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Abstract: Phosphoaspartate is one of the major components of eukaryotes and prokaryotic two-component signaling

pathways, and it communicates the signal from the sensor of histidine kinase, through the response regulator, to the

DNA alongside transcription features and initiates the transcription of correct response genes. Thus, the prediction of

phosphoaspartate sites is critical, and its experimental identification can be expensive, time-consuming, and tedious.

For this purpose, we propose iPhosD-PseAAC, a new computational model for predicting phosphoaspartate sites in a

particular protein sequence using Chou’s 5-steps rues: (1) Benchmark dataset. (2) The feature extraction techniques

such as pseudo amino acid composition (PseAAC), statistical moments, and position relative features. (3) For the

classification, artificial neural network AAN will be used. (4) In this step, 10-fold cross-validation and self-consistency

testing will be used for validation. For self-consistency testing, 100% Acc is achieved, whereas, for 10-fold cross-

validation 95.14% Acc, 95.58% Sn, 94.70% Sp and 0.95 MCC are observed. (5). The final step is the development of a

user-friendly web server for the ease of users. Thus, the iPhosD-PseAAC is the first and novel predictor for accurate

and efficient identification of phosphoaspartate sites.

Introduction

Proteins are the basic and key part of the human body and
perform many kinds of major functions in and outside of a
cell. The proteins are translated or synthesized from
messenger RNA, which is first codified into ribosomes and
makes a chain of amino acids called a polypeptide chain.
Later, the polypeptide passes through the process of folding
and makes it an active protein. In the translation process,
some of the amino acids can experience chemical changes at
the C- or N- terminal of amino acid side chains, this
process of alteration is called post-translation modifications
(PTLM or PTM). The post-translation modification can
modify or may introduce a new functional group to the
protein, such as phosphate, so it plays a key role in the
making of protein products (Xu et al., 2017).

Among all PTMs, phosphorylation is of great
importance. It deactivates or activates the protein target and
affects the speed at which a protein can be degraded. Also, it

enables translocation of the protein from one subcellular
compartment to another and helps protein binding (Mok
and Snyder, 2009). Phosphorylation has exhibited
pathological implications in diseases like Parkinson’s and
Alzheimer’s alongside other neurodegenerative disorders.

Various eukaryotic proteins experience phosphorylation
which causes modifications in localization, conformation,
stability, function, and so forth (Hubbard and Cohen, 1993).
It occurs on threonine (T), serine (S), histidine (H), tyrosine
(Y), and aspartate (D) residuals in eukaryotes usually.
However, as mentioned above, histidine (H) and aspartate
(D) are unusual and least studied (Khan et al., 2018; Mann
et al., 2002; Thomason and Kay, 2000).

The phosphorylated form of aspartate is known as
phosphoaspartate (PhosD) and has a key role in multiple
biological processes (Fig. 1). Phosphorylation of active-site
aspartate residues also supports many enzyme-catalyzed
reactions. It is observed that sometimes both
dephosphorylation and phosphorylation of aspartate residues
occur in proteins (Attwood et al., 2011; Knowles, 1980).

Phosphoaspartate is one of the major components of
eukaryotic and prokaryotic two-component signaling
pathways. The two-component signaling pathways, which
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have two parts, the histidine kinase and response regulator
protein (RR), communicate from the sensor of histidine
kinase to the DNA alongside transcription features and
begin transcription of correct response genes (Capra and
Laub, 2012; Falke et al., 1997).

These two signaling pathways are common in
microorganisms and also in plants in order to regulate
ripening and the circadian rhythm. Cytokinin and ethylene
are the key components of plant-specific hormones, which
normally regulate the entire life cycle of a plant from the
germination of seeds to the development of flowers to set
the new seeds. During evolution, plants follow the bacterial
type of basic signal transduction strategy to regulate such
important and mature biological mechanisms (Lohrmann
and Harter, 2002; Mizuno, 2005).

Phosphoaspartate is involved in many important
biological processes and plays an important role in both
prokaryotic and eukaryotic organisms, especially in plants.
Finding these positions is, therefore, a fundamental task.
There are several experimental approaches to determine
these positions, and of these approaches, high throughput
mass spectrometry (MS) is one of the most common
techniques (Akmal et al., 2017). However, the test results
are time-consuming, tedious, and expensive.

To overcome these problems, various machine learning
methods, algorithms, and techniques for predicting
phosphorylation sites such as neural NN, SVM, and ANN
have been proposed (Jiang et al., 2016; Li et al., 2016).
However, no procedure has been proposed for PhosD sites.

Several studies have been proposed for other types of
phosphorylation. Ingrell et al. (2007) developed NetPhosYeast
with ANN. Huang et al. (2005) developed the KinasePhos web
server using Hidden Markov Models (HMM) to predict
specific phosphorylation sites of kinases. Lin et al. (2015)
developed a server called Rice_Phospho to predict the
phosphorylation sites of rice using SVM. The cluster-based
Phosphorylation Scoring and Prediction (GPS) webserver was
developed for the prediction of kinase-specific phosphorylation
sites. He can find almost 70 types of phosphorylation, kinase-
specific (Senawongse et al., 2005; Xue et al., 2008).

Senawongse et al. (2005) used an HMM-based model
that focused on extracting features based on the proteomic
primary structure for forming function-based clusters of
proteins. The feature vector was formulated from both
positive and negative samples (Cheng et al., 2018b). In 2018,
Khan et al. (2018) proposed a strategy named iPhosT-
PseAAC for an expectation of phosphothreonine
destinations utilizing PSeAAC, measurable minutes, and
different position relative highlights. ANN was utilized for
classification while testing was performed by 10-overlay
Cross-Validation and Jackknife testing.

Until this point in time, no predictor so far has been
proposed for the identification of phosphoaspartate sites in
proteins. This study proposes a novel prediction
methodology iPhosD-PseAAC for the identification of
phosphoaspartate sites in a given protein arrangement. The
essential objectives for the proposed model are to outline a
predictor that features the significance of phosphoaspartate
and formulation of a methodology for in-silico examinations
to their pertinent sequences. To address these objectives, we
pursue Chou’s 5-step rule (Chou, 2011) as established in a
progression of various studies (Cai et al., 2018; Chen et al.,
2018; Cheng et al., 2018a; Cheng et al., 2018c, Cheng et al.,
2018d; Cheng et al., 2018e; Chou et al., 2018; Liu et al., 2015;
Liu et al., 2016a; Liu et al., 2016b; Xiao et al., 2017; Xuao
et al., 2018). Formulation of the proposed predictor based on
the 5-step rule brings a large dividend. It renders the model
clarity of rationale, sets a benchmark for improvements, and
makes it easily accessible to the wide-spread scientific
community. The rules of Chou’s 5-step model are given as:
(1) benchmark dataset development; (2) Transformation to
equivalent mathematical form; (3) prediction algorithm; (4)
Model Validation; and (5) development of a webserver. From
here onwards, let us address these strategies one by one.

Materials and Methods

Benchmark dataset
In this study, we used Chou’s peptide formulation (Chou,
2001c) to facilitate the description of samples in the dataset.
In computational biology, Chou’s peptide formulation has
been widely used for the prediction of phosphothreonine sites
(Khan et al., 2018), methylation sites (Qiu et al., 2014b),
lysine ubiquitination sites (Qiu et al., 2015), signal peptide
cleavage sites (Shen and Chou, 2007), hydroxyproline and
hydroxylysine sites (Qiu et al., 2016a; Xu et al., 2014a), lysine
succinylation sites (Jia et al., 2016b), phosphorylation sites
(Qiu et al., 2016c), lysine PTM sites (Qiu et al., 2016b) and
protein-protein binding sites (Jia et al., 2016a).

Uniprot is a huge database of proteins that contain
annotated descriptions based on several experimental
studies. The advanced query option of Uniprot was used to
query PTM annotated protein sequences to form a
benchmark dataset. The term 4-aspartyl phosphate was
specified as modified residue to filter the protein having
phosphoaspartate sites. Subsequently, to increase the
reliability of data, only the proteins which have been
reviewed and their post-translation modification
identification is based on experimental assertion, were
selected. As a result of this query, 1043 proteins were listed
having 1052 phosphoaspartate sites. After removing
duplicate sequences and reducing homology using CD-HIT,
only 985 proteins were left. A negative dataset was
generated using exactly the converse query, which yielded a
multitude of samples. Negative samples were only collected
from 1043 proteins which were identified to have positive
sites as well. Even limiting the number of proteins yielded
7193 unique sequences having low homology. Out of these
7193 sites, only 1000 were randomly filtered out. For each
occurrence of aspartic acid residue in a sequence, that
particular residue and its associated upstream and downstream
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FIGURE 1. Structural transformation of aspartate to phosphoaspartate.
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amino acids were extracted. Hence, for every selected instance, the
length was 41 generated, comprising D residue, 20 residues
upstream, and 20 residues downstream. For better results, both
negative and positive datasets were pre-processed to remove
duplicate occurrences. The dataset is constructed using only
sequences that have been experimentally proven.
Computationally annotated data and uncategorized data is left
out as it may yield even more redundancies. In pre-processing all
special characters, spaces, characters that are not amino acids (Z,
X, U, O, J, and B) were removed. After pre-processing, the
benchmark dataset contained 1994 samples (994 positive and
1000 negative samples).

By following Chou’s method (Chou, 2001b), the peptide
having a potential PhosD can be expressed generally by

Pn Dð Þ ¼ R�nR� n�1ð ÞR� n�2ð Þ . . .R�2R�1

DRþ1Rþ2 . . .Rþ n�2ð ÞRþ n�1ð ÞRþn
(1)

where D in Eq. (1), having double struck, is used to highlight
the significance of amino acid D in the current study, and n is
an integer value. Rþn means the nth downstream residue of
amino acid, and R�n means the nth upstream amino acid
residue, and so forth. The further classification of
2nþ 1ð Þ � tuple size peptide is

Pn Dð Þ2 Pþn Dð Þ; if the center of peptide is a PhosD site
P�n Dð Þ;otherwise

�
(2)

In Eq. (2), P þ n Dð Þ represent a true PhosD sample in
dataset, having D at its center, P � n Dð Þ represent a false
PhosD sample, and P represents peptide, and the ∈ symbol
denotes a member of as described in the set theory.

In prediction models, the selected benchmark dataset
normally contains both training data and testing data: the
purpose of training and testing datasets are training the
prediction model and testing of the prediction model,
respectively. As extensively reviewed (Chou and Shen, 2008), it
is noted that there is no need for these two separate datasets if
one is validating the model using extensive validation methods,
i.e., k-fold cross-validation or jackknife as its outcome is
obtained by using a number of the different exclusive dataset
for multiple tests. Moreover, unbiased results are proved by
curating datasets that have the least homology. A dataset
encompassing significant homologous samples will only yield
biased results, and the predictor hence derived may not be as
assiduous. Furthermore, during the initial exploration, there
was found that the best value for n is 20; as a result, a sample
consists of 2nþ 1ð Þ ¼ 41 residues (Eq. (1)). Correspondingly,
the benchmark dataset minimized to TS total samples

TS ¼ PS [ NS (3)

where PS denotes the 994 positive samples and NS denotes
1000 negative samples, while ∪ defines union (from set
theory). Thus, total samples in the dataset TS are 1994, as
994 [ 1000 = 1994 (Supplementary Information S1 are
available at https://www.biopred.org/iphosd/supl).

Sample formulation
Today, biological data and sequences are growing enormously.
The most difficult task for us is to express the biological data
and sequences into a vector or discrete form without dropping
sequence pattern information and its characteristics for final

analysis. As because the machine learning algorithms such
as Covariance Discrimination or CD algorithm (Chou and
Elrod, 2002; Lin et al., 2012), KNN (Cai and Chou, 2004;
Chou and Cai, 2006), SVM (Feng et al., 2013a; Feng et al.,
2013b) and RF- Algorithms (Jia et al., 2016b; Lin et al.,
2011) can only process vectors (Chou, 2015). However, a
vector characterized by a discrete model can lose all design
data completely. To avoid completely losing protein
grouping design data, the composition of pseudo amino
acids (Chou, 2001a) or PseAAC (Chou, 2005) has been
proposed. At this point, Chou’s PseAAC was already used in
almost all regions of computer-aided proteomics (see, e.g.,
Akbar and Hayat, 2018; Arif et al., 2018; Contreras-Torres,
2018; Chou, 2017; Javed and Hayat, 2019; Ju and Wang,
2018; Krishnan, 2018; Liang and Zhang, 2018; Mei et al.,
2018; Mei and Zhao, 2018a, 2018b; Qiu et al., 2018;
Rahman et al., 2018; Sabooh et al., 2018; Sankari and
Manimegalai, 2018; Srivastava et al., 2018; Zhang and Kong,
2018; Zhang and Duan, 2018; Zhang and Liang, 2018; Zhao
et al., 2018). According to the general PseAAC (Chou, 2011),
a sample protein sequence can be formulated as follows:

Pn¼7 Cð Þ ¼ @1@2 � � � @u � � � @�½ �T (4)

where @u ¼ u ¼ 1; 2; 3; � � � ;�ð Þ and T for the transpose of
features vector. The components in the above Eq. (4) will be
defined by extracting the useful information from the
corresponding peptide sequence. According to Eq. (1), the
defined length of the peptide sequence in the benchmark
dataset is 41; it can be modified as

P ¼ R1;R2;R3 � � �R19;R20;R21 � � �R39;R40;R41 (5)

In Eq. (5) R21 ¼ D the targeted aspartate and
Rj j ¼ 1; 2; 3; 4 . . . ; 41; j 6¼ 21ð Þ can be any other amino acid
or dummy code X as explained above. From now onwards,
we use amino acid numerical codes as per their alphabetical
order according to their first letter, 1, 2, 3 …… 20 for all 20
as amino acids, and dummy X will use 21 as code.

Statistical moments’ calculation
Here we use the statistical moments’ approach for the
sequence to define the dimensions and its components of
Eq. (4). Using different orders of moments, multiple kinds
of data features are described; from those moments, few can
be used to indicate the eccentricity and orientation of data,
and others can be used for data size evaluation. Numerous
moments were defined and described by statisticians and
mathematicians primarily based on distribution functions
and polynomials, actually well know (Khan et al., 2012;
Khan et al., 2014a).

For the iPhosD-PseAAC prediction model, Hahn, raw,
and central moments are computed. The Hahn moments
are calculated, which are location and scale variant, using
the Hahn polynomial (Khan et al., 2014c). Raw moments
calculated, which can be a place and scale variant, are used
for the mean, asymmetry, and variance calculation, using
the probability distribution of the benchmark dataset.
Besides, the central moment calculates the asymmetry,
mean, and variance, but those are vicinity invariant because
the calculation is done concerning the centroid (Butt et al.,
2016; Butt et al., 2017), and these calculations are scale variant.
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There is a particular reason for working with statistical
moments; it maintains the sequence order sensitive
information, which is an important point as described
above. Furthermore, moments based on scale variants were
not used. In the form of quantified value, data is defined on
its own by every method (Khan et al., 2014b). In this
current method, moments were used in 2-dimensional (2D)
matrix P′ having k*k dimensions to accommodate all the
residues from a protein P.

P’ ¼
P11
P12
..
.

Pk1

P12 . . .
P22 . . .

..

.

Pk2 . . .

P1k
P2k
..
.

Pkk

6666664

7777775 (6)

The function ω used for matrix transformation into
P′ as described by Akmal et al. (2017). Using the
elements of P′ all statistical moments were calculated up
to 3rd degree. First of all, the (a+b)th order raw
moments are calculated as

Mxy ¼
Xk
a¼1

Xk
b¼1

axby@ab a; b ¼ 1; 2: . . . ; k (7)

where the degree of moments is x+y and M00, M01, M02,
M10, M11, M12, M20, M21, M30, and M03 are the

calculated raw moments and @ab ¼ 1 if a ¼ b
0 if a 6¼ b

�
. The

calculation of central moments is done as

Ixy ¼
Xk
a¼1

Xk
b¼1

a� rð Þx a� sð Þy@ab (8)

The P matrix transformed into 2-dimensional square
matrix P′ which helps to calculate Hahn moments because
Hahn moments can be easily calculated from square
dimensional data. The distinct Hahn moments are the
orthogonal moments of 2-dimension, which requires an even
matrix in the input. The orthogonal Hahn moments have the
feature that they can be reversed by using the inverse method
of Hahn moments; it is feasible to reconstruct the material,
and consequently, the data regarding relative positions, and the
sequence composition, can also be conserved in those moments.

N order Hahn polynomial is calculated by using this equation

Hu;z
n r;Mð Þ ¼ M þ Z � 1ð Þn M � 1ð Þn�Xn

k¼0

�1ð Þk �nð Þk �rð Þk 2M þ uþ z � n� 1ð Þk
M þ z � 1ð Þk M � 1ð Þk

� 1

k!

(9)

The Eq. (9), Gamma operator and pochhammer symbol
are explained in Akmal et al. (2017). The following equation
used to calculate the orthogonal normalized Hahn moments

hxy ¼
XM�1

a¼1

XM�1

b¼1

@xyH
�u;z
x b;Mð ÞH�u;z

y a;Mð Þ;

n ¼ 0; 1; 2; 3 . . .M � 1

(10)

Constructing PRIM and RPRIM
The model based on residue information of protein related to
relative positions and the primary protein sequence is the
central paradigm. It is necessary to quantize the relative

positions of amino acids, thus the 20 � 20 matrix of
Position Relative Incidence Matrix (PRIM) is constructed to
extract the information, from all the instances of the
benchmark dataset, about the relative position of amino
acids residue of proteins as

DPRIM ¼

A1!1 A1!2 � � � A1!j � � � A1!1

A2!1 A2!2 � � � A2!j � � � A2!20

A
..
.

i!1 A
..
.

i!2 � � � A
..
.

i!j � � � A
..
.

i!20

A
..
.

N!1 A
..
.

N!2 � � � A
..
.

N!j � � � A
..
.

N ! 20

2
666664

3
777775

(11)

In the DPRIM matrix, each Ai→j holds the sum of the
relative position of the ith element in accordance with the
first appearance of the jth element is represented. Similarly,
the Reverse Position Relative Incidence Matrix (DRPRIM) is
calculated with the reverse protein sequence sample. The
DRPRIM is calculated as

DRPRIM ¼

D1!1 D1!2 � � � D1!j � � � D1!1

D2!1 D2!2 � � � D2!j � � � D2!20

D
..
.

i!1 D
..
.

i!2 � � � D
..
.

i!j � � � D
..
.

i!20

D
..
.

N!1 D
..
.

N!2 � � � D
..
.

N!j � � � D
..
.

N ! 20

2
666664

3
777775
(12)

Both DPRIM and DRPRIM yield the 400 coefficients. To
reduce the number of coefficients, the statistical moments are
calculated for both, which yield the 30 coefficients.

Determination of Frequency Matrix (FM)
To find out the frequency of each amino acid residue and
mine compositional information from the sequence in
benchmark dataset instances, the frequency matrix is
calculated. The frequency matrix is calculated as

FM ¼ f1; f2; � � � ; f20f (13)

Herein, f1 is the frequency of each amino acid
residue occurring in the sequence arranged by their
alphabetical order.

Constructing AAPIV and RAAPIV
To accumulate the positional information, the Accumulative
Absolute Position Incidence Vector is calculated for the
length of 20 native amino acids as

K ¼ fl1; l2; l3; . . . ; l20g (14)

Here, li is an arbitrary element of AAPIV that can be
calculated as

li ¼
Xn
k¼1

pk (15)

Similarly, the Reverse Accumulative Absolute Position
Incidence Vector (RAAPIV) is computed by using the
reverse sequence of the protein as

K ’ ¼ fl1; l2; l3; . . . ; l20g (16)

Prediction model
Billions of neurons in the human brain process and transmit
information about a certain aspect when they are activated.
Whenever you learn things through patterns without having
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a certain inclination, you take action based on the situation.
The artificial neural network (ANN) inspired by the human
processing system is made up of several highly
interconnected neurons that work together to find a specific
solution to a problem. It takes the information from the
neuron and processes it using different patterns in the
examples given. The ANN has two modes of working:
training the ANN on the given input labeled data. In the
second mode, when the input pattern matches the learned
pattern, it becomes the current output, when the input
pattern does not match any of the learned patterns it finds
the closest and outputs according to that pattern (Khan
et al., 2018), as shown in Fig. 2.

In this study, we also used AAN with backpropagation
to reduce the output error. Using the benchmarks dataset,
which contains 994 positive data samples and 1000
negative samples, the features vector was calculated for
all data samples. Every feature vector contains Hahn,
central, and raw moments of two-dimensional protein
sample representation, PRIM, and RPRIM. For positional
and compositional information, the calculated FM,
AAPIV, RAAPIV, and Site Vicinity Vector also in the
feature vector. The final feature vector contains 194
features based on positional and compositional
information for each instance of the benchmark dataset.
Thus, both an input matrix comprising all feature
vectors and a label matrix were used to train an ANN
(Jiang et al., 2016; Khan et al., 2018). Furthermore,
extensive probing and experimentation showed that the
ANN exhibited optimal results with 50 neurons in the
hidden layer while adaptive gradient descent was used
for learning.

Results and Discussion

Estimated accuracy
The important process for the new predicting model is, how to
justifiably measure the success rate (Chou, 2011). We have to

consider two issues to address the justifiable evaluation of the
model: (1) to reflect the model quality, what kind of metrics
should be used? (2) to score the metrics, what kind of test
methods should be used?

Formulation of metrics
Generally, the following metrics are used from four different
viewpoints to evaluate the prediction model accuracy: (1)
MCC for model stability (2) Sp for model specificity (3) Sn
for model sensitivity (4) Acc to measure the total accuracy
of a prediction model. Thus, a set of four intuitive metrics
were derived (Feng et al., 2013a; Xu et al., 2013) as given
in Eq. (17).

For PhosD sites prediction, Nþ is the true positive
value, Nþ

� is the false negative value. Moreover, N� is the
true negative value and N�

þ is the false positive value.
Using Eq. (17), it can be seen that when Nþ

� ¼ 0, not a
single PhosD site is predicted as the non-PhosD site so
we have sensitivity Sn ¼ 1. If Nþ

� ¼ Nþ, it means all
PhosD sites are incorrectly predicted as non-PhosD sites,
so we have sensitivity Sn ¼ 0. Moving forward, if
N�

þ ¼ 0, means not a single the non-PhosD sites are
predicted as PhosD sites, so we have specificity Sp ¼ 1;
whereas N�

þ ¼ N�, means all the non-PhosD sites are
incorrectly predicted as PhosD sites, so we have
specificity Sp ¼ 0. If Nþ

� ¼ N�
þ ¼ 0, means not a single

PhosD site in the positive dataset and non-PhosD site in
the negative dataset incorrectly predicted, so we have
MCC ¼ 1 and Acc ¼ 1 ; if Nþ

� ¼ Nþ and N�
þ ¼ N� means

all PhosD sites in the positive dataset and non-PhosD
sites in the negative dataset are incorrectly predicted, so
we have MCC ¼ �1 and Acc ¼ 0. Whereas, if
N�

þ ¼ N�=2 and þ
� ¼ Nþ=2 then we have MCC ¼ 0 and

Acc ¼ 0:5, nothing but a guess. So, Eq. (17) explains
overall-accuracy, sensitivity, specificity, and stability
more easily to understand and intuitive, particularly
about MCC (Chen et al., 2016b; Qiu et al., 2017b;
Xiao et al., 2016).

FIGURE 2. ANN for the proposed
prediction model.
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Sn ¼ 1� Nþ
�

Nþ 0 � Sn � 1

Sp ¼ 1� N�
þ

N� 0 � Sp � 1

jAcc ¼ 1� Nþ
�þN�

þ
NþþN� 0 � Acc � 1 17ð Þ

MCC ¼ 1� Nþ�
Nþþ

N�þ
N�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N�

þ�Nþ
�

Nþ

� �
1þ Nþ

��N�
þ

N�

� �r � 1 � MCC � 1

8>>>>>>>>>><
>>>>>>>>>>:

The set of intuitive metrics have been concurred and
applauded by a series of recent publications see, e.g., Chen et
al. (2016a); Chen et al. (2017b); Ehsan et al. (2018); Feng
et al. (2013a); Feng et al. (2017); Feng et al. (2018); Jia et al.
(2016c); Lin et al. (2014); Liu et al. (2017a); Liu et al.
(2017b); Liu et al. (2018); Xu et al. (2014b); Zhang et al. (2016).

In Eq. (17), defined equations set are only effective for
single-label data. For multi-label, which becomes more
popular in biological (Chou et al., 2012; Lin et al., 2013;
Xiao et al., 2011) and biomedicine (Xiao et al., 2013), is a
completely different problem and need different metrics
(Chou, 2013).

Self-consistency testing
A self-consistency test on the same dataset was performed to
validate the iPhosD-PseAAC predictive model. The validation
method was carried on the already known actual positive and
negative sample dataset, and the result is shown in Tab. 1.

Validation of Model
Commonly, the experimentally proven datasets are used for
model prediction; sometimes for testing, we do not have an
experimentally proven dataset to test the model against the
actual available data. By chance, if the data is available, it
might be possible that data are not sufficient to test the
accuracy of the predicting model. Only those samples could
be incorporated into the model which exists in nature as for
such a biological problem, it is not possible to build
hypothetical datasets. To score the four metrics of Eq. (17),
what kind of testing should be done to meet sufficient
accuracy reliability? Usually, the dataset is split into 3
partitions. One partition is used for training while another
is used for testing, and the leftover partition is used for
validation. However, if the dataset is limited, then it is
recommended that a predictor should be tested against
k-folds (Subsampling), jackknife, and independent test (Chou
and Zhang, 1995). Prediction model testing against jackknife
is very exhausted and can always give a different outcome for
a given benchmark dataset. It has been widely used to validate
the prediction model by investigators (Chen et al., 2017a;
Chen et al., 2017b; Dehzangi et al., 2015; Dou et al., 2014;
Feng et al., 2005; Kumar et al., 2015; Mondal and Pai, 2014;

Nanni et al., 2014; Qiu et al., 2014a; Shen et al., 2007; Wu
et al., 2011; Zhou and Doctor, 2003). If an obvious dataset is
not available to validate the model prediction, cross-validation
is the best option to choose and to give the validation that the
developed model is working fine.

Herein, we performed 10-fold cross-validation and
calculated accumulated accuracy by adding the accuracy of
each fold. The average accuracy was 95.14%, as shown in
Tab. 2 and Fig. 3. We also validate the prediction model
using jackknife to verify the quality of iPhosD-PseAAC. For
jackknife validation training, every instance of both the
datasets is used for training and testing for unique output
and received 94.46% of the prediction validation accuracy.

Comparative analysis
In a comparative analysis, the results of iPhosD-PseAAC for
the metrics are compared with already existing PTM site
prediction models, i.e., iPhosT-PseAAC (Khan et al., 2018)
and PhosphoSVM (Dou et al., 2014). Both the models
iPhosT-PseAAC and PhosphoSVM are merely used
benchmarks for comparison of accuracy metrics. Since no
earlier model for identification phosphorylation sites of
aspartic acid has been found in texts. Considering these
benchmark values, the metrics yielded by iPhosD-PseAAC
has higher values than iPhosT-PseAAC and PhosphoSVM
for all Acc, Sp, Sn, and MCC. This indicates better
prediction as compared to others.

From Tab. 3, there can be seen that iPhosD-PseAAC
outperforms other benchmark models. iPhosD-PseAAC uses
different kinds of compositional and positional features to
perform the prediction of PhosD sites. Firstly, it uses
PseAAC and trims the modified residue by 20 downstream
and upstream, then construct AAPIV, RAAPIV, PRIM,
RPIRM, and moments are calculated, using the
compositional and positional features. The feature extraction
technique derived to furnish the ANN bears great
significance in the vibrant performance of the predictor.
Results showing high accuracy are a testament to its
potential. High accuracy rate yielded in all validation tests
compared with other state-of-the-art methods connote that
the feature extraction technique is proficient in extracting
obscure and pivotal traits of data peculiar to each class.
Subsequently, the multilayer ANN is also well equipped to
partition classes based on these intricate features.

Webserver
The 5th step is the user-friendly public web server, as
documented in many recent publications (Cheng et al., 2017a,

TABLE 1

Results for self consistency testing

Predictor
Accuracy metrics

Acc (%) Sp (%) Sn (%) MCC

iPhosD-PseAAC 100.00 100.00 100.00 1.00

TABLE 2

Results for 10-fold cross validation (average of 10-folds)

Predictor

Accuracy metrics

Acc (%) Sp (%) Sn (%) MCC Standard
Deviation

iPhosD-PseAAC 95.14 94.70 95.58 0.95 1.57
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2017b; Cheng et al., 2017c; Cheng et al., 2016; Feng et al., 2017;
Liu et al., 2017b; Qiu et al., 2017a; Qiu et al., 2017b). The
webservers are of great importance; thus, the webserver for
iPhosD-PseAAC is available at https://www.biopred.org/
iphosd, which is developed in Django framework with Python
3.6 and scikit-Learn (Fig. 4).

Conclusion

In this study, we have proposed a prediction model named
iPhosD-PseAAC for phosphoaspartate site prediction using
Chou’s 5-steps rule. Phosphoaspartate plays many
fundamental roles in a number of biological processes,
including signal transduction pathways, energy metabolism,
various cellular processes, and ripening and circadian
rhythms in plants. The aim of the current study was to

propose a new and more accurate phosphoaspartate sites
predictor and make it easy-to-use, user-friendly, and publicly
available to experimental biologists to get their desired results.
In PseAAC, it uses the various compositional and positional
features of the protein sequence. The proposed model was
validated against different exhaustive validation techniques,
i.e., self-consistency, jackknife, and cross-validation. Using
self-consistency, the accuracy is 100%, for cross-validation
95.14%, and jackknife gives 94.46% accuracy. The overall
accuracy of the proposed model is 95.14%, sensitivity value
95.58%, and specificity 94.70%. It is concluded that the
proposed model for the prediction of the PhosD sites has the
ability of accurate and efficient predictions for
phosphoaspartate sites in proteins, but it still can be
improved in computational ways as the protein sequences
may rapidly increase, day by day.
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FIGURE 3. 10-fold cross validation for benchmark
dataset.

TABLE 3

Comparative analysis of iPhosD-PseAAC, iPhosT-PseAAC and PhosphoSVM

Predictor
Accuracy metrics

Acc (%) Sp (%) Sn (%) MCC

iPhosD-PseAAC 95.14 94.70 95.58 0.95

iPhosT-PseAAC (Khan et al., 2018) 94.2 94.6 94.4 0.94

PhosphoSVM (Dou et al., 2014) 77.2 90.5 57.2 0.52

FIGURE 4. The graphical user
interface of the iPhosD-PseAAC
available at biopred.org/iphosd.
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