
echT PressScience
Computer Modeling in
Engineering & Sciences

DOI: 10.32604/cmes.2021.015673

ARTICLE

Code TransformModel Producing High-Performance Program

Bao Rong Chang1,*, Hsiu-Fen Tsai2 and Po-Wen Su1

1Department of Computer Science and Information Engineering, National University of Kaohsiung, Kaohsiung, Taiwan
2Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, Taiwan
*Corresponding Author: Bao Rong Chang. Email: brchang@nuk.edu.tw

Received: 04 January 2021 Accepted: 21 May 2021

ABSTRACT

This paper introduces a novel transformmethod to produce the newly generated programs through code transform
model called the second generation of Generative Pre-trained Transformer (GPT-2) reasonably, improving the
program execution performance significantly. Besides, a theoretical estimation in statistics has given the minimum
number of generated programs as required, which guarantees to find the best one within them. The proposed
approach can help the voice assistant machine resolve the problem of inefficient execution of application code. In
addition to GPT-2, this study develops the variational Simhash algorithm to check the code similarity between
sample program and newly generated program, and conceives the piecewise longest common subsequence algo-
rithm to examine the execution’s conformity from the two programs mentioned above. The code similarity check
deducts the redundant generated programs, and the output conformity check finds the best-performing generative
program. In addition to texts, the proposed approach can also prove the other media, including images, sounds,
and movies. As a result, the newly generated program outperforms the sample program significantly because the
number of code lines reduces 27.21%, and the program execution time shortens 24.62%.

KEYWORDS

Newly generated programs; GPT-2; predetermined generative programs; variational Simhash algorithm; piece-
wise longest common subsequence

1 Introduction

As Google DeepMind developed alpha Go in London in 2014, it defeated all other Go
masters. Since then, the research of artificial intelligence [1] has been increasing again. The
performance of deep learning neural networks can surpass that of traditional neural networks.
Not only can it automatically intercept features and reduce target errors, the most widely studied
models with generation topics as the research topic are Long Short-Term Memory (LSTM) [2]
and Generative Adversarial Network (GAN) [3]. LSTM can roughly generate texts. However,
LSTM only refers to preceding words that appear and predicts what word appears next. LSTM
cannot use the input data to regenerate articles with similar topics. GAN performs better-imitating
patterns than imitating text. Even though deep learning is relatively mature, human beings are

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

http://dx.doi.org/10.32604/cmes.2021.015673

254 CMES, 2021, vol.129, no.1

often unsatisfied. As a result, the most research direction for machines to imitate human beings
is to develop language that imitates humans.

An emerging issue concerning artificial intelligence has inspired machine learning or deep
learning in recent years. With hard efforts and development, the current technology can make the
machine understand different tasks, such as Tesla’s NoA, Apple’s Siri, Amazon Echo & Alexa, and
Google Home. At present, there are quite a lot of brands and types of voice assistant machines
in the world, and they use their existing programs for human-computer interaction in response to
user requests. However, some voice assistant machines have encountered the problems, that is, the
engine may not be able to answer the questions correctly [4], or the existing programs have low
execution efficiency [5]. Nevertheless, we try to resolve the problem of inefficient execution and
think about the machine transforming a current program into a newly generated program that
can run a higher efficiency program and produce the correct execution result?

The natural language processing mechanism involves understanding and generating. The
Natural Language Toolkit (NLTK) [6] has been developed for the English Natural Language
Segmentation Model in English’s natural language development. Through training and using this
model, it can segment natural language sentences into words, and actual words can realize the
sentences. The most famous English model is GPT-2 [7], the second generation of Generative
Pre-trained Transformer. GPT-2 is imitation research in the field of artificial intelligence developed
by OpenAI LP [8]. Transformer model [9] acts like human beings, and thus it can generate
fake news. These tools function as the basis of human language imitation and play a key role
in applications. The most common computer programming that runs with the tools mentioned
above is Python [10]. With GPT-2, based on predetermined generative programs in statistics [11],
the proposed procedure can produce many generated programs appropriately to respond to the
inquiry.

The motivation of this study is to use machines to generate usable programs through GPT-
2. The purpose is to solve the problem of low execution efficiency in some voice assistant
machines. The goal of this paper is thus to speed up the execution performance in applications.
The following paragraphs of this paper are arranged as follows. In Session 2, This section will
introduce the related work of word segmentation processing and language generation models. The
way to system implementation is given in Session 3. The experimental results and discussion will
be obtained in Session 4. Finally, we drew a brief conclusion in Session 5.

2 Related Work

This study has developed efficient code to improve the program execution performance in
applications and used the following key technologies: Anaconda (Data Science Platform with Vir-
tual Environment Conda), Tensorflow (Dataflow and Differentiable Programming), NLTK (English
Text Segmentation), GPT-2 (Text Generating Model), Variational Simhash (Cosine Text Similarity
Algorithm), and Piecewise Longest Common Subsequence to achieve the goal of this paper.

2.1 Language Generation Model–Generative Pre-Training 2
The second generation of Generative Pre-Training Transformer (GPT-2) is an unsuper-

vised [12] language model [13], released by OpenAI in 2019. Researchers believe that the language
model of unsupervised learning is a general language one. Furthermore, GPT-2 proves that the
model is not trained for any specific task to predict the next word as the training target. Use
sentence database WebTex [14] for data training, which contains 8 million web pages as the
training data. These web pages are part of Reddit [15] and are more than 40 GB. Compared

CMES, 2021, vol.129, no.1 255

with other deep learning algorithms for generating texts, Long Short-Term Memory (LSTM)
or Generative Adversarial Network (GAN) is smoother. Its main advantage is that the code is
English the training model is easier to understand. The traditional Transformer model is composed
of Encoder and Decoder, called the Transformer architecture stack, as shown in Fig. 1. This
model solves the problem of machine translation.

Figure 1: Transformer architecture stack

In many subsequent studies, the Transformer architecture removes either Encoder or Decoder,
uses only one Transformer stack, and provides a large amount of training text and machine
equipment. GPT-2 is composed of the Decoder architecture according to the Transformer model.
As shown in Fig. 2, the stacking height is the size difference of various GPT-2 models. Currently,
there are four sizes of models: GPT-2 Small, GPT-2 Medium, GPT-2 Large, and GPT-2 Extra
Large [16].

Figure 2: GPT-2 decoder architecture

2.2 Predetermined Generative Programs
This part is to determine how many generated programs at least produced by GPT-2, having

the pass ratio of over 90% of code similarity [11]. Technically speaking, corresponding to a single
sample program, we first have to count the number of generated programs whose pass ratios
are over 90% of code similarity, and then we can further calculate the percentage ρi as shown
in Eq. (1). Among them, Nsi is the total number of generated programs produced by GPT-2,
corresponding to a single sample program, in which xsi is the number of generated programs
whose pass ratio of code similarity is more than 90%. After all of the percentages mentioned
above are obtained, Eq. (2) can give an average percentage ρ of the generated programs having the

256 CMES, 2021, vol.129, no.1

pass ratio of more than 90% where t represents the total number of sample programs. After that,
we have to determine how many misjudgments are there in xsi, and then calculate the percentage
of misjudgments ρmi, as shown in Eq. (3), where xmsi stands for the number of misjudgments
within the generated programs having the pass ratio of over 90%. Here, the average percentage of
misjudgments ρm can be obtained, as shown in Eq. (4).

ρi = xsi
Nsi

, i= 1, 2, . . . , t (1)

ρ =
∑t

i=1 ρi

t
(2)

ρmi = xmsi
xsi

, i= 1, 2, . . . , t (3)

ρm =
∑t

i=1 ρmi

t
(4)

Next, we will count the number of the generated programs ysi that are generated by GPT-2,
corresponding to a single sample program, having the pass ratios of below 90%, and then we can
further calculate the percentage μi as shown in Eq. (5). After all of the percentages mentioned
above are obtained, Eq. (6) can give an average percentage μ of the generated programs having the
pass ratio less than 90%. After that, we can determine how many misjudgments are there in ysi,
and then calculate the percentage of misjudgments μmi, as shown in Eq. (7), where ymsi represents
the number of misjudgments within the generated programs having a pass ratio of below 90%.
Here, the average percentage of misjudgments μm can be obtained, as shown in Eq. (8).

μi = ysi
Nsi

, i= 1, 2, . . . , t (5)

μ=
∑t

i=1 μi

t
(6)

μmi = ymsi
ysi

, i= 1, 2, . . . , t (7)

μm =
∑t

i=1 μmi

t
(8)

Finally, we add up all of the generated programs produced by GPT-2, corresponding to
all of the sample programs, to be represented by Ng as shown in Eq. (9). After obtaining
Ng, q, qm, u, and um as mentioned above, Eq. (10) can calculate an average probability Pgq [17]
of the generated programs having a pass ratio of over 90%. We assume that there are j programs
with the pass ratio of code similarity of more than 90%. So P(Kj |Pgt) standing for the probability
of the pass ratio of code similarity more than 90% for these j programs is real, as shown in
Eq. (11) [18], where P(Kj ∩Pgt) means the probability of at most j programs having the pass ratio
of code similarity over 90% in the generated programs, and Kj represents j programs having the
pass ratio of code similarity over 90% in the generated programs. According to statistics, we know
that the probability of j programs having the pass ratio of code similarity over 90% is P(Kj |Pgt).
We can deduce the least programs must be generated to guarantee j programs are having the pass

CMES, 2021, vol.129, no.1 257

ratio of code similarity of more than 90%, as shown in Eq. (12), where N is the total number of
programs to be generated.

Ng =
t∑

i=1

Nsi (9)

Pgq= Ng · q · (1− qm)+Ng · u · um
Ng

(10)

P(Kj |Pgt)=
P(Kj ∩Pgt)

Pgt
(11)

N ·P(Kj |Pgt)≥Kj (12)

Let’s take 4 sample programs as an example. Corresponding to each sample program, GPT-2
generates 500 programs respectively and then counts how many programs have the pass ratio of
code similarity more than 90% among the 500 programs. For all of the generated programs in 4
cases, we further check each generated program whether its pass ratio of code similarity is more
than 90%, and finally obtain the average percentage to be 3%. After that, we compile all of the
generated programs having the pass ratio of code similarity over 90%, and some of them are a
failure. After judging the number of misjudgments, we can calculate the individual percentage and
confirm the average percentage of misjudgments is 1%.

On the other hand, we judge how many of these 500 programs, corresponding to a single
sample program, have the pass ratio of code similarity less than 90%, and then calculate the
individual percentage for every case. After that, for all 4 cases, we can find the percentage is 97%
among the generated programs having the ratio of code similarity less than 90%. Furthermore,
we check the number of misjudgments among them and achieve the average percentage of
misjudgments is 2%.

According to statistics, we can find that the average probability is 4.91% for generated pro-
grams having the pass ratio of code similarity over 90%. We want to know how many programs
need to be generated to guarantee five programs having the pass ratio of code similarity over
90%. Those mentioned above, the average probability can be substituted into Eq. (12) to obtain
the answer. As a result, at least 100 generated programs must be produced to guarantee 5 of them
having the pass ratio of code similarity of more than 90%.

2.3 Program Performance Evaluation
One of the topics in this study is to evaluate the performance improvement of the keyword-

enabled generating program from the code transform model. In other words, this study evaluates
the execution performance of generated program produced from GPT-2 and the sample program
quantitatively. The main performance evaluation includes comparing the number of code lines
between the generated program and the sample program and the execution speed. It brings two
experiments to apprehend how much performance would be improved in program execution. The
performance evaluation has set two indicators (a) the reduction of the percentage of code lines
and (b) the shortening of the percentage of program execution time. Reducing the percentage of
the program lines of δρ is shown in Eq. (13). The ρs and ρg stood for the number of code lines
for sample program and generated program on average, respectively. The reduction of program

258 CMES, 2021, vol.129, no.1

execution time percentage δτ is shown in Eq. (14). The τs and τg represent the execution time for
sample program and generated program on average, respectively.

δρ =
(
1− ρg

ρs

)
× 100% (13)

δτ =
(
1− τg

τs

)
× 100% (14)

3 Research Method

The goal of this study is to achieve the automatic generation of usable programs by human-
computer interaction. Thus, propose the newly generated program system where the program is
not aimlessly generated. Instead, users must enter sentence inputs into the computer. With three
steps, Retrieval, Transformation, and Verification, the proposed system can generate the programs
the users require, as shown in Fig. 3. The subject of this study will focus on the development of
word segmentation and keyword selection from natural language sentences, code transform model,
and code similarity checking together with output conformity examining that are working on a
set of GPU cluster systematically. The process is divided into model generation stage and model
use stage. The former is further divided into the model training phase and model testing phase.
It is expected that the system can achieve the goal of automatic generating programs through
human-computer interaction.

Figure 3: Natural language generating program process

3.1 System Architecture of Program Generation
This part introduces the natural language toolkit NLTK and Generative Pre-trained Trans-

former 2 (GPT-2) to establish a code transform process [11]. This process can produce the
newly generated program with high efficient execution. This system uses English natural language
sentences as input and is divided into two stages: the model generation stage and model use stage.
In the model generating stage, the model will be trained initially after the users enter spoken
sentences using text or voice. Then the trained model will be tested to check whether the test
pass ratio in generated programs can exceed the predetermined pass ratio. If so, we are looking
for the best-performing generated program within the passed-programs and treating it as a pocket
program where this useable model’s status directly moves to the model use stage. After the users
enter a spoken sentence in text or voice in the model use stage, the system will first search for a
pocket program generated earlier. If not, the system will get back to the model generating stage
and starts its model training process.

The model generation stage includes the training phase and test phase, and their architectures
are shown in Figs. 4 and 5. The training phase consisted of four units: word segmentation unit,

CMES, 2021, vol.129, no.1 259

searching for example programs unit, generating program model unit, and generating program
unit. The inputs/outputs during the process are related to natural language sentences, keywords,
example programs, program models, preliminary programs, qualified programs, and pocket pro-
grams. Users can directly enter Natural language sentences into NLTK. First, the NLTK tool
model is used to perform word segmentation and then make keywords selection. Next, we can
search for the sample program corresponding to the keywords in the semantic database built in the
XAMPP [19] cloud server, and after that, send the sample program into GPT-2 for the first pass in
model training. GPT-2 uses a sample program to train and produces the generative model. After
the first pass, the generative model feedback to GPT-2 for the second pass in program generating,
where the automatic generation of many preliminary programs. The preliminary programs are
obtained, followed by the verification process in three units: test unit, verification unit, and storage
unit. The Simhash algorithm checks the code similarity between every preliminary program and
the test unit’s sample program. The preliminary program with the similarity pass ratio higher
than the predetermined one (90%) and successfully compiled with Python is considered a qualified
program. When it goes to the verification unit, we proceed LCS conformity comparison between
the sample program’s execution output and each qualified program, leaving the ones having a
pass ratio higher than the predetermined conformity level (95%). Finally, we choose the qualified
program having the highest pass ratio as the pocket program, within the ones.

Figure 4: Model generation stage—training phase architecture diagram

Figure 5: Model generation stage—test phase architecture diagram

260 CMES, 2021, vol.129, no.1

After the word segmentation, NLTK can retrieve the selected keywords from the semantic
database, and the process jumps directly to the model use stage. Its architecture is shown in
Fig. 6. The use stage consisted of five units: word segmentation unit, searching program model
unit, generating program unit, evaluation unit, and storage unit. The word segmentation unit
allows users to enter natural language sentences into NLTK tool as mentioned above to perform
word segmentation and make keyword selection. It will then use the keywords to search the
semantic database for a program model or a pocket program that should be chosen and saved
in the database earlier. If not, it will retrieve the corresponding generative model, and it then
gets to GPT-2 and generates the preliminary programs. Finally, the subsequent verification for the
similarity mentioned above and LCS comparison will determine the proper pocket program.

Figure 6: Model use stage architecture diagram

3.2 Variational Simhash Algorithm
Since traditional Hash [20] maps a string into a significant value that cannot be used to

measure the similarity of two distinct strings, Simhash [21] itself belongs to a locally sensitive
Hash. Its main idea is to reduce dimensionality, convert a high-dimensional feature vector into
an f-bit fingerprint [22], and determine the similarity of two distinct strings by calculating the
Hamming Distance [23] of two fingerprints. The smaller the Hamming distance, the higher the
similarity. Generally speaking, the TF-IDF algorithm is valid for the traditional Simhash algo-
rithm’s weighting method to acquire its weighting value. Still, this algorithm is only suitable for
general article text comparison, not for a program’s code. Therefore, we modified the Simhash
algorithm for the code of a program. We first classify the code into reserved and non-reserved
words and then find the weight value according to the table look-up or assigning the weight value.
For example, the reserved words such as “for”, “while”, and “if” are very similar, and we assign
a higher weight value in the look-up table. In contrast, the non-reserved words such as operands
and functions give the variable a low weight value.

The overall process is shown in Fig. 7, which includes word segmentation, hash calcula-
tion, table look-up weighting, merging, and dimensionality reduction. Word segmentation obtains
N-dimensional feature vectors (64-dimensional default) for the text’s word segmentation; Hash
performs the Hash calculation on all the obtained feature vectors. Table look-up weighting means
looking for numerical values to weigh all of the obtained feature vectors through looking up
a table as shown in Tab. 1. Merging refers to the accumulation of all the obtained vectors.
Dimensional reduction replaces the accumulated result greater than zero to one and less than

CMES, 2021, vol.129, no.1 261

zero to zero. It obtains a text fingerprint, as shown in Fig. 8, and finally calculates the Hamming
distance between two text fingerprints.

Figure 7: Variational Simhash process flow

Table 1: The range of weight value in the variational Simhash algorithm

Phrase “for”, “while”,
“if”, and so on

“print”, “def”,
and so on

Operands Functions Variables

Weighting range 10∼8 7∼5 5∼3 3∼2 1

Figure 8: Calculate fingerprint

According to the information theory, the Hamming distance between two equal-length char-
acter strings is the number of different characters corresponding to the two characters. The
Hamming distance is the number of characters that need to replace to convert one string to
another character of a fixed length. Moreover, the Hamming distance is a measure of the charac-
ter vector space that maintains non-negative, unique, and symmetrical. In Hamming distance on
Eq. (15) [24], dHam is the Hamming distance between objects i and j, and k is the index of the
corresponding bit reading y in the total number of bits n. In Eqs. (16) and (17), [bi,k �= bj,k] is
the value of 1 or 0 given by the logical value True or False determined according to the internal
condition bi,k �= bj,k. The Hamming distance itself gives the number of mismatched outcomes
between bits at the kth position.

dHam =
n−1∑
k=0

[bi,k �= bj,k] (15)

[bi,k �= bj,k]= 1 if bi,k �= ybj,k is True (16)

262 CMES, 2021, vol.129, no.1

[bi,k �= bj,k]= 0 if bi,k �= bj,k is False (17)

Suppose you measure the similarity of two strings using Hamming distance. In that case, the
similarity can be converted into a pass ratio as a metric to describe how much it matches the
original object’s content. According to the Hamming distance dHam and the total number of bits
n, the qualification (pass) ratio γ on Eq. (18) can be obtained.

γ =
(
1− dHam

n

)
× 100% (18)

This study used two simple codes of test1 [25] and test2 [26] to test by the method of trial
and error and found the appropriate range of weight value as given in Tab. 1. Given appropriate
weights based on that, the code similarity between two distinct programs increases to 90% on
average compared to the traditional one.

3.3 Piecewise Longest Common Subsequence–PLCS
The Longest Common Subsequence (LCS) [27] is the problem of finding the longest common

subsequence in all sequences in a sequence set (usually two sequences). The Longest Common
Subsequence is different from the Longest Common Substring because the subsequence of LCS
does not need to occupy consecutive positions in the original sequence. To solve the LCS problem,
we cannot use the brute force search method. We need to use dynamic programming to find the
LCS and backtracking strategy’s length to find the actual sequence of the LCS. However, this
study analyzed the traditional LCS computation efficiency and found that when the length of the
ASCII or binary code is very long, it will take a long time to complete the conformity comparison.
Therefore, we designed the piecewise LCS algorithm called PLCS to improve the execution speed
effectively. Once the code of a program is converted into ASCII or binary code, the code will be
divided into many of a fixed length of a segment, and then the LCS computation is performed a
single segment at a time. After completing each segment of LCS computation, clear the memory,
leaving only the result of that segment of LCS. Finally, each segment of LCS adds up to become
an overall LCS.

We assume that a piecewise segmented string z =<z1, z2,. . ., zh> is the PLCS of two piecewise
segmented strings xk =<x1, k, x2, k,. . ., xm, k> and yk =<y1, k, y2, k,. . ., yn, k>, and we observe that
if xm, k = yn, k, then zh, k = xm, k = yn, k, and zh – 1, k is the LCS of xm – 1, k and yn – 1, k; If xm, k �=
yn, k, then zh is the LCS of xm – 1, k and yn – 1, k, or the LCS of xm – 1, k and yn, k. Therefore, the
problem of solving LCS becomes two sub-problems of recursive solution. However, there are many
repeated sub-problems in the above-mentioned recursive solution method, and the efficiency is low.
The improved method uses space instead of time and uses an array to store intermediate states to
facilitate subsequent calculations. Therefore, using the two-dimensional array ck[i, j], k= 1, 2, . . . ,p,
where k represents a serial number of the kth segmented string after string segmentation and the
number of piecewise segmented strings is p, to record the LCS lengths of two piecewise segmented
strings <x1, k, x2, k, . . .,xi, k> and <y1, k, y2, k, . . ., yj, k> where the state transition can be obtained
on Eq. (19). Afterward, we add up all of the piecewise segmented LCSs to obtain the final LCS
on Eq. (20) where imax,k and jmax,k stand for the last index of <x1, k, x2, k, . . .,xi, k> and <y1, k,

CMES, 2021, vol.129, no.1 263

y2, k, . . ., yj, k> segmented strings, respectively, at the kth segmented string.

ck[i, j]=
⎧⎨
⎩
0, i= 0, j= 0, or k= 0
ck[i− 1, j− 1]+ 1, i, j,k > 0 and xi,k = yj,k
max(ck[i, j− 1], ck[i− 1, j]), i, j,k > 0 and xi,k �= yj,k

, k= 1, 2, . . . ,p (19)

c=
p∑

k=1

ck [imax, jmax] (20)

Use the longest common subsequence to measure the similarity of two programs’ execution
results [28]. The similarity is renamed text conformity to illustrate the degree of conformity of the
two programs’ respective output results. First, convert the output results of individual programs
into ASCII code or binary code, then store them into arrays a and b individually, and then
calculate the c array according to the longest common subsequence. Here, the length of the a, b,
and c arrays are recorded as |a|, |b| and |c|. The length of the arrays mentioned above is substituted
into the formula Eq. (6) to obtain the conformity between texts. Here, the lengths of arrays a, b,
and c are denoted as |a|, |b| and |c|, and the length of the above array is substituted into Eq. (21)
to obtain LCS conformity denote f.

f = 2 · |c|
|a| + |b| × 100% (21)

This study used four example programs to test by the method of trial and error, namely the
article text [29], the graphic image [30], the voice signal [31], and the video signal [32], where we
divided the length of a segment into 10, 100, 1000, 5000, 10,000, and 50,000 ASCII or binary
codes, and then performed LCS computation. The time spent on LCS computation is shown in
Tab. 2. As a result, we found that in the segment of 10,000 codes, on average, they can complete
LCS calculation as fast as possible, and it can increase the execution speed to 51% compared to
the case of none of the segments.

Table 2: Time-consuming piecewise LCS computation (unit: second)

Cases 10 codes per
segment

100 codes per
segment

1000 codes
per segment

5000 codes
per segment

10000 codes
per segment

50000 codes
per segment

None of
segment

Example 1 0.0092 0.0021 0.0024 0.0017 0.0013 0.0086 0.006
Example 2 130 101 86 74 51 83 298
Example 3 552 357 275 210 106 589 1397
Example 4 247 209 198 162 85 587 943

3.4 Similarity of Multimedia Signal
Multimedia is the field concerned with the computer-controlled integration of text, graphics,

images, sound/audio, animation, video, and other forms. Different types of media have different
content and format, corresponding content management and information processing methods are
also different, and the storage capacity of information is also very different. In terms of sentence
similarity, generally speaking, some distances are used for text comparison, such as Euclidean
distance, Manhattan distance, Mahalanobis distance, etc. The smaller the distance, the greater the
similarity.

264 CMES, 2021, vol.129, no.1

Generally speaking, using the Hash algorithm [33] to measure the image similarity. By obtain-
ing the hash value of each picture and comparing Hamming distance of the hash value of
two images, we can measure whether the two images are similar—the more similar two images,
the smaller Hamming distance of the hash value of two images. The comparison of sounds
is usually based on some characteristics [34], such as frequency, tone. . . etc. After extracting
these characteristics, perform the comparison of characteristics to check which features are the
differences. As for the comparison of videos, the usual method is to divide the video into frames
to make one by one for picture comparison, detect the object in the picture, track the object’s
position in each image, draw the trajectories, and compare them [35]. Even though there are a few
ways to compare different forms of media, this study adopts a single and effective LCS method
to compare multimedia information’s conformity, which is suitable for various forms of media,
including text, pictures, sounds, movies, animations, etc. The following describes the methods of
comparing the conformity of various media information one by one.

In terms of text information comparison, first converted the content of the sentences pro-
duced by the two programs’ execution into ASCII Code. Then the LCS algorithm is used to
compare the ASCII Code of the two sentences. The method for comparing the information of
two pictures is to convert the contents of the pictures produced by executing the two programs
into binary codes and then using the LCS algorithm to compare the two images’ binary codes.
As for the voice information comparison, we first extract some specific characteristic values from
two voices produced by the two programs’ execution. Then draw these characteristic values into a
picture individually, convert the content of each image into binary codes, and finally compare the
binary codes of two images by LCS algorithm. Especially in the calculation of video information
comparison, we first use ImageAI’s Yolo v3 [36] model to detect the video’s object. We then
track the object’s moving, which is to capture the object’s coordinates every second in continuous
motion. After that, we draw all the coordinates as a trajectory map. Then, after converting these
trajectory maps into binary codes, the LCS algorithm is used to compare the two sets of binary
codes.

3.5 Recipe of Hardware and Software
In Fig. 9, a high-level GPU cluster architecture is used for rapid model training to reduce the

processing time spent on traditional CPU training models. For the generative program, we choose
the code transform model GPT-2. For word segmentation and keyword retrieval, we select NLTK
toolkit. The variational Simhash algorithm checks code similarity. The piecewise longest common
subssequence algorithm examines the conformity of two different program execution results. All of
the tools must build in the cloud environment to execute most applications and generate programs.
Therefore, this study uses open-source packages to establish a run-time environment, as listed in
Tab. 3.

In GPU cluster architecture, Used two Nvidia brand GPU P100 and two RTX2080Ti. Four
GPU cluster workstations are connected through a high-speed local network to accelerate the
calculation [37]. The proposed cluster has high availability, reliability, and scalability to form a
cloud site or an edge computing. Each workstation server transmits data through a high-speed
network QPI, and uses a hardware interface PCIe x16 channel to connect the CPU and GPU. The
GPU link uses NVLink [38] developed by Nvidia to allow four GPUs to share memory using the
point-to-point structure and serial transmission. Not only between the CPU and GPU, but there
is also a connection between multiple Nvidia GPUs. Under multiple GPUs, SLI, Surround, and
PhysX options will show in the Nvidia system panel. Turning on the SLI, the users can share the

CMES, 2021, vol.129, no.1 265

graphics card memory for more data calculation. The detailed hardware specifications are shown
in Tab. 4.

Figure 9: GPU cluster workstation

Table 3: Open-source package list

Package Version

Anaconda2 5.2.0
Python 3.7.5
Tensorflow 1.14
CUDA 10
XAMPP 3.2.4
NLTK 3.5
GPT-2 0.6
SimHash 2.0.0
LCS −

Table 4: System hardware specifications

Hardware Specification Amount

Server HP Z8 G4 workstation 2
HP Z4 G4 workstation 2

CPU Xeon silver 4108 4
I9-7900X 2

Ram DDR4-2666 8G 16
DDR4-2666 16G 12

Disk MDFDDAK512TBN-1AR1ZABHA 2
SAMSUNG-MZVPV256HEGL 2
TOSHIBA-DT01ACA200 2

GPU NVIDIA Quardro GP100 2
NVIDIA GeForce RTX 2080 Ti 11G 2

Network Intel ethernet connection X722 for 1GbE 4

266 CMES, 2021, vol.129, no.1

4 Experimental Results and Discussion

4.1 Experimental Design
The experimental design is based on four example sentences in practice, and thus three exper-

iments have carried out in this session. The experimental setting has proceeded word segmentation
followed by keywords selection and sample program retrieval from semantic database. This study
has acquired the sample programs from GitHub [39]. The first experiment is to produce the newly
generated GPT-2 based on every single sample program. The next is to check the code similarity
and then verify the conformity of execution results between the generated program and the sample
program. Finally, the last is to analyze the performance evaluation of the generated programs.

This study has built a semantic database for the experiments where keywords, sample program
names, sample program paths, generated model paths, and other tables in the database created
by XAMPP are shown in Fig. 10. Fig. 10 is a screenshot of the table of the four sample
programs. In the following experiments, use these tables as training data sets. This session will also
evaluate the improvement of the generated program’s execution performance produced by code
transform model GPT-2. In other words, this session would compare code lines and execution time
between the generated program and the sample program based on two indicators (a) decreasing
the percentage of code lines and (b) reduce the percentage of execution time.

Figure 10: Table of four sample programs

4.2 Experimental Settings
The experimental settings in this paragraph were divided into two parts. The first part was

“selecting keywords for text segmentation and keyword search optimization.” In this research, four
example sentences were used to optimize keyword retrieval by filtering redundancy and adding
new keywords. Moreover, this research tested the accuracy difference between the original keyword
search and the optimized keyword search. One example sentence corresponded to the keywords
in different fields. The example sentences are shown in Tab. 5.

Table 5: Example sentences

Example sentences Sentence content

Example 1 The weather is very good today, I want to know the traffic flow.
Example 2 Fit approximate equations through neural network.
Example 3 I want to listen to piano music and relax.
Example 4 I want to turn the photo into a video for viewing, and recall it.

CMES, 2021, vol.129, no.1 267

The sample program of Example 1 is related to a web crawler [40], and the corresponding
keywords were “weather, traffic”. The purpose of sample program 1 was to crawl the correspond-
ing data on the Internet to get the weather forecast from Weather Center and automatically
allocate the traffic congestion spots on Google Maps. Next, in the sample program of Example 2
the corresponding keywords are “equations, neural, network” related to the application of neural
network [41]. The main purpose of the sample program was to find approximate equations by
training neural networks. Third, in the sample program of Example 3, the corresponding keyword
is “piano, music,” and it is related to the program generating music [42]. The objective of web
camera programming was to generate a short piece of piano music automatically. Finally, the
corresponding keywords of the sample program of Example 4 are “photo, video”. The program
can turn photos into videos for users to watch [43].

The above four sentences were used as the word segmentation model NLTK to select the
keywords. The results of keyword selection are shown in Tab. 6. The screenshot is shown in
Fig. 11.

Table 6: NLTK word segmentation

Example sentences Sentence-segmentation content

Example 1 [‘The’, ‘weather’, ‘is’, ‘very’, ‘good’, ‘today’, ‘,’, ‘I’, ‘want’,
‘to’, ‘know’, ‘the’, ‘traffic’, ‘flow’, ‘.’]

Example 2 [‘Fit’, ‘approximate’, ‘equations’, ‘through’, ‘neural’,
‘network’, ‘.’]

Example 3 [‘I’, ‘want’, ‘to’, ‘listen’, ‘to’, ‘piano’, ‘music’, ‘and’, ‘relax’, ‘.’]
Example 4 [‘I’, ‘want’, ‘to’, ‘turn’, ‘the’, ‘photo’, ‘into’, ‘a’, ‘video’, ‘for’,

‘viewing’, ‘,’, ‘and’, ‘recall’, ‘it’, ‘.’]

Figure 11: Screenshot of NLTK word segmentation

In an unoptimized experiment, NLTK carried out word segmentation. Select all segmented
words as keywords except punctuation. The chosen keywords are shown in Tab. 7, and the
screenshot is shown in Fig. 12.

The original keywords were consistent with the keywords in the semantic database, as shown
in Tab. 8. Hit keywords were “weather, traffic” in Example 1, “equations, neural, network” in
Example 2, “piano, music” in Example 3, and “photo, video” in Example 4.

268 CMES, 2021, vol.129, no.1

Table 7: Keywords selection out of the example sentences

Example sentences Keywords

Example 1 [‘The’, ‘weather’, ‘is’, ‘very’, ‘good’, ‘today’, ‘I’, ‘want’, ‘to’,
‘know’, ‘the’, ‘traffic’, ‘flow’]

Example 2 [‘Fit’, ‘approximate’, ‘equations’, ‘through’, ‘neural’, ‘network’]
Example 3 [‘I’, ‘want’, ‘to’, ‘listen’, ‘to’, ‘piano’, ‘music’, ‘and’, ‘relax’]
Example 4 [‘I’, ‘want’, ‘to’, ‘turn’, ‘the’, ‘photo’, ‘into’, ‘a’, ‘video’, ‘for’,

‘viewing’, ‘and’, ‘recall’, ‘it’]

Figure 12: Screenshot of selected keywords

Table 8: Hit keyword in the semantic database

Example sentences Semantic database keywords

Example 1 [‘weather’, ‘traffic’]
Example 2 [‘equations’, ‘neural’, ‘network’]
Example 3 [‘piano’, ‘music’]
Example 4 [‘photo’, ‘video’]

4.3 Experimental Results
4.3.1 Experiment 1

The first experiment was based on four sample programs in GitHub. Corresponding to the
keywords in the first experiment, extract the corresponding keywords from the sample program’s
natural language sentences. Besides, programs were generated in the system. The correspondence
and purpose of the sample programs and keywords are described in Tab. 9 below.

Table 9: The list of example program in Experiment 1

Sample program Sample program Keywords

Sample 1 Web-crawler Weather, traffic
Sample 2 Neural network Equations, neural, network
Sample 3 Music Piano, music
Sample 4 Makevideo Photo, video

To transform sample programs to the high-performance generated programs, a code transform
model GPT-2 generated 100 preliminary programs, and its time consuming was also recorded at

CMES, 2021, vol.129, no.1 269

the same time. In this experiment, a total of five rounds and the estimated average time to generate
a program in real-time was summary in Tab. 10.

Table 10: Estimated time to generate one hundred programs (unit: second)

Sample program First round Second round Third round Fourth round Fifth round Average

Sample 1 170 185 163 183 147 170
Sample 2 150 168 146 134 188 157
Sample 3 136 120 158 142 131 137
Sample 4 197 187 173 158 167 176

4.3.2 Experiment 2
In experiment 2, the comparison of similarity between the above four sample programs and

perform the program generated by GPT-2 on a cluster GPU workstation where samples of the
generated programs are shown in Appendix. The purpose was to determine how many completed
programs would have a similarity percentage greater than or equal to the users’ default passing
ratio. In this experiment, the diagram of qualified ratio distribution set the X-axis as the similarity
percentage, ranging from 0% to 100% with 20% as the separation interval. Set the Y-axis as the
number of programs in the percentage ratio interval. The generated programs’ pass ratios are
shown in Fig. 13. The pass ratio specified in this experiment was how many programs in 100
programs would have the similarity falling within the range of 80%∼100%. In other words, the
passing ratios of the generated programs of Sample 1, 2, 3, and 4 were respectively 40%, 35%,
31%, and 32%.

Figure 13: The pass ratio of the preliminary programs associated with each program in Experi-
ment 2 (a) sample program 1 (b) sample program 2 (c) sample program 3 (d) sample program 4

270 CMES, 2021, vol.129, no.1

4.3.3 Experiment 3
The fourth experiment first devotes to verify whether the generated program’s execution result

meets a certain proportion of conformity with the sample program. After Simhash similarity
screening and generated programs compiled successfully, select the qualified programs. Then the
qualified program with the highest pass ratio and the corresponding sample program are executed
individually. Their execution results are shown in Figs. 14–17. The program execution result is con-
verted into ASCII code or binary code through LCS algorithm to compare it. The experimental
result is listed as shown in Tab. 11.

Figure 14: Program execution result in Example 1 (a) Execution result of sample program 1 (b)
Execution result of the best-qualified program

Figure 15: Program execution result in Example 2 (a) Execution result of sample program 2 (b)
Execution result of the best-qualified program

CMES, 2021, vol.129, no.1 271

Figure 16: Program execution results in Example 3 (a) Execution result of sample program 3 (b)
Execution result of the best-qualified program

Figure 17: Program execution results in Example 4 (a) Execution result of sample program 4
(capturing 10 consecutive frames) (b) Execution result of the best-qualified program (capturing
ten consecutive frames)

272 CMES, 2021, vol.129, no.1

Table 11: Comparison of program execution results based on LCS conformity (unit: %)

Number of ASCII or binary
code

Sample 1 Sample 2 Sample 3 Sample 4

Number of ASCII or binary
code counted from sample
program execution output

62 35218 162964 68087

Number of ASCII or binary
code counted from generated
program execution output

62 36513 188218 66537

Number of ASCII or binary
code counted from LCS
execution output

61 35218 161998 65894

LCS conformity 98.38% 98.19% 92.25% 97.89%
Average LCS conformity 96.67%

Next, this experiment compared the performance of the above four generated programs pro-
duced by GPT-2 with the sample programs. The performance evaluation includes (a) comparing
the number of code lines between the sample program and the generated program, and (b) the
comparison comparing the execution time of the sample program and the generated program. To
understand how much it speeds up program execution. The average number of code lines of 100
generated programs and the average execution time for those generated programs were carefully
examined. The experimental results are listed in Tabs. 12 and 13, respectively.

Table 12: Number of code lines comparison

Number of lines or percentage Sample 1 Sample 2 Sample 3 Sample 4

Number of source code lines of a sample program 291 152 174 147
Number of lines of code of a generated program 174 128 146 111
Reduce the percentage of lines of code 40.34% 15.78% 16.09% 24.48%
Average percentage reduction 27.21%

Table 13: Program execution time comparison (unit: second)

Time or percentage Sample 1 Sample 2 Sample 3 Sample 4

Sample program execution time 8.35 10.57 14.58 12.43
Generated program execution time 6.97 7.13 11.71 8.92
Reduce the percentage of program execution time 16.59% 32.54% 19.68% 28.23%
Average percentage reduction 24.62%

CMES, 2021, vol.129, no.1 273

4.4 Discussion
In the first experiment, based on the predetermined number of generated programs statisti-

cally, GPT-2 can produce 100 preliminary programs successfully for every corresponding sample
program, that is, it takes approximately 1.6 s to generate a single prelimnary program. Further-
more, the newly generated program resulted in the code lines reduction where every generated
preliminary program has roughly reduced 27.21% of code line in a single program. Therefore, the
program execution time could be shortened possibly. After the code similarity checking between
the preliminary program and sample program using variational Simhash algorithm, the second
experiment selected a few preliminary programs (around 34.5%) with a higher pass ratio, thus
called qualified programs. In other words, this screening process has filtered out 65 unqualified
programs. Finally, once the qualified programs have been compiled successfully, the last experiment
has proceeded with the execution result checking between qualified programs and sample program
using Piecewise LCS algorithm. This verification has achieved the conformity 97.60% on average
for four examples and we have selected the qualified program with the best comformity as a pocket
program. Furthermore, the program execution time is reduced by 24.62% in the run time test,
which implies that program execution performance has improved significantly. The experimental
results shows that the proposed approach is with the creditability and validity.

5 Conclusion

This study has introduced an approach to effectively producing the newly generated programs
using GPT-2. In addition, this study has proposed variational Simhash algorithm and piecewise
longest common subsequence to verify the newly generated programs so as to achieve a sin-
gle qualified higher efficiency computer program that can produce the correct execution result.
According to the tests of four uses cases, the average number of newly generated code lines
decreased by 27.21%. The average execution time of the program decreased by 24.62%. As a result,
the proposed approach can quickly generate new programs that outperform the corresponding
sample programs.

Data Availability: The Sample Program.zip data used to support this study’s findings have been
deposited in the https://drive.google.com/file/d/1wiG321g6p-Cq1J0Eca64IBNUHoTzjVGl/view?usp
=sharing repository. The sample sentence data used to support the findings of this study are
included within the article.

AuthorContributions: B.R.C. and P.W.S. conceived and designed the experiments; H. F. T. collected
the experimental dataset and proofread the paper; B. R.C. wrote the paper.

Funding Statement: This work is fully supported by the Ministry of Science and Technology,
Taiwan, Republic of China, under Grant Nos. MOST 110-2622-E-390-001 and MOST 109-2622-
E-390-002-CC3.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. Sampson, J. R. (2006). Artificial intelligence. SIAM Review, 18, 784–786. DOI 10.1137/1018133.
2. Yan, X., Mou, L., Li, G., Chen, Y., Peng, H. et al. (2015). Classifying relations via long short term memory

networks along shortest dependency path. arXiv preprint arXiv: 1508.03720.

https://drive.google.com/file/d/1wiG321g6p-Cq1J0Eca64IBNUHoTzjVGl/view?usp=sharing
https://drive.google.com/file/d/1wiG321g6p-Cq1J0Eca64IBNUHoTzjVGl/view?usp=sharing
http://dx.doi.org/10.1137/1018133

274 CMES, 2021, vol.129, no.1

3. Zhao, J., Mathieu, M., LeCun, Y. (2016). Energy-based generative adversarial network. arXiv preprint
arXiv: 1609.03126.

4. Shah, H., Warwick, K., Vallverdú, J., Wu, D. (2016). Can machines talk? comparison of eliza with modern
dialogue systems. Computers in Human Behavior, 58, 278–295. DOI 10.1016/j.chb.2016.01.004.

5. Arora, S., Athavale, V. A., Maggu, H., Agarwal, A. (2021). Artificial intelligence and virtual assistant—
working model.Mobile Radio Communications and 5G Networks, pp. 163–171. Singapore: Springer.

6. Wagner, W., Bird, S., Klein, E., Loper, E. (2010). Natural language processing with python, analyz-
ing text with the natural language toolkit. Language Resources and Evaluation, 44(4), 421–424. DOI
10.1007/s10579-010-9124-x.

7. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I. (2019). Improving language understanding by gen-
erative pre-training. https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervi
-sed/language_understanding_paper.pdf.

8. Zamora, I., Lopez, N. G., Vilches, V. M., Cordero, A. H. (2016). Extending the openai gym for robotics: A
toolkit for reinforcement learning using ros and gazebo. arXiv preprint arXiv: 1608.05742.

9. Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M. et al. (2018). The science of fake
news. Science, 359(6380), 1094–1096. DOI 10.1126/science.aao2998.

10. Millman, K. J., Aivazis, M. (2011). Python for scientists and engineers. Computing in Science & Engineering,
13, 9–12. DOI 10.1109/MCSE.2011.36.

11. Chang, B. R., Tsai, H. F., Su, P. W. (2021). Applying code transformmodel to newly generated program for
improving execution performance. Scientific Programming, 2021, 21. DOI 10.1155/2021/6691010.

12. Cui, Y., Ahmad, S., Hawkins, J. (2016). Continuous online sequence learning with an unsupervised neural
network model. Neural Computation, 28, 2474–2504. DOI 10.1162/NECO_a_00893.

13. Myagmar, B., Li, J., Kimura, S. (2019). Cross-domain sentiment classification with bidirectional contextu-
alized transformer language models. IEEE Access, 7, 163219–163230.DOI 10.1109/Access.6287639.

14. Schoenmackers, S., Davis, J., Etzioni, O., Weld, D. (2010). Learning first-order horn clauses from web text.
Proceedings of the 2010 Conference on Empirical Methods on Natural Language Processing, pp. 1088–1098.
MIT Stata Center, Massachusetts, USA.

15. Gilbert, E. (2013). Widespread underprovision on reddit. Proceedings of the 2013 Conference on Computer
Supported Cooperative Work, pp. 803–808. San Antonio, Texas, USA.

16. Alammar, J. (2018). The illustrated transformer. https://jalammar.github.io/illustrated-transformer/.
17. Over, D. E., Hadjichristidis, C., Evans, J. S. B., Handley, S. J., Sloman, S. A. (2007). The probability of causal

conditionals. Cognitive Psychology, 54(1), 62–97. DOI 10.1016/j.cogpsych.2006.05.002.
18. Flaminio, T., Godo, L., Hosni, H. (2020). Boolean algebras of conditionals. Probability and Logic. Artificial

Intelligence, 286, 103347. DOI 10.1016/j.artint.2020.103347.
19. Dvorski, D. D. (2007). Installing, configuring, and developing with XAMPP. Skills Canada.
20. Park, J. S., Chen, M. S., Yu, P. S. (1997). Using a hash-based method with transaction trimming for

mining association rules. IEEE Transactions on Knowledge and Data Engineering, 9(5), 813–825. DOI
10.1109/69.634757.

21. Sadowski, C., Levin, G. (2007). Simhash: Hash-based similarity detection. Technical Report, Google.
https://www.webrankinfo.com/dossiers/wp-content/uploads/simhash.pdf.

22. Jain, A.K., Feng, J. (2010). Latent fingerprintmatching. IEEETransactions onPatternAnalysis andMachine
Intelligence, 33, 88–100. DOI 10.1109/TPAMI.2010.59.

23. Zhang, L., Zhang, Y., Tang, J., Lu, K., Tian, Q. (2013). Binary code ranking with weighted hamming
distance. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1586–1593.
San Juan, PR, USA.

24. Schulz, J. (2008). Hamming distance. http://www.code10.info/index.php%3Foption%3Dcom_content%2
6view%3Darticle%26id%3D59:hamming-distance%26catid%3D38:cat_coding_algorithms_data-simila
rity%26Itemid%3D57.

25. Chou, H. L. (2021). Test1. https://github.com/m1085504/Data-exsaple/blob/main/test.

http://dx.doi.org/10.1016/j.chb.2016.01.004
http://dx.doi.org/10.1007/s10579-010-9124-x
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
http://dx.doi.org/10.1126/science.aao2998
http://dx.doi.org/10.1109/MCSE.2011.36
http://dx.doi.org/10.1155/2021/6691010
http://dx.doi.org/10.1162/NECO_a_00893
http://dx.doi.org/10.1109/Access.6287639
https://jalammar.github.io/illustrated-transformer/
http://dx.doi.org/10.1016/j.cogpsych.2006.05.002
http://dx.doi.org/10.1016/j.artint.2020.103347
http://dx.doi.org/10.1109/69.634757
https://www.webrankinfo.com/dossiers/wp-content/uploads/simhash.pdf
http://dx.doi.org/10.1109/TPAMI.2010.59
http://www.code10.info/index.php%3Foption%3Dcom_content%26view%3Darticle%26id%3D59:hamming-distance%26catid%3D38:cat_coding_algorithms_data-similarity%26Itemid%3D57
http://www.code10.info/index.php%3Foption%3Dcom_content%26view%3Darticle%26id%3D59:hamming-distance%26catid%3D38:cat_coding_algorithms_data-similarity%26Itemid%3D57
http://www.code10.info/index.php%3Foption%3Dcom_content%26view%3Darticle%26id%3D59:hamming-distance%26catid%3D38:cat_coding_algorithms_data-similarity%26Itemid%3D57
https://github.com/m1085504/Data-exsaple/blob/main/test

CMES, 2021, vol.129, no.1 275

26. Chou, H. L. (2021). Test2. https://github.com/m1085504/Data-exsaple/blob/main/test1.
27. Burghardt, J. (2021). Longest common subsequence problem. https://en.wikipedia.org/wiki/Longest_co

mmon_subsequence_problem.
28. Tiedemann, J. (1999). Automatic construction of weighted string similarity measures. Proceedings of Joint

SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, pp.
213–219. College Park, MD, USA.

29. Chou, H. L. (2021). Exchange-rate. https://github.com/m1085504/Data-exsaple/blob/main/Exchange-Rate.
30. Chou, H. L. (2021). Picture. https://github.com/m1085504/Data-exsaple/blob/main/picture.
31. Chou, H. L. (2021). Voice. https://github.com/m1085504/Data-exsaple/blob/main/voice.
32. Chou, H. L. (2021). Video. https://github.com/m1085504/Data-exsaple/blob/main/video.
33. Cai, Y., Li, Y., Qiu, C., Ma, J., Gao, X. (2019). Medical image retrieval based on convolutional neural

network and supervised hashing. IEEE Access, 7, 51877–51885. DOI 10.1109/Access.6287639.
34. Song, X., Tian, P., Yang, Y. (2012). Recognition of live performance sound and studio recording sound

based on audio comparison. 2012 3rd IEEE International Conference on Network Infrastructure and Digital
Content, pp. 21–23. Beijing, China.

35. Arndt, T., Chang, S. K. (1989). Image sequence compression by iconic indexing. 1989 IEEE Workshop
on Visual Languages, pp. 177–182. The Institute of Electrical and Electronic Engineers, IEEE Computer
Society, Silverspring, MD. DOI 10.1109/WVL.1989.77061.

36. Redmon, J. (2019). YOLO: Real time object detection. https://github.com/pjreddie/darknet/wiki/YOLO:-
Real-Time-Object-Detection.

37. Bouache, M., Glover, J. L., Boukhobza, J. (2016). Analysis of memory performance: mixed rank perfor-
mance across microarchitectures. International Conference on High Performance Computing, pp. 579–590.
Cham, Springer.

38. Foley, D., Danskin, J. (2017). Ultra-performance pascal GPU and NVLink interconnect. IEEE Micro,
37(2), 7–17. DOI 10.1109/MM.2017.37.

39. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M. et al. (2014). The promises and perils
of mining github. Proceedings of the 11thWorking Conference onMining Software Repositories, pp. 92–101.
Hyderabad, India.

40. Lin, J. W. (2020). Web-crawler. https://github.com/jwlin/web-crawler-tutorial.
41. Chou, H. L. (2021). Network. https://github.com/m1085504/Data-exsaple/blob/main/Network.
42. Chou, H. L. (2021). Music. https://github.com/m1085504/Data-exsaple/blob/main/Mucis.
43. Chou, H. L. (2021). Makevideo. https://github.com/m1085504/Data-exsaple/blob/main/Makevideo.

Appendix

In the Experiment 2, samples of the generated programs are shown in Figs. 18–21.

https://github.com/m1085504/Data-exsaple/blob/main/test1
https://en.wikipedia.org/wiki/Longest_common_subsequence_problem
https://en.wikipedia.org/wiki/Longest_common_subsequence_problem
https://github.com/m1085504/Data-exsaple/blob/main/Exchange-Rate
https://github.com/m1085504/Data-exsaple/blob/main/picture
https://github.com/m1085504/Data-exsaple/blob/main/voice
https://github.com/m1085504/Data-exsaple/blob/main/video
http://dx.doi.org/10.1109/Access.6287639
http://dx.doi.org/10.1109/WVL.1989.77061
https://github.com/pjreddie/darknet/wiki/YOLO:-Real-Time-Object-Detection
https://github.com/pjreddie/darknet/wiki/YOLO:-Real-Time-Object-Detection
http://dx.doi.org/10.1109/MM.2017.37
https://github.com/jwlin/web-crawler-tutorial
https://github.com/m1085504/Data-exsaple/blob/main/Network
https://github.com/m1085504/Data-exsaple/blob/main/Mucis
https://github.com/m1085504/Data-exsaple/blob/main/Makevideo

276 CMES, 2021, vol.129, no.1

Figure 18: Sampled preliminary program associated with sample program 1 in Experiment 2

Figure 19: Sampled preliminary program associated with sample program 2 in Experiment 2

CMES, 2021, vol.129, no.1 277

Figure 20: Sampled preliminary program associated with sample program 3 in Experiment 2

Figure 21: Sampled preliminary program associated with sample program 4 in Experiment 2

