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Abstract: The novel coronavirus 2019 (COVID-19) rapidly spreading around 
the world and turns into a pandemic situation, consequently, detecting the 
coronavirus (COVID-19) affected patients are now the most critical task for 
medical specialists. The deficiency of medical testing kits leading to huge 
complexity in detecting COVID-19 patients worldwide, resulting in the number 
of infected cases is expanding. Therefore, a significant study is necessary about 
detecting COVID-19 patients using an automated diagnosis method, which 
hinders the spreading of coronavirus. In this paper, the study suggests a Deep 
Convolutional Neural Network-based multi-classification framework (COV-
MCNet) using eight different pre-trained architectures such as VGG16, VGG19, 
ResNet50V2, DenseNet201, InceptionV3, MobileNet, InceptionResNetV2, 
Xception which are trained and tested on the X-ray images of COVID-19, 
Normal, Viral Pneumonia, and Bacterial Pneumonia. The results from 4-class 
(Normal vs. COVID-19 vs. Viral Pneumonia vs. Bacterial Pneumonia) 
demonstrated that the pre-trained model DenseNet201 provides the highest 
classification performance (accuracy: 92.54%, precision: 93.05%, recall: 92.81%, 
F1-score: 92.83%, specificity: 97.47%). Notably, the DenseNet201 (4-class 
classification) pre-trained model in the proposed COV-MCNet framework 
showed higher accuracy compared to the rest seven models. Important to 
mention that the proposed COV-MCNet model showed comparatively higher 
classification accuracy based on the small number of pre-processed datasets that 
specifies the designed system can produce superior results when more data 
become available. The proposed multi-classification network (COV-MCNet) 
significantly speeds up the existing radiology based method which will be 
helpful for the medical community and clinical specialists to early diagnosis the 
COVID-19 cases during this pandemic. 
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1 Introduction 
In recent times, we have all been hit by the new scare called the “Novel Corona Virus (COVID-19)”. 

Many people all over the world are dying and getting infected with this virus. According to the World 
Health Organization (WHO), there is a total of 41,570,883 confirmed cases, 1,134,940 deaths, and 
31,282,596 recoveries globally in almost 235 countries (as of October 23, 2020) [1]. This is a recently 
discovered species in the large coronavirus family [2]. To date (October 23, 2020), there is no known cure 
or vaccine for the virus. One big challenge in the combat of the pandemic has been the limited number of 
medical equipment for rapid COVID-19 testing, Real-time Reverse Transcription Polymerase Chain 
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Reaction (RT-PCR) has emerged as one of the most widely used techniques for coronavirus testing [3]. In 
the primary diagnosis and treatment of this virus, chest radiological imaging such as computed 
tomography (CT) and X-rays have significant functions that can help radiologists detect the virus [4]. RT-
PCR test kits have been in great scarcity since the outbreak of COVID-19. As a consequence, it is not 
possible to screen and isolate several suspicious patients in time, resulting in them transmitting the 
disease unknowingly. New individuals infected with coronavirus may develop mild to severe respiratory 
disease, in some cases, carriers of the virus show no symptoms at all, this refers to the asymptomatic 
patients. Both animals and humans can be infected by coronavirus disease. The first case was recorded in 
Wuhan, the capital of the Hubei Province of China, in December 2019, after which it eventually spread 
across the globe. Coronavirus is a large family of viruses called Coronaviridae with Extreme Acute 
Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) in several other animals 
[5]. The SARS coronavirus (SARS-CoV) was first identified and recognized in February 2003, although 
cases were traced to November 2002. It is thought to be an animal virus, possibly from bats, that infected 
persons in Southern China, Guangdong Province. During the 2003 epidemic, nearly 8,000 people 
worldwide got infected as it spread to 26 countries, leaving 774 people dead. After SARS, the first known 
cases of MERS occurred in April 2012. MERS symptoms were fever, cough, and shortness of breath. 
MERS reached 27 countries by September 2012 with over 800 deaths. 80% of the reported MERS cases 
were in Saudi Arabia [6]. Dry cough, fever, difficulty in breathing, and tiredness are the most common 
symptoms of coronavirus, in the advanced stage of the virus, there are respiratory complications such as 
pneumonia, kidney disease, and lung fluid growth. COVID-19 has similar symptoms with the other 
known coronaviruses but the new virus spreads at a faster rate. As of October 23, 2020, Fig. 1 indicates 
the overall rising number of cases of COVID-19 worldwide. 

 
Figure 1: Cumulative COVID-19 cases worldwide, as of 23 October 2020 (according to the applied case 
definition and testing strategies in the affected countries) 

The serial interval of COVID-19 is estimated to be 5–6 days, which is similar and lower than the 
serial interval of Extreme Acute Respiratory Syndrome (SARS) and lower than its median incubation 
time [7]. Fan et al. classified infected regions using chest CT images, based on a new COVID-19 Lung 
Infection Segmentation Deep Network (Inf-Net) [8]. In this research [9], Waheed et al. developed an 
Auxiliary Classifier Generative Adversarial Network (ACGAN) based model called CovidGAN to 
generate synthetic chest X-ray (CXR) images.  

In this time of the rapid spread of COVID-19, several kinds of research have been suggested [10–15]. 
PCR tests and CT scans are comparatively expensive for all screening procedures [16] and sometimes 
more selective tests are needed and often necessary for vital patients. X-ray imaging is comparatively 
cost-effective and commonly used for diagnosis or segmentation of lung infections and often convenient 
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for diagnosis of COVID-19 as well as [17]. Wang et al. study presented Artificial Intelligence’s based 
deep learning methods to extract COVID-19’s specific graphical features [18]. The infection with 
COVID-19 is serious enough to be called acute respiratory distress syndrome (ARDS) rather than SARS 
and MERS. It is usually estimated that most infectious patients are genetically stable CoV carriers and 
that these viruses are the primary cause for around 15% to 20% of acute respiratory infections [19].  

Due to the lack of a diagnostic system anywhere, which raises fear among people, COVID-19 testing 
has recently become a difficult activity. We need to rely on other diagnostic procedures because of the 
significant shortage of COVID-19 testing kits. Since COVID-19 targets the epithelial cells that impact our 
lung area, to analyze health, medical specialists can use X-ray images of the lungs of a patient. In 
detecting pneumonia, lung inflammation boils, and/or other health problems medical doctors usually use 
X-ray images. And almost all hospitals have X-ray imaging equipment, although often it may be hard to 
use X-ray imaging in some environments. Without the enthusiastic test kits, it would be feasible to use X-
ray to research for COVID-19. Again, a downside is that an X-ray test needs a specialist in radiology for 
examination, and this takes some time. Therefore, to time, it is necessary to develop an automated 
research process. 

In this study, we implement a deep convolutional neural network (CNN)-based automated 
classification system for identifying COVID-19 infected cases from chest radiology images. The 
proposed network is called COV-MCNet combining with different pre-trained models that classify three 
types of pneumonia; COVID-19, Viral Pneumonia, and Bacterial Pneumonia. The proposed system was 
implemented for 4-class (Normal, COVID-19, Viral Pneumonia, and Bacterial Pneumonia) classification 
using eight pre-trained models (VGG16, VGG19, ResNet50V2, InceptionV3, InceptionResNetV2, 
DenseNet201, MobileNet, and Xception). The proposed network produced promising results, even though 
using a small dataset (300 Normal, 240 COVID-19, 300 Viral Pneumonia, and 300 Bacterial Pneumonia). 

2 Materials and Methods 
2.1 Dataset 

This study has used a total of 1140 images (240 COVID-19, 300 Normal, 300 Viral Pneumonia, and 
300 Bacterial Pneumonia) to develop the multi-classification network (COV-MCNet). The COVID-19 X-
ray images are sourced from the GitHub repository [20] and the rest three dataset (Normal, Viral 
Pneumonia, and Bacterial Pneumonia) were obtained from the Kaggle repository [21]. Therefore, these 
datasets have been used for feature extraction based on different deep learning architectures. Details of 
the used dataset as shown in Tab. 1. Since this study focused primarily on the detection of COVID-19 
infected cases, therefore, the MERS, SARS, and ARDS virus images were not considered. The two 
datasets are examined separately in the COV-MCNet proposed models. Fig. 2 shows several chest X-ray 
images of Normal, COVID-19, Viral Pneumonia, and Bacterial Pneumonia patients. 

Table 1: Details of dataset used in the present study 

Classification task Classes Number of datasets 

4-class classification Normal, COVID-19, Viral 
Pneumonia, Bacterial Pneumonia 

300 Normal, 240 COVID-19, 300 
Viral Pneumonia, 300 Bacterial 

Pneumonia 
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Figure 2: Samples of prepared dataset (a) Normal (b) COVID-19 (c) Viral Pneumonia (d) Bacterial 
Pneumonia 

2.2 Proposed COV-MCNet 
Deep learning methods are widely used in a variety of studies such as image classification, 

segmentation, and skin disease detection of medical statistics [22,23]. The study proposed a state-of-the-
art deep learning image classifier, namely COV-MCNet (Multi-classification network) based on a deep 
convolutional neural network (CNN). The COV-MCNet uses eight different pre-trained models which are 
assembled into 4-classes to classify COVID-19, Normal, Viral Pneumonia, and Bacterial Pneumonia 
cases. The entire methodology is divided into three steps: input and pre-processing steps, pre-trained 
models, and finally training and classification process. ImageNet is an image database with over 14 
million images belonging to over 20 thousand categories created for image recognition competitions [24]. 
The VGG16 and VGG19 [25] model is an improved version of the convolutional neural network (CNN). 
These models have small convolution filters (3 × 3) to get a deeper and more complex network. These 
two models differ in the depth of convolution, pooling, and fully connected layers. The ResNet50V2 [26] 
is the upgrade version of ResNet50. The ResNet50V2 model has Deep Residual Networks, which is eight 
times deeper compared to the VGG nets. This architecture is based on skip connection, which allows us to 
take activation from one layer and feed it to the future layer. InceptionV3 [27] aims to utilize the 
additional computation as competently as likely by appropriately factorized convolutions and aggressive 
regularization. The model 48 layers deep along with pooling and fully connected layers. Inception-
ResNet-v2 [28] is the mutual architecture of the Inception with residual connections. This architecture is 

(a) 
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164 layers deep. As a result, the network has erudite rich feature demonstrations for an extensive range of 
images. DenseNet201 (Densely Connected Convolutional Networks) [29] has 201 layers on the ImageNet 
dataset and it has some compelling advantages: They improve the vanishing-gradient difficulty, fortify 
feature propagation, boost feature reuse, and significantly reduce the number of parameters. MobileNet 
[30] is an effective model for mobile and entrenched vision applications. This model uses depthwise 
separable convolutions based on a rationalized architecture to build lightweight deep neural networks. 
Xception [31] is a 71 layers deep convolutional neural network architecture enthused by Inception, where 
Inception modules have been substituted with depthwise distinguishable convolutions. The network 
trained on more than a million images from the ImageNet database. A schematic representation of the 
proposed network is shown in Fig. 3. 

        

Figure 3: Graphical workflow of proposed COV-MCNet framework for the detection of Normal, 
COVID-19, Viral Pneumonia and Bacterial Pneumonia patients 

2.2.1 Input and Pre-Processing Steps 
Since the properties of the image (width and height) vary for chest X-ray images of Normal, 

COVID-19, Viral Pneumonia, and Bacterial Pneumonia, therefore, the study has used a fixed size of 224 
× 224 pixels. Following that, 80% of the data are used as the training dataset and 20% of them are used to 
evaluate the trained model. Finally, to obtain the decimal values (0 to 1), we normalized the data by 
dividing 255. 

2.2.2 Pre-Trained Models 
Pre-trained models are trained on a large benchmark dataset as a starting point to solve different 

problems. In this study, eight different pre-trained models (e.g., VGG16, VGG19, ResNet50V2, 
InceptionV3, InceptionResNetV2, DenseNet201, MobileNet, and Xception) have been used for multi-
classification (4-class). All the models have different convolution and pooling layers which extract the 
features from images and classifier categorize the images from extracted features.  

2.2.3 Training and Classification Process 
In the final step, we fine-tuned the pre-trained models with deep learning image classifiers for 

detecting COVID-19, Normal, Viral Pneumonia, and Bacterial Pneumonia cases. In the training and 
classification process, AveragePooling2D have used for all the models to calculate the average for each 
patch of the feature map with pool size (2, 2). Afterward, we flattened the activations to create a 
vectorized feature map and connected two fully connected layers; one layer contained 128 nodes, and the 
other consisted of 4 for 4-class classification. Subsequently, the activations from the second fully 
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connected layer were fed into a softmax layer, which provided the probability for each of Normal, 
COVID-19, Viral Pneumonia, and Bacterial Pneumonia. 

2.3 Experimental Setup 
Python programming language was used for the experiments to training the proposed COV-MCNet 

framework and Jupyter Notebook as an editor for executing the codes. The background running 
environment is built-up using deep learning framework TensorFlow (1.14) and Keras package [32]. All 
experiments were carried out on CPU Intel Core i7 9700K–(32 GB/2 TB HDD/128 GB SSD/Windows 10 
Home/4 GB Graphics) and equipped with GPU NVIDIA GeForce RTX 2080Ti. The COV-MCNet 
framework was trained with random initialization weights using the SGD (Stochastic Gradient Descent) 
optimizer. The batch size and learning rate are experimentally set to 10, 0.0001, and the number of epochs 
is set to 20 to avoid overfitting for all experiments. 

2.4 Performance Metrics 

To test the classification performance of pre-trained models in the COV-MCNet, the following 
metrics have been implemented in this study to show the classified or misclassified cases. The 
performance metrics are calculated based on True Positive (TP), True Negative (TN), False Positive (FP), 
and False Negative (FN) values. 

2.4.1 Accuracy 
It measures the ratio of correctly classified cases concerning the whole dataset. If the accuracy is 

higher, that means the models perform better. The accuracy is a portion of the predicted or classified 
value to its actual value. It represented as follows:  

Acc = TN + TP
TN + TP + FN + FP

, (1) 

2.4.2 Precision  
It measures the percentage of correctly classified as positive out of all positive cases. It is defined as 

follows: 

Pre = TP
TP + FP

, (2) 

2.4.3 Recall  
The recall is computed as the ratio of positives that were correctly predicted as true positives divided 

by the number of actual positives. It is calculated as follows: 

Rec = TP
TP + FN

, (3) 

2.4.4 F1-Score 
F1 Score is calculated based on the scores of precision and recall. It provides the classification 

capability of the model. F1 score measures the test’s accuracy. If the F1 score presents the best value, that 
means perfect precision and recall. It is calculated as follows: 

F1 − S =  2 × �Precision × Recall
Precision + Recall

�, (4) 
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2.4.5 Specificity 
It is also called True Positive Rate (TPR) which measures the ratio of actual negatives that are 

correctly labeled. It is represented as follows: 

Spe = TN
TN + FP

, (5) 

TP is the proportion of positive cases that are correctly classified as positive; FP is the proportion of 
negative cases that are misclassified as positive; TN is the proportion of negative that is correctly 
classified as negative and FN is the proportion of positive that is misclassified as negative by the 
proposed model. 

3 Results and Discussion 
3.1 4-Class ClassificationTraining, and Validation Accuracy and Loss 

 
Figure 4: The training accuracy (train_acc), loss (train_loss) and validation accuracy (val_acc), loss 
(val_loss) curves of all pre-trained models in the COV-MCNet for 4 classes: a) DenseNet201, b) VGG16, 
c) MobileNet, d) ResNet50V2, e) InceptionV3, f) Xception, g) InceptionResNetV2, and h) VGG19 
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Fig. 4 shows the training and validation accuracy with their loss values for the 4-class classification 
based on the eight pre-trained models (DenseNet201, VGG16, MobileNet, ResNet50V2, InceptionV3, 
Xception, InceptionResNetV2, and VGG19). The training time for all pre-trained models has been 
conducted up to the 20th epoch to avoid overfitting. The DenseNet201 model (Fig. 4a) showed the 
highest validation accuracy (92.54%) compared to the VGG16 (90.35%) (Fig. 4b), MobileNet (89.04%) 
(Fig. 4c), ResNet50V2 (87.72%) (Fig. 4d), InceptionV3 (86.84%) (Fig. 4e), Xception (85.09%) (Fig. 4f), 
InceptionResNetV2 (84.65%) (Fig. 4g), and VGG19 (83.77%) (Fig. 4h). The evaluation outputs of the 
best performance model (DenseNet201) for 4-class classification are shown in Figure S1. Moreover, loss 
values exhibited a greater variation at the beginning of the training for all the eight pre-trained models, 
which may be due to using the less number of COVID-19 datasets as compared to the other three datasets 
(Normal, Viral Pneumonia, and Bacterial Pneumonia) (Fig. 4). To the best of our knowledge, there are 
only two studies about 4-class classification were found based on CoroNet Xception and COVID-Net. For 
example, Khan et al. [33] detected COVID-19 cases based on the CoroNet Xception pre-trained model 
and reported an accuracy of 89.6%. In contrast, Wang et al. [34] proposed a deep neural network-based 
model, namely COVID-Net, they achieved 92.4% accuracy. In comparison to these studies, the 
DenseNet201 model in our proposed network (COV-MCNet) showed high accuracy than Khan et al. [33] 
and comparable accuracy with Wang et al. [34]. 

3.2 The 4-Class Classification Confusion Matrix and ROC Curve  

 
Figure 5: The confusion matrix results of 4-class classification obtained using pre-trained models in the 
COV-MCNet: a) DenseNet201, b) VGG16, c) MobileNet, d) ResNet50V2, e) InceptionV3, f) Xception, g) 
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InceptionResNetV2, and h) VGG19. Here, the diagonal red, light orange, and dark orange are true 
positive (TP), and the light and dark blue, cyan is the miss classifications of our model 

 

Figure 6: ROC Curve of pre-trained models for 4-class classification in the COV-MCNet: (Class 0: Normal, 
Class 1: COVID-19, Class 2: Viral Pneumonia, Class 3: Bacterial Pneumonia). a) DenseNet201, b) VGG16, 
c) MobileNet, d) ResNet50V2, e) InceptionV3, f) Xception, g) InceptionResNetV2, and h) VGG19 

Figs. 5 and 6 show the confusion matrix (CM) and the receiver operating characteristic curve (ROC) 
for the 4-class classification problem, respectively. Rows of the confusion matrix correspond to an actual 
class while columns represent to the predicted class and the color intensity specifies the probability of 
each element in a row. The results (Fig. 5) show that the pre-trained models classified COVID-19 cases 
better than other classes of Normal, Viral Pneumonia, and Bacterial Pneumonia. Besides, the roc curve 
(Fig. 6) plots the TPR against FPR which measures the classification performance on the various 
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threshold. In Fig. 6a, AUC~1.00 represents COVID-19 (i.e., Class 1), AUC~0.99 represents normal 
(Class 0), AUC~0.97 represents Viral Pneumonia (Class 2) 0.97, and AUC~0.98 represents Bacterial 
Pneumonia (Class 3).  

3.3 4-Class Comparative Performance Metrics of Pre-Trained Models in the COV-MCNet 
Tab. 2 demonstrates the performance metrics of the eight pre-trained models used in the proposed 

network for 4-class classification. It can be noticed that the DenseNet201 model showed the best 
classification performance for each class such as Normal (Precision: 93.65%, Recall: 98.33%, F1-Score: 
95.93%, Specificity: 97.62%), COVID-19 (Precision: 100%, Recall: 97.92%, F1-Score: 98.95%, 
Specificity: 100%), Viral Pneumonia (Precision: 92.59%, Recall: 83.33%, F1-Score: 87.72%, Specificity: 
97.62%), Bacterial Pneumonia (Precision: 85.94%, Recall: 91.67%, F1-Score: 88.71%, Specificity: 
94.64%). As the DenseNet201 model classifier uses features of all complexity levels which inclines to 
provide further smooth decision boundaries. Also, it has comparatively more layers (i.e., 201 layers) than 
the rest models as well as improves the vanishing-gradient difficulty, fortify feature propagation, and 
boost feature reuse, which significantly reduces the number of parameters. Therefore, these results 
recommended that the DenseNet201 model is robust and superior to the other tested models in terms of 
precision, recall, F1-score, and specificity. 

Table 2: The performance metrics of eight pre-trained models for 4-class are presented based on 
Precision (Pre), Recall (Rec), F1-score (F1-S), Specificity (Spe) values 

Models Classes TP TN FP FN Pre Rec F1-S Spe 

DenseNet201 

Normal 59 164 4 1 93.65 98.33 95.93 97.62 
COVID-19 47 180 0 1 100 97.92 98.95 100 

Viral Pneumonia 50 164 4 10 92.59 83.33 87.72 97.62 
Bacterial Pneumonia 55 159 9 5 85.94 91.67 88.71 94.64 

VGG16 

Normal 58 163 5 2 92.06 96.67 94.31 97.02 
COVID-19 48 178 2 0 96 100 97.96 98.89 

Viral Pneumonia 50 156 12 10 80.65 83.33 81.97 92.86 
Bacterial Pneumonia 50 165 3 10 94.34 83.33 88.49 98.21 

MobileNet 

Normal 59 152 16 1 78.67 98.33 87.41 90.48 
COVID-19 48 180 0 0 100 100 100 100 

Viral Pneumonia 45 164 4 15 91.84 75 82.57 97.62 
Bacterial Pneumonia 51 163 5 9 91.07 85 87.93 97.02 

ResNet50V2 

Normal 55 163 5 5 91.67 91.67 91.67 97.02 
COVID-19 46 179 1 2 97.87 95.83 96.84 99.44 

Viral Pneumonia 44 158 10 16 81.48 73.33 77.19 94.05 
Bacterial Pneumonia 55 156 12 5 82.09 91.67 86.62 92.86 

InceptionV3 

Normal 55 159 9 5 85.94 91.67 88.71 94.64 
COVID-19 46 179 1 2 97.87 95.83 96.84 99.44 

Viral Pneumonia 42 160 8 18 84 70 76.36 95.24 
Bacterial Pneumonia 55 156 12 5 82.09 91.67 86.62 92.86 

Xception 

Normal 57 158 10 3 85.07 95 89.76 94.05 
COVID-19 47 178 2 1 95.92 97.92 96.91 98.89 

Viral Pneumonia 42 155 13 18 76.36 70 73.04 92.26 
Bacterial Pneumonia 48 159 9 12 84.21 80 82.05 94.64 

InceptionResNetV2 
Normal 55 159 9 5 85.94 91.67 88.71 94.64 

COVID-19 44 178 2 4 95.92 91.67 93.75 98.89 
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Viral Pneumonia 44 153 15 16 74.58 73.33 73.95 91.07 
Bacterial Pneumonia 50 159 9 10 84.75 83.33 84.03 94.64 

VGG19 

Normal 51 163 5 9 91.07 85 87.93 97.02 
COVID-19 47 179 1 1 97.92 97.92 97.92 99.44 

Viral Pneumonia 50 158 10 10 83.33 83.33 83.33 94.05 
Bacterial Pneumonia 43 163 5 17 89.58 71.67 79.63 97.02 

It is observed from Tab. 3, the DenseNet201 pre-trained model in the proposed study (COV-MCNet) 
showed better results in detecting COVID-19 for 4-class with accuracy, precision, recall, F1-score, and 
specificity are 92.54%, 93.05%, 92.81%, 92.83%, and 97.47%, respectively. 

Table 3: Accuracy (Acc), Precision (Pre), Recall (Rec), F1-Score (F1-S), and Specificity (Spe) results of 
all the pre-trained models used in COV-MCNet for 4-class classification (Normal vs. COVID-19 vs. Viral 
Pneumonia vs. Bacterial Pneumonia) 

Classification models 
Performance metrics (%) 

Acc Pre Rec F1-S Spe 

DenseNet201 92.54 93.05 92.81 92.83 97.47 

VGG16 90.35 90.76 90.83 90.68 96.75 

MobileNet 89.04 90.40 89.58 89.48 96.28 

ResNet50V2 87.72 88.28 88.13 88.08 95.84 

InceptionV3 86.84 87.48 87.29 87.13 95.55 

Xception 85.09 85.39 85.73 85.44 94.96 

InceptionResNetV2 84.65 85.30 85 85.11 94.81 

VGG19 83.77 90.48 84.48 87.20 96.88 

4 Conclusions 
As the COVID-19 cases are still increasing daily, quick identification of COVID-19 patients is can 

be one of the effective steps towards preventing the spread of the virus into the non-affected community. 
Thus and so, this study has proposed a multi-classification approach, namely COV-MCNet based on eight 
different pre-trained models (VGG16, VGG19, ResNet50V2, InceptionV3, InceptionResNetV2, 
DenseNet201, MobileNet, and Xception) to detect COVID-19 patients automatically. The suggested 
models could successfully detect the COVID-19 infected cases based on the 4-class classification. The 4-
class classification demonstrated the DenseNet201 best classification model of COVID-19 infected cases 
with an accuracy of 92.54%. The study achieved promising results in comparison to similar studies with 
small datasets, which can be beneficial for medical specialists to make decisions and gain deeper 
knowledge about COVID-19 cases. The classification performance of the method can still be improved 
by increasing the number of training datasets. Also, the study still needs scientific testing but with higher 
performance, it can pave the way towards a modern and efficient diagnosis of the COVID-19. In the 
future, we aim to collect more radiology images of COVID-19 from local hospitals to make more superior 
results using the suggested model. 
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