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ABSTRACT

We introduce the higher-order type 2 Bernoulli numbers and polynomials of the second kind. In this paper, we
investigate some identities and properties for them in connection with central factorial numbers of the second
kind and the higher-order type 2 Bernoulli polynomials. We give some relations between the higher-order type 2
Bernoulli numbers of the second kind and their conjugates.
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1 Introduction

For n≥ 0, the central factorials x[n] are given by [1–3]

x[0] = 1, x[n] = x
(
x+ n

2
− 1

)(
x+ n

2
− 2

)
. . .
(
x− n

2
+ 1

)
, (n≥ 1),

and the central factorial numbers of the second kind T(n, k) by

xn =
n∑

k=0

T(n, k)x[k], (n≥ 0), (see [4–6]). (1)

As is well known, the Bernoulli polynomials are defined by the generating function as

t
et− 1

ext =
∞∑
n=0

Bn(x)
tn

n!
, (see [7,8]).
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When x= 0, Bn = Bn(0) are called the Bernoulli numbers. Whereas the cosecant polynomials
are defined by

2t
et− e−t

ext = t
sinh t

ext =
∞∑
n=0

Dn(x)
tn

n!
.

When x= 0, Dn =Dn(0) are called the cosecant numbers which have been already studied in

p.458 of [9]. Here we observe that Dn(x) = 2nBn

(
x+ 1
2

)
, (n ≥ 0). Also, we note that bn(x) =

1
2
Dn(x) is called the type 2 Bernoulli polynomials in [10]. Let n be a positive integer and let k be

a nonnegative integer. As is well known, Bernoulli polynomials appear in the following expressions
of the sums of powers of consecutive integers. That is

n−1∑
l=0

lk = Bk+1(n)−Bk+1(0)
k+ 1

. (2)

On the other hand, in [11] it is noted that

n−1∑
l=0

(2l+ 1)k = 1
2(k+ 1)

(Dk+1(2n)−Dk+1). (3)

Further, in [10] we considered a random variable cooked from random variables having
Laplace distributions and showed its moment is closely connected with the type 2 Bernoulli
numbers [10]. Yet another thing is that we obtained some symmetric identities involving type 2
Bernoulli polynomials and power sums of consecutive odd positive integers in (3) by means of
Volkenborn p-adic integrals on Zp.

It is known that the Euler polynomials are given by

2
et+ 1

ext =
∞∑
n=0

En(x)
tn

n!
. (4)

When x= 0, En=En(0) are called the Euler numbers.

Whereas the type 2 Euler polynomials are defined by

secht ext = 2
et+ e−t

ext =
∞∑
n=0

E∗
n (x)

tn

n!
. (5)

When x= 0, En=En(0), (n≥ 0), are called the type 2 Euler numbers. We observe that E∗
n(x)=

2nEn

(
x+ 1
2

)
.

Here we would like to mention that in the literature both Euler and type 2 Euler polynomials
are called Euler polynomials. Sometimes this is very confusing. Let n be a positive integer. Then,
according to the definition (4), all the even Euler numbers E2n = 0. Whereas, according to the
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definition (5), all the odd Euler numbers E∗
2n+1 = 0. To avoid a possible confusion, we call the

polynomials in (5) the type 2 Euler polynomials, while reserving the term Euler polynomials for
the ones in (4).

Let n be an odd positive integer. As is well known, Euler polynomials and numbers appear
in the expressions of the alternating sums of powers of consecutive integers. That is

n−1∑
l=0

(−1)l lk = Ek(n)+Ek
2

.

On the other hand, it is shown in [10] that

n−1∑
l=0

(−1)l(2l+ 1)k = E∗
k(2n)+E∗

k

2
. (6)

Again, in [10] we considered a random variable constructed from random variables having
Laplace distributions and showed its moment is closely connected with the type 2 Euler num-
bers [10]. Still another thing is that we deduced certain symmetric identities involving type 2
Euler polynomials and alternating power sums of consecutive odd positive integers in (6) by using
fermionic p-adic integrals on Zp.

As is well known, the Stirling numbers of the second kind are given by

1
k!

(et− 1)k =
∞∑
n=k

S2(n, k)
tn

n!
, (k≥ 0), (see [2]),

and the Stirling numbers of the first kind by

1
k!

(log(1+ t))k =
∞∑
n=k

S1(n, k)
tn

n!
, (see [2]).

From (6), we can derive

1
k!

(e
t
2 − e−

t
2 )k =

∞∑
n=k

T(n, k)
tn

n!
, (k≥ 0), (7)

the proof of which can be found in [2].

Thus, by (7), we get

T(n, k)= 1
k!

k∑
l=0

(
k

l

)
(−1)k−l

(
l− k

2

)n
, (k≥ 0). (8)

It is well known that the Bernoulli polynomials of the second kind are defined by

t
log(1+ t)

(1+ t)x =
∞∑
n=0

bn(x)
tn

n!
, (see [2,9,11,12]). (9)
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Sometimes
1
n!
bn(x) are called Bernoulli polynomials of the second kind, whereas bn(x) are

called Cauchy polynomials (see [2,11]). However, we will stick to our definition for the Bernoulli
polynomials of the second kind.

When x = 0, bn = bn(0) are variously called Bernoulli numbers of the second kind, Gregory
coefficients, reciprocal logarithmic numbers, and Cauchy numbers of the first kind (see [9,13–15]).
Here we remark that

bn=B(n)
n (1), (n≥ 0), (see (11)),

where B(k)
n (x) are the Bernoulli polynomials of order k given by(

t
et− 1

)k
ext =

∞∑
n=0

B(k)
n (x)

tn

n!
, k ∈ Z, (see [16,17]).

In [9], Howard studied the polynomials α
(z)
n (λ) given by(

λt
1− (1− t)λ

)z
=

∞∑
n=0

α(z)
n (λ)

tn

n!
. (10)

For any real number λ �= 0, 1, Korobov defined the degenerate Bernoulli polynomials of the
second given by

λt
(1+ t)λ − 1

(1+ t)x =
∞∑
n=0

bn(x; λ)
tn

n!
.

Then we see that limλ→0 bn(x; λ)= bn(x). In fact, Korobov introduced what he called ‘special
polynomials’ pn(x) given by bn(x; p)= n!pn(x), for any integer p with p≥ 2 (see [18]). Here we note
that bn(x; λ) are also called the Korobov polynomials of the first kind and denoted by Kn(x; λ)

(see [12]).

When x= 0, bn(λ)= bn(0; λ) are called the degenerate Bernoulli numbers of the second kind.

It is immediate to see that bn(λ) = (−1)nα(1)
n (λ) (see (10)). Further, in [19] Howard considered

the degenerate Bernoulli numbers of the second kind which is denoted by αn(λ). Note also that
bn(λ) = Kn(0; λ). In light of these considerations, bn(λ) may be variously called the degenerate
Bernoulli numbers of the second, Howard numbers and Korobov numbers of the first kind (see
[20]).

In the next section, we will introduce the higher-order type 2 Bernoulli numbers and polyno-
mials of the second kind as variants of the usual higher-order Bernoulli numbers and polynomials
of the second kind. We will study some properties and identities for them that are associated with
central factorial numbers of the second kind and the higher-order type 2 Bernoulli polynomials.
We will deduce some relations between the higher-order type 2 Bernoulli numbers of the second
kind and their conjugates.
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2 The Higher-Order Type 2 Bernoulli Numbers and Polynomials of the Second Kind

The Bernoulli polynomials of the second kind with order r are defined by the generating
function(

t
log(1+ t)

)r
(1+ t)x =

∞∑
n=0

b(r)
n (x)

tn

n!
, r ∈ Z.

We note from [21–23] that

b(r)
n (x)=B(n−r+1)

n (x+ 1), (n, r≥ 0). (11)

From (9), we have∫ 1

0
(1+ t)x+ydy= t

log(1+ t)
(1+ t)x =

∞∑
n=0

bn(x)
tn

n!
, (12)

and∫ 1

0
(1+ t)x+ydy=

∞∑
n=0

∫ 1

0
(x+ y)ndy

tn

n!
, (13)

where (x)0 = 1, (x)n = x(x− 1) . . . (x− n+ 1), (n≥ 1).

By (12) and (13), we get∫ 1

0
(x+ y)ndy= bn(x), (n≥ 0).

We observe that

2
∫ 1

0
(1+ t)2y−1+xdy= (1+ t)− (1+ t)−1

log(1+ t)
(1+ t)x. (14)

Now, we define the type 2 Bernoulli polynomials of the second kind by

(1+ t)− (1+ t)−1

2 log(1+ t)
(1+ t)x =

∞∑
n=0

b∗n(x)
tn

n!
. (15)

When x= 0, b∗n = b∗n(0) is called the type 2 Bernoulli numbers of the second kind.

We observe that∫ 1

0
(1+ t)2y−1+xdy=

∞∑
n=0

∫ 1

0
(2y− 1+x)ndy

tn

n!
. (16)

Therefore, by (14)–(16), we obtain the following theorem:

Theorem 2.1. For n≥ 0, we have∫ 1

0
(2y− 1+x)ndy= b∗n(x).
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In particular,

b∗n =
n∑
l=0

S1(n, l)
1

2(l+ 1)

(
1+ (−1)l

)
,

and

b∗n(1)=
n∑
l=0

2lS1(n, l)
1

l+ 1
.

We illustrate a few values of b∗n in the following example.

Example 1: We observe first that b∗n =
∑

1≤l≤n, l even
S1(n, l)

1
l+ 1

.

b∗1 = 0,

b∗2 = S1(2, 2)
1
3
= 1

3
,

b∗3 = S1(3, 2)
1
3
= (−3)× 1

3
=−1,

b∗4 = S1(4, 2)
1
3
+S1(4, 4)

1
5
= 11× 1

3
+ 1

5
= 58

15
,

b∗5 = S1(5, 2)
1
3
+S1(5, 4)

1
5
= (−50)× 1

3
+ (−10)× 1

5
=−56

3
,

b∗6 = S1(6, 2)
1
3
+S1(6, 4)

1
5
+S1(6, 6)

1
7
= 274× 1

3
+ 85× 1

5
+ 1

7
= 11390

105
.

For α ∈ R, let us define the type 2 Bernoulli polynomials of the second kind with order α by(
(1+ t)− (1+ t)−1

2 log(1+ t)

)α

(1+ t)x =
∞∑
n=0

b∗(α)
n (x)

tn

n!
. (17)

When x= 0, b∗(α)
n = b∗(α)

n (0) are called the type 2 Bernoulli numbers of the second kind with
order α.

From (17) and with α = k ∈N, we have

∞∑
n=0

b∗(k)n (x)
tn

n!
=
(

(1+ t)− (1+ t)−1

2 log(1+ t)

)k
(1+ t)x. (18)
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By replacing t by e
t
2 − 1 in (18), we get

k!
tk

1
k!

(
e
t
2 − e−

t
2

)k
e
t
2x =

∞∑
l=0

b∗(k)l (x)
1
l!

(
e
t
2 − 1

)l

=
∞∑
n=0

(
1
2n

n∑
l=0

b∗(k)l (x)S2(n, l)

)
tn

n!
. (19)

On the other hand, by making use of (7) we have

k!
tk

1
k!

(
e
t
2 − e−

t
2

)k
e
t
2x =

∞∑
n=0

⎛⎜⎜⎝ n∑
l=0

(
n
l

)
(
l+ k
l

)T(l+ k, k)2−n+lxn−l

⎞⎟⎟⎠ tn

n!
. (20)

Therefore, by (19) and (20), we obtain the following theorem:

Theorem 2.2. For n≥ 0 and k ∈ N, we have

n∑
l=0

b∗(k)l (x)S2(n, l)=
n∑
l=0

(
n
l

)
(
l+ k
l

)T(l+ k, k)2lxn−l.

In particular, we have

2nT(n+ k, k)=
(
n+ k

n

) n∑
l=0

b∗(k)l S2(n, l), b∗(k)n =
n∑
l=0

S1(n, l)
2lT(l+ k, k)(

l+ k
l

) .

We illustrate a few values of b∗(2)n in the following example:

Example 2: Let n≥ 2 be any integer.

Then we have from (8) that T(n, 2)= 1
2!

2∑
l=0

(
2
l

)
(−1)2−l(l− 1)n =

{
1, if n even,

0, if n odd.

Thus, for n≥ 1, we have b∗(2)n =
∑

1≤l≤n, l even
S1(n, l)

2l(
l+ 2
2

) .
b∗(2)1 = 0,

b∗(2)2 = S1(2, 2)
22(
4

2

) = 4
6
= 2

3
,
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b∗(2)3 = S1(3, 2)
22(
4

2

) = (−3)× 4
6
=−2,

b∗(2)4 = S1(4, 2)
22(
4
2

) +S1(4, 4)
24(
6
2

) = 11× 4
6
+ 16

15
= 42

5
,

b∗(2)5 = S1(5, 2)
22(
4

2

) +S1(5, 4)
24(
6

2

) = (−50)× 4
6
+ (−10)× 16

15
=−44,

b∗(2)6 = S1(6, 2)
22(
4

2

) +S1(6, 4)
24(
6

2

) +S1(6, 6)
26(
8

2

) = 274× 4
6
+ 85× 16

15
+ 64

28
= 5788

21
.

For α ∈R, we recall that the cosecant polynomials of order α are defined by(
2t

et− e−t

)α

ext =
∞∑
n=0

D(α)
n (x)

tn

n!
. (21)

For k ∈N, let us take α =−k and replace t by log(1+ t) in (21). Then we have(
(1+ t)− (1+ t)−1

2 log(1+ t)

)k
(1+ t)x =

∞∑
l=0

D(−k)
l (x)

1
l!

(log(1+ t))l

=
∞∑
n=0

(
n∑
l=0

S1(n, l)D
(−k)
l (x)

)
tn

n!
. (22)

Therefore, by (18) and (22), we obtain the following theorem:

Theorem 2.3. For n≥ 0, k ∈N, we have

b∗(k)n (x)=
n∑
l=0

S1(n, l)D
(−k)
l (x).

Replacing t by 2 log(1+ t) in (7), we derive the following equation:

1
k!

(
(1+ t)− (1+ t)−1

)k = ∞∑
l=k

T(l, k)2l
1
l!

(log(1+ t))l

=
∞∑
l=k

T(l, k)2l
∞∑
n=l

S1(n, l)
tn

n!
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=
∞∑
n=k

(
n∑
l=k

T(l, k)2lS1(n, l)

)
tn

n!
. (23)

On the other hand, we also have

1
k!

(
(1+ t)− (1+ t)−1

)k = 1
k!

(
(1+ t)− (1+ t)−1

2 log(1+ t)

)k
(2 log(1+ t))k

= 2k
∞∑
l=0

b∗(k)l
tl

l!

∞∑
m=k

S1(m, k)
tm

m!

= 2k
∞∑
n=k

(
n∑

m=k
S1(m, k)

(
n

m

)
b∗(k)n−m

)
tn

n!
. (24)

Therefore, by (23) and (24), we obtain the following theorem:

Theorem 2.4. For n, k≥ 0, we have

n∑
l=k

T(l, k)2lS1(n, l)= 2k
n∑
l=k

S1(l, k)
(
n

l

)
b∗(k)n−l

= 2k
n−k∑
l=0

S1(n− l, k)
(
n

l

)
b∗(k)l .

We observe that∫ 1

0
· · ·
∫ 1

0
(1+ t)2(x1+···+xk)−k+xdx1dx2 · · ·dxk

=
(

(1+ t)− (1+ t)−1

2 log(1+ t)

)k
(1+ t)x =

∞∑
n=0

b∗(k)n (x)
tn

n!
. (25)

Thus, by (25), we get

1
n!
b∗(k)n (x)=

∫ 1

0
· · ·
∫ 1

0

(
2(x1+ · · · +xk)− k+x

n

)
dx1dx2 · · ·dxk.

Now, for α ∈R we define the conjugate type 2 Bernoulli polynomials of the second kind with
order α by(

(1+ t)− (1+ t)−1

2(1+ t) log(1+ t)

)α

(1+ t)x =
∞∑
n=0

b̂∗(α)
n (x)

tn

n!
. (26)
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Then, by (26), we get∫ 1

0
· · ·
∫ 1

0
(1+ t)−2(x1+···+xk)+xdx1dx2 · · ·dxk

=
(

(1+ t)− (1+ t)−1

2(1+ t) log(1+ t)

)k
(1+ t)x =

∞∑
n=0

b̂∗(k)n (x)
tn

n!
. (27)

By (27), we get

1
n!
b̂∗(k)n (x)=

∫ 1

0
· · ·
∫ 1

0

(
−2(x1 + · · · +xk)+x

n

)
dx1dx2 · · ·dxk. (28)

When x = 0, b̂∗(α)
n = b̂∗(α)

n (0) is called the conjugate type 2 Bernoulli numbers of the second
kind with order α.

For k ∈N, by (28), we get

1
n!
b̂∗(k)n (k)=

∫ 1

0
· · ·
∫ 1

0

(−2(x1+ · · · +xk)+ k

n

)
dx1dx2 · · ·dxk

= (−1)n
∫ 1

0
· · ·
∫ 1

0

(
2(x1+ · · · +xk)− k+ n− 1

n

)
dx1 · · ·dxk

= (−1)n
n∑

m=0

(
n− 1

n−m

)∫ 1

0
· · ·
∫ 1

0

(
2(x1+ · · · +xk)− k

m

)
dx1 · · ·dxk

= (−1)n
n∑

m=1

(
n− 1

m− 1

)
1
m!
b∗(k)m . (29)

Therefore, by (29), we obtain the following theorem:

Theorem 2.5. For n, k ∈N, we have

(−1)n
1
n!
b̂∗(k)n (k)=

n∑
m=1

(
n− 1

m− 1

)
1
m!
b∗(k)m .

Remark. Likewise, for n, k ∈N, we have

(−1)n
1
n!
b∗(k)n (k)=

n∑
m=1

(
n− 1

m− 1

)
1
m!
b̂∗(k)m .
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3 Conclusions

In Section 2, we introduced the higher-order type 2 Bernoulli numbers and polynomials of
the second kind and the higher-order conjugate type 2 Bernoulli numbers of the second kind. In
Theorems 2–4, we obtained some properties and identities for them that are associated with central
factorial numbers of the second kind and higher-order cosecant polynomials and the Stirling
numbers of the first kind. In Theorem 5, we derived the relation between the higher-order type 2
Bernoulli numbers of the second kind and their conjugates.

Many problems in science and engineering can be modeled by polynomial optimization which
concerns optimizing a polynomial subject to polynomial equations and inequalities. Thanks to
an adoption of tools from real algebraic geometry, semidefinite programming and the theory of
moments, etc., there has been tremendous progress in this field. We hope that the polynomials
newly introduced in the present paper or their possible multivariate versions will play some role
in near future.
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