm that this is a phenomenon that cannot be solely attributed to the higher thermal properties of the
added nanoparticles especially when both natural and forced convection regimes are involved in the
system. Consequently, much effort has to be deployed in this direction for a better understanding of the
mechanism controlling the heat transfer in systems with nanofluids.
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4.4 Heat Transfer and Pattern Formation in Ag-Ethylene-Glycol Nanofluid
Do the heat transfer and the fluid dynamics change when the water is substituted by Ethylene-glycol in

this studied configuration? This is the question that we attempt to address in this subsection. For that we
consider a nanofluid with Ag-Ethylene-glycol mixture. Streamlines and isotherms related to this solution
is depicted in Figs. 11–13 for three different values of Richardson number, Ri = 0.1, 1, 10.

As one can see from Figs. 11a–11c and 11e–11g), when Ri = 0.1 weak vortices are appeared next to
the moving walls whereas next to the horizontal upper/lower walls the streamlines exhibit
minimums/maximums that become more accentuated when approaching towards the center of the cavity.
The same behavior is observed for the isotherms as depicted in Figs. 11b–11d and 11f–11h. One can also
look at the corners of the cavity that show a particular behavior in comparison to the Ag-Water nanofluid.
Indeed, the four corners of the cavity are occupied by the nanofluid in contrast to the case of water based
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Figure 9: Average Nusselt number versus the volume fraction of the nanoparticles for different values of
Richardson number
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nanofluid where only the left-upper and right-lower corners that are occupied by the nanofluid. Therefore, the
Ethylene-glycol ensures a good distribution of the velocity and the temperature as well as the heat transfer in
the cavity in comparison to water. One should also shed light on the formation of a thermal boundary layer in
a diagonal direction of the cavity which becomes more pronounced by increasing the nanoparticles volume
fraction. This result confirms the increase in the strength of the convection under the effect of the
nanoparticles. At Ri = 1 where the buoyancy and the shear forces are of the same order of magnitude,
different streamlines and isotherms are obtained in comparison to Ag-water nanofluid as displayed in
Fig. 12. In this case, the streamlines are characterized by a large central main eddy, occupying the whole
of the cavity, breaking into two small ones at the core. This feature remains unchanged by increasing the
volume fraction. In addition and regarding the isotherms, thermal boundary layer is spread out over the
four walls of the cavity.
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Figure 10: Local Nusselt number at the left wall: (a) Ri ¼ 0:1; (b) Ri ¼ 1; (c) Ri ¼ 10
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By crossing Ri = 10, the flow is characterized by three vortices similarly to the case of Ag-water
nanofluid as shown in Fig. 13. The unique difference that should be noticed here is the thickness of the
boundary layer formed at the junction of two counter rotating vortices that becomes thinner in
comparaison to the case of Ag-water nanofluid. This results reveals the strength of the convection and the
heat transfer in the cavity when the used base fluid is the Ethylene-glycol instead of water. The fluid
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Figure 11: Streamlines (A, C, E, G) and isotherms (B, D, F, H) for Ri ¼ 0:1: (A) v ¼ 0%; (B) v ¼ 0%; (C)
v ¼ 8%; (D) v ¼ 8%; (E) v ¼ 16%; (F) v ¼ 16%; (G) v ¼ 20%; (H) v ¼ 20%
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Figure 12: Streamlines (A, C, E, G) and isotherms (B, D, F, H) for Ri ¼ 1: (A) v ¼ 0%; (B) v ¼ 0%; (C)
v ¼ 8%; (D) v ¼ 8%; (E) v ¼ 16%; (F) v ¼ 16%; (G) v ¼ 20%; (H) v ¼ 20%
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velocity in the x-direction at the mid plan of the cavity is plotted in Fig. 14 for the three values of the
Richardson number, Ri = 0.1, 1, 10.

The shape of this kinematic quantity is symmetric similarly to the Ag-Water nanofluid verifying the
Eq. (50). In addition, it is not influenced by the nature of the base fluid in the case Ri = 0.1 except a
remarkable change in its extrema values, umax=umin. Indeed, in the case of water based nanofluid the
velocity has a maximum of around umax � 0:65 whereas in the case of Ethylene-glycol based nanofluid
umax � 0:027, unlike the case Ri = 10 where the velocity extrema are of the same order for both water
and Ethylene-glycol. The most important feature that should be highlighted her is the absence of the flow
reversal discussed in the case of water based nanofluid especially beyond v ¼ 8%. However, a flow
reversal is observed by increasing the Richardson number from Ri = 1 to Ri = 10 independently of the
volume fraction of the nanoparticles.

Temperature profile at the horizontal mid-plan related to this configuration is presented in Fig. 15 for
different values of Ri. It is apparent that a strong horizontal temperature gradient is observed inside the
cavity when Ri = 0.1. This feature can be explained on the basis of the nature of the isotherms observed
in this case. In addition, this curve exhibits several extrema symmetric with respect to the centre of the
cavity obeying the Eq. (51). By increasing the Richardson number to Ri = 1, the temperature reaches a
constant average value between the temperature of the vertical walls. Near these latter, the nanofluid
temperature exhibits two peaks owing to the formation of the thermal boundary layers as described from
the isotherms in Fig. 12. Different thermal behavior is observed in the case Ri = 10 where the nanofluid
temperature varies according to three different regions since the isotherms are composed by three eddies:
two lateral eddies and central one. Indeed, near the left cold wall the temperature varies from T ¼ 0 to
T ¼ 0:5 in the spatial region that corresponds to the left lateral eddy whereas near the right hot wall the
temperature varies continuously from T ¼ 0:5 to T ¼ 1 in the spatial region that corresponds to the right
lateral eddy. Moreover, the temperature reaches an average value T ¼ 0:5 in a zone where the central
eddy is observed. The nanoparticles volume fraction possesses an effect of decreasing and increasing the
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Figure 13: Streamlines (A, C, E, G) and isotherms (B, D, F, H) for Ri ¼ 10: (A) v ¼ 0%; (B) v ¼ 0%; (C)
v ¼ 8%; (D) v ¼ 8%; (E) v ¼ 16%; (F) v ¼ 16%; (G) v ¼ 20%; (H) v ¼ 20%
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fluid’s temperature respectively in the left part of the cavity where 0, x, 0:5 and in the right one where
0:5, x, 1. This effect is observed only when Ri ¼ 0:1 and Ri ¼ 10 in contrast to the case Ri ¼ 1 where
no effect of the parameter v is observed.
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Figure 14: Vertical mid-plane u-velocity: (a) Ri ¼ 0:1; (b) Ri ¼ 1; (c) Ri ¼ 10

4.5 Effect of the Type of the Base Fluid
We shall now investigate the heat transfer inside the cavity under the conditions considered in this paper

for different type of base fluids. For that, two additional base fluids are added to this study such as Methanol
and Kerosene oil beside Water and Ethylene-glycol. Isotherms and streamline related to these fluids
(Methanol and Kerosene) will not be presented since they are reminiscent to those obtained in the case of
Water. However, drastic differences are obtained in terms of local and average Nusselt numbers. Figs. 16
and 17 show the evolution of the local Nusselt number on the left cold wall in the case of a pure fluid
with no-nanoparticles and the case of a maximal nanoparticles volume fraction with v ¼ 20%
respectively. As one can see from these figures, when the basis fluid is water the local Nusselt number
decreases from the bottom wall to the top having a maximum value at y ¼ 0.
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This maximum shifts gradually towards the top of the wall for the others fluids. In addition, it is apparent
that the Nu number is more important for the Ethylene-glycol base fluid in comparison to the others and one
can deduce in general that NuEG.NuKerosen.NuMethanol .Nuwater. Consequently, the Ethylene-glycol is the
most convenient basis fluid ensuring a maximal enhancement of the heat transfer in the cavity. In fact, the
difference between the local Nusselt number related to the different fluids varies according to the
Richardson number range. For instance, NuMethanol, Nuwater and NuKerosen are close to each other at
Ri ¼ 0:1 in contrast to the cases Ri ¼ 1 and Ri ¼ 10 where NuKerosen becomes much important than
NuMethanol and Nuwater. It is to be noticed that an increase in the Richardson number leads to a decrease in
the local Nusselt number.
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Figure 15: Horizontal mid-plane temperature profile: (a) Ri ¼ 0:1; (b) Ri ¼ 1; (c) Ri ¼ 10
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In order to discern the effect of the Richardson number in the average Nusselt number, Nu, we display in
Fig. 18 evolution of this heat transfer quantity as function of Ri for different values of v. As one can see, Nu
decreases versus Ri more obviously in the Richardson number range 1 < Ri < 10. Under the presence of
the nanoparticles the parameter Nu becomes more important especially in the Richardson number range
0.1 < Ri < 1 for water, Kerosene and Methanol fluids. It is to be noticed that a great change in the
concavity of these curves is observed under the effect of increasing the nanoparticles concentration
especially for water Kerosene oil and Methanol. This feature can be explained by the fact that the
presence of the nanoparticles plays a crucial role in heat transfer enhancement when Ra and Re2 are of
the same order of magnitude which correspond to Ri = 1.
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Figure 16: Local Nusselt number at the left wall for different values of Richardson number at v ¼ 0%
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Indeed, in the neighborhood of this value and in the case of Kerosene oil for example, an increase of the
nanoparticles concentration to v ¼ 8% is sufficient to increase the average Nusselt number from
approximately 6 at v ¼ 0% to 13.4. This not the case of Water and Methanol where v ¼ 16% is required
to get such jump in the average Nusselt number.

4.6 Effect of the Nanoparticles Shape and Dynamic Viscosity Law
In this subsection, we attempt to shed light on the effect of the shape of the nanoparticles on the heat

transfer using another thermal conductivity distribution involving cylindrical nanotubes particles given by
the following expression:
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Figure 17: Local Nusselt number at the left wall for different values of Richardson number at v ¼ 20%
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jnf
jf

¼ js þ 1
2 jf � 1

2 v jf � js
� �

js þ 1
2 jf þ v jf�js

� � :

In addition, a second dynamic viscosity model, that we term Model II, different to that described by
Einstein expression (8) (Model I), is introduced. This model, stemmed from experimental
characterizations and used by several authors in the literature [2], is given by
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Figure 18: Average Nusselt number versus Richardson number for different volume fraction
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lnf ¼ lf 1þ 7:3vþ 123v2
� �

:

We consider the case of the Ag-water nanofluid with the volume fraction v ¼ 20% and two types of
shape: spherical and cylindrical shapes. It is to be noted that in the framework of the present
investigation, the nanoparticles’s shape is considered to affect only the dynamic viscosity as well as the
thermal conductivity of the nanofluid. Although this approach is widely used in the literature [2] it does
not provide a real physical description. However, it is used here to address a picture on how the heat
transfer in mixed convection system is influenced by the shape of the nanoparticles.

In Fig. 19, we compare the average Nusselt number related to these shapes using these viscosity models.
As one can notice, an enhancement of the heat transfer is observed using the spherical nanoparticles in
comparison to the cylindrical ones. Also, a nearly constant decrease in the average Nusselt number vs. Ri
is noticed using Model II. This is not the case when using Model I where this number, Nu, decreases
with a rate of about 16.66 in the range 0 < Ri < 1 and a rate of about 1.75 in the range 1 < Ri < 10. It is
also to be noted that at Ri = 10, the obtained average Nusselt number using both the spherical
nanoparticles with Model I is Nu ¼ 0:2 while by the use of the Model II an increase of Nu is observed
where Nu ¼ 11.

5 Conclusions

In this work, the mixed convection problem in a lid-driven square cavity filled with nanofluid is
numerically investigated. The left and right vertical walls move up and down, respectively, and are held
at two different temperatures while the horizontal walls are kept insulated. On the basis of the results
presented in this paper, following findings may be summarized.

� The type of the nanoparticles does not affect the pattern formation in the system.

� Depending on the Richardson number range, the type of the nanoparticles has a significant role in the
heat transfer in terms of both local and average Nusselt number.
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Figure 19: Average Nusselt number versus the Richardson number at v ¼ 20%: (a) Model I and (b) Model II
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� Different dynamics is observed when the Ethylene-glycol base fluid is used in comparison to water,
methanol and kerosene oil.

� Ethylene glycol is the most convenient base fluid, ensuring maximum optimization of heat transfer in
the cavity.

� The presence of nanoparticles always increases the heat transfer independently of neither the type of
the nanoparticles nor the type of the base fluid.

� Increasing the Richardson number leads to a decrease in the heat transfer for the different mixtures.

� An improvement in heat transfer using spherical nanoparticles compared to cylindrical nanoparticles.
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