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ABSTRACT

A meshless and matrix-free fluid dynamics solver (SOMA) is introduced that avoids the need for user generated
and/or analyzed grids, volumes, and meshes. Incremental building of the approximation avoids creation and
inversion of possibly dense block diagonal matrices and significantly reduces user interaction. Validation results
are presented from the application of SOMA to subsonic, compressible, and turbulent flow over an adiabatic flat
plate.
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1 Introduction

The cost associated with Computational Fluid Dynamics (CFD) analysis has helped fuel the
drive for programming methods that maximize the numerical data gathering capacity for a given
level of computational effort and memory allocation. We believe that the Sequentially Optimized
Meshfree Approximation (SOMA) method is another step in this direction [1,2].

SOMA is a meshless, volume-free, and matrix-free nonlinear differential equation solver. Flow
simulations solvable by SOMA can be unsteady, compressible, and viscous. When flows are not
solved purely steady state, SOMA has both explicit and implicit time stepping methods as well as
the ability to switch dynamically between the two methods depending upon either computational
efficiency or convergence criteria.

As a meshless method SOMA does not require Jacobians, information on mesh connectivity,
or transformations between physical and computational domains through conformal maps. This
simplifies the application of Adaptive Domain Refinement (ADR) techniques [3].

Other benefits and advancements associated with SOMA improve on both meshed and other
meshless methods. Foremost among these, SOMA eliminates the need to invert large, possibly
dense, block diagonal matrices in the solution of the governing equations. Solutions to the flow
variables are determined through incrementally built approximations, and the governing equations
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can remain in vector form. Thus, SOMA eliminates the computational costs both of calculating
and of inverting the system mass matrix.

The decades of analysis and work associated with other methods such as boundary element
method (BEM), finite volume method (FVM) and finite difference method (FDM) with respect
to numerical stability, upwinding, CFL number, characteristic lines, system eigenvalues, and many
others can be directly applied to SOMA. This application can occur with little to no modification
to account for the meshfree nature of SOMA. Additionally, boundary condition enforcement at
farfield and surface locations can follow the methods used in FDM, FVM, and BEM [4], including
extrapolation and ghost points. Finally, SOMA greatly reduces the required man-hours for domain
discretization and adaptation, since there is no mesh to inspect and eliminates the need for user
involvement during solution.

2 Derivation of SOMA

A general approximation to some true function u can be generated [5] using the n level
weighted sum

u (ξ)≈ un (ξ)=
n∑
i=1

ciφi
(
ξ , ξc,n,βn

)+ u0, (1)

where βi, ci ∈R and ξ ∈R
D represent the function parameters, linear coefficients, and independent

variables, respectively. The variable ξc,i ∈ R
D represents the spatial coordinates of the ith basis

function center in the problem domain.

In SOMA the approximations are built by holding the un-1 approximation fixed and opti-
mizing the specific coefficient cn and basis function φn. The approximation can be written as

u (ξ)≈ un (ξ)= cnφn
(
ξ , ξc,n,βn

)+ un−1 (ξ) . (2)

As there are no limitations on their distribution, a wide class of bases can be mixed and used
(e.g., B-splines, radial basis functions, and low-order polynomials).

For a differential equation, say H is the system operator and f is the system forcing function.
Then the solution approximation that SOMA generates will produce some error.

Rj (ξ)=H
[
uj (ξ)

]− f , (3)

that can be reduced by growing the order j of the approximation. The residual of the previous
differential equation at the nth stage becomes

Rn (ξ)=H [un (ξ)]− f . (4)

Reformulating this as an optimization problem, the objective function can be written as

εn = 〈Rn,Rn〉 , (5)

where 〈·,·〉 can be the sum root of the squares (e.g., collocation method [6]) or the inner product
(e.g., Method of Weighted Residuals [7]). The collocation method,

εn =
np∑
i=1

Rn2 (ξi) (6)
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is used in this work, where np is the number of evaluation points. The construction of the
weighted series progresses until εn ≤ εmax, where εmax is a user defined accuracy threshold.

3 Using SOMA-Radial Basis Functions

The basis function most often used in this work is the Gaussian Radial Basis Function
(GRBF). The form for the ith basis is

φi = exp
{
−β2i ‖�ξi ‖22

}
, (7)

where Δξi =
[(
x−xc,i

)
,
(
y− yc,i

)
, . . .

]T is the D-dimensional vector of the distance between the
center and some point in the domain, and βi is the scalar parameter that determines the width
of the function. Thus, the GRBF must optimize D+ 1 parameters. The GRBF is C∞ continuous
so derivatives can be determined directly.

However, capturing steep gradients in the dependent variable by simple smooth functions like
GRBFs can be troublesome. To alleviate this difficulty, SOMA can augment the symmetric GRBF
with an offset hyperbolic tangent function to create the “quasi-upwind” asymmetric Hyperbolic
Radial Basis Functions (HRBF). These functions require additional parameters to determine the
steepness of the asymmetry and its orientation but are also known analytically. The form for the
ith basis function is

φi = exp
{
−β2i ‖�ξi ‖22

}{
tanh

[
s2i

(
�ξi · 	Ri

)]
+ 1

}
, (8)

where s2i is the one-sided steepness parameter and 	Ri is a condensed rotation vector. In two

dimensions 	Ri = [cos (θi)− sin (θi) , cos (θi)+ sin (θi)]
T and depends only upon a single parameter θ .

All three Euler angles are necessary in three dimensions and so 	Ri has a different form. As with
the GRBF the exact form of the derivative of the HRBF is known.

Eqs. (7) and (8) are the two forms of the basis function which SOMA uses to approximate the
dependent variable. Examples of these two basis functions in two dimensions are shown in Fig. 1
for both contour and perspective views. It can be seen that the GRBFs are symmetric about the
center while the HRBFs are steeper on one side. This steepness is controlled by the s2i parameter,

while the orientation is controlled by the 	Ri vector.
SOMA optimizes both HRBF and GRBF using a genetic algorithm (GA) [8]. When starting

the optimization routine for a given iteration, the basis function parameters cn, ξc,n, βn, s2i ,

and 	Ri are initialized with random values. Numerical experiments [1] have shown in most cases
that initializing the basis function centers at the maximum magnitude of the residuals improved
convergence.

When the governing equations are coupled and/or multi-variable non-linear equations (e.g.,
Navier-Stokes) all variables play a role in the value and the location of the maximum magnitude
from all of the discrete residuals. Because each equation residual is primarily related to one of
the flow variables, initializing its basis function center at that residual’s maximum magnitude tends
to provide a good starting location. If the residuals are of similar magnitude, then randomly
initializing the centers inside the convex hull of those values and bounding the search to within
one or two radii of that hull also tends to greatly improve performance [2].
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Figure 1: Examples of gaussian and hyperbolic radial basis functions

By default, GRBFs are used as they have fewer parameters to optimize. However, when a
modeling problem requires too narrow a GRBF, SOMA switches to the HRBF form. We define
a GRBF as too narrow when the radius encompasses fewer than five of the nearest evaluation
points in two dimensions and nine points in three dimensions. The HRBF form is initialized as
an asymmetric basis. Once the optimization routine no longer selects an asymmetric form (i.e.,
s2i → 0) the code reverts back to GRBF use.

4 SOMA as a CFD Solver

This section explains the means by which derivatives are numerically calculated, the means
for upwinding convective flows, and the means for switching between explicit and implicit time
marching.

To start, our flux vector formulation of the Navier-Stokes equations is defined in the
traditional manner

∂U
∂t

+
∂

(
Fj −Fvj

)
∂xj

= 0, (9)
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with repeated indices indicating summation. Using the three-dimensional Cartesian velocity vector

→
Uc =

⎛
⎜⎜⎝
u

v

w

⎞
⎟⎟⎠ , (10)

we can write

U = [
ρ, ρUc,i, E

]T , (11)

for the conserved variables density (ρ), momentum flux (ρ Uc,i) and energy (E). We write

V =
√√√√ 3∑

i=1

Uc,i
2, (12)

for the velocity magnitude,

P= (γ − 1)
[
E− 1

2
ρV2

]
, (13)

for the ideal gas pressure, and

τij =μ
(
∂Uc,i

∂xj
+ ∂Uc,j

∂xi
− 2

3
∂Uc,m

∂xm
δij

)
, (14)

for the viscous shear stress, where δij is the Kronecker delta. We can now write

Fj =
[
ρUc,j, ρUc,iUc,j +Pδij, Uc,j (E+P)

]T (15)

for the inviscid flux terms, and

Fvj =
[
0, τij, Uc,iτij− qj

]T (16)

for the viscous terms.

The working fluid in this work is considered to be air (specific heat ratio, γ = 1.4), thus
temperature T can be defined through the ideal gas law and the dynamic viscosity (μ) using
Sutherland’s Law. Dependent and independent variables were non-dimensionalized by farfield
conditions ρ∞ and U∞ and the appropriate characteristic length L similar to the method in [9].

The normalized forms of energy and pressure used by SOMA were constructed such that they
were unity at the farfield with a coefficient, i.e.,

Pdim
ρ∞U2∞

→ P∞
ρ∞U2∞

× Pdim
P∞

→ 1
γM2∞

× Pdim
P∞

where M∞ is the farfield Mach number. While this has no effect on the equations themselves, it
reduces the optimization search space to a near unit hypercube, which has been shown to improve
performance of SOMA in tests.
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If we define the equation residuals for the mass, momentum, and energy equations as Rρ ,
RUc,j, and RE, respectively, then the objective function for the Navier-Stokes validation problems
is written as

εn =
∑np

i=1

(
Rρ,n2(ξi)
ηρ

+ RUc,j ,n
2(ξi)

ηUc,j
+ RE,n2(ξi)

ηE

)
, (17)

where

η� =
np∑
i=1

R�,0
2 (ξi) (18)

for ψ = ρ, Uc, E. Note that Rψ ,0 is the residual for the initial conditions.

4.1 Boundary Conditions
Dirichlet boundary conditions are upheld directly by

u (�D)=U�D . (19)

Neumann or mixed conditions are enforced by using ghost points,

u
(
�
ghost
�N

)
= u

(
�real
�N

)
, (20)

along the boundary γN . Fig. 2, duplicated from reference [10], shows an illustration of ghost
points at a boundary. Both of these methods can be combined to enforce Cauchy boundary
conditions easily.

Figure 2: Ghost and real evaluation points at surface boundary [10]

For the special case of tangent/slip wall velocity (e.g., Euler flow), a few extra steps are
necessary. First, SOMA must convert the velocity vector from global Cartesian to the surface
Normal-Tangential-Binormal coordinate frame velocity vector. We use a rotation matrix Rs,c which
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converts from Cartesian coordinates to Surface Normal-Tangential-Binormal coordinates. The
required velocity vector is⎛
⎜⎜⎝
un

ut

ub

⎞
⎟⎟⎠ =Rs,c

→
Uc, (21)

at each point along the surface boundary �S. The tangential/slip velocity boundary condition is
enforced by setting⎛
⎜⎜⎜⎜⎜⎝

un
(
�
ghost
�S

)

ut
(
�
ghost
�S

)

ub
(
�
ghost
�S

)

⎞
⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎝

−un
(
�real
�S

)

ut
(
�real
�S

)

ub
(
�real
�S

)

⎞
⎟⎟⎟⎟⎟⎠
, (22)

and the Cartesian velocity vector at the ghost points is calculated by inverting the rotation matrix
Rs,c against the Normal-Tangential-Binormal coordinate ghost velocity vector. Through the use
of upwind techniques conditions can also be applied to arbitrary geometries.

4.2 Differential Quadrature
Differential Quadrature (DQ) is used as the method for numerically calculating derivatives in

this work. While it might seem that DQ would add extra computational cost to SOMA versus
using exact function derivatives, it alleviates some of the major cost and difficulty associated with
implementing boundary conditions on irregular geometries.

Figure 3: Example of a differential quadrature cloud
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In this work the “node” is the point of interest and the remaining subset is referred to as
“support points” or “supports”. Fig. 3 illustrates an example of a node, support, and subset, also
known as the support “cloud,” for a general unstructured mesh. The subset usually consists of all
points within some radius of the node [11]. We can then approximate the mthx-derivative at the
node (xi,yi, zi) of a function u(x,y,z) as

∂mu
∂xm

∣∣∣∣
i
≈

∑
j

wx,mij u
(
xj,yj, zj

)
, (23)

where the node as a support point is included. The same formulation is used for derivatives of
y and z where the DQ coefficients are wy,mij and wz,mij , respectively. For an lthy cross derivative,

wx,m-l,y,l
ij .

Using a single independent variable as an example, the DQ weighting coefficients are deter-
mined using the known data from the basis functions. The function u(x) is a linear combination
of the basis functions φ(xi,xc,k) and Eq. (23) is a linear operator. Therefore, if the basis functions
satisfy Eq. (23), then it is guaranteed that u(x) must also satisfy this equation [12,13]. Differential
quadrature is then applied to the basis functions, which yields

∂φk (xi)
∂x

≈
∑
j

wxijφk
(
xj

)
, (24)

where φk(x) is used to denote the k-th basis function, i.e., the basis function centered at xc,k. If
Eq. (24) is rewritten as a matrix equation, then the weighting coefficients can be determined by

Wx =AxA−1, (25)

where

Wx =

⎛
⎜⎜⎜⎜⎜⎜⎝

wx11 · · · wx1m

wx21 · · · wx2m
...

. . .
...

wxm1 · · · wxmm

⎞
⎟⎟⎟⎟⎟⎟⎠
, (26)

A=

⎛
⎜⎜⎜⎜⎜⎜⎝

φ1 (x1) · · · φm (x1)

φ1 (x2) · · · φm (x2)

...
. . .

...

φ1 (xm) · · · φm (xm)

⎞
⎟⎟⎟⎟⎟⎟⎠

(27)
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and Ax is the matrix of x-derivatives of the basis functions,

Ax =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂φ1 (x1)
∂x

· · · ∂φm (x1)
∂x

∂φ1 (x2)
∂x

· · · ∂φm (x2)
∂x

...
. . .

...

∂φ1 (xm)
∂x

· · · ∂φm (xm)
∂x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (28)

While it is possible to calculate higher order and cross derivatives with DQ, it is frequently
more effective to calculate only first derivatives for the flow variables, combine them into flux
vectors, and then calculate the derivatives of those. For example, with the three-dimensional
Navier-Stokes equations, SOMA would need to calculate the first, second, and cross derivatives
for all flow variables in all directions. For nq quadrature points in a domain of dimension D,

calculating all these derivatives requires O((D + 2) * (D + 2 + 2D-1− 1) * nq * np) operations
while the flux formulation requires only O((D + 2) * D * nq * nq * np) operations.

While typically nq is greater than 3, it is usually fewer than 20 meaning that in three dimen-
sions the formulations are off by less than a factor of 7, and the extra work is offset by two
major bonuses associated with the flux forms. First, there are fewer operations as there are fewer
terms to multiply, and second, the flux forms are usually smoother than the primitive variables
themselves [14]. Because all numerical derivative calculations involve some error, having smoother
functions reduces the absolute magnitude of this error thus improving the accuracy of the method.
We determined that the increase in accuracy of the flux formulation was worth the modest amount
of extra DQ work.

In SOMA, DQ uses the Roe approximate third order solver [14] modified through the van
Albada limiting routine [15] because of its meshfree nature. Application of the CUSP scheme [16]
reduces computation time without drastically reducing accuracy.

4.3 Time Marching Techniques
Time marching techniques were used for the validation problems solved by SOMA even in

cases which were physically at steady state. In these steady cases time marching will be referred
to as false-transient methods. In all validation problems the two techniques available for time
integration are explicit and implicit.

4.3.1 Explicit Time Marching
For explicit time (t) marching, SOMA uses the fourth order Runge-Kutta (RK4) method [17].

This method is implemented as follows:

∂U
∂t

=−∇ ·Fi (U)= g (U)

�U1 = g
(
Ut)

�U2 = g
(
Ut+ �t

2
�U1

)
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�U3 = g
(
Ut+ �t

2
�U2

)

�U4 = g
(
Ut+�t�U3

)

Ut+�t =Ut+ �t
6
(�U1 +�U2 +�U3 +�U4) . (29)

Advantages of this Runge-Kutta method over the simple explicit Euler method [18] include
a time accuracy of O(�t4) compared to O(�t) and a larger stable time step according to the
relation ΔtRK4 = 2

√
2ΔtEuler [15].

Even accounting for the multi-step process of Runge-Kutta techniques, explicit methods are
much less computationally expensive than implicit methods, but they also have the drawback of
much smaller stable time steps. If the time step is bound by conditions other than stability (e.g.,
aliasing of periodic flows or turbulent eddy time scales) then explicit time integration can be
the more efficient method. However, implicit methods are far more computationally expedient,
especially in steady-state problems.

4.3.2 Implicit Time Marching
In its most basic form, the implicit Euler method [18] can be written as

∂U
∂t

+∇ ·Fi (U)≈ Ut+�t−Ut

�t
+∇ ·Fi

(
Ut+�t) . (30)

Because the updated flow variable is in both the unsteady and the nonlinear flux vector, the
flux Jacobians [19] from the Roe upwind method are used to linearize the equations.

Unlike these traditional methods there is no need for the inversion of matrices in SOMA
which can be computationally expensive for three-dimensional external flows. With SOMA, the
dependent variables are initialized as Ut+�t = Ut. A simpler vector form of the residual is then
calculated using Eq. (30). SOMA improves the approximation through a weighted series until the
residual drops below the threshold, εmax. The value of the approximation at the evaluation points
is then saved and the previous weighted series is deleted. All dependent variables are updated and
the new approximation is reinitialized as Ut+2�t =Ut+�t.

4.3.3 Local Time Step Size
An adaptive and local time step is applied in this work which gives the largest stable step

possible for any given set of flow conditions. In the three-dimensional case, using the standard
Courant-Friedrichs-Lewy parameter (CFL), the step is calculated as

�timplicit,i =
CFL
�T (ξi)

(31)

with

�T (ξi)=�I (ξi)+ γ 1.5M∞�V (ξi)

Pr
√
Re

(32)
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from the Prandtl number (Pr) and Reynolds number (Re), where

�I (ξi)=
nq∑
j=1

∣∣∣Wx,1
ij uj+Wy,1

ij vj+Wz,1
ij wj

∣∣∣+ aj

√(
Wx,1

ij

)2+
(
Wy,1

ij

)2+
(
Wz,1

ij

)2
, (33)

and

�V (ξi)=
nq∑
j=1

μj

ρj

√(
Wx,1

ij

)2+
(
Wy,1

ij

)2+
(
Wz,1

ij

)2
, (34)

are the inviscid and viscous eigenterms, respectively, of the system. We define aj as the acoustic
speed at location j. In cases where a local time step is not feasible, the smallest of the possible
local time steps would be used for the whole domain.

The inversion of a roughly sparse matrix with ne equations or dependent variables is

O
(
n2.5p · n3e

)
as indicated by computational complexity analysis [20]. With nq and nb bases for each

time step, the complexity is O(np ·ne ·nq ·nb) for SOMA. For three-dimensional external flows, this

indicates that if we can maintain nq · nb < n1.5p n2e each time step, SOMA will require roughly the
same or less computational effort than an inversion. In our experiments nb was highest for the
initial condition.

4.3.4 Explicit/Implicit Switch
SOMA typically solves the flow equations using an implicit formulation allowing for larger

time steps and quick conversion to steady state or to stable periodic flows (e.g., vortex shedding).
There are, however, times when it is necessary to switch to an explicit solver even in the middle
of a simulation run. Because implicit methods are far more computationally expensive than
explicit methods, it is necessary to take time steps large enough to account for the difference in
computational wall clock time. In this work we have used �timplicit,i = 95 �texplicit,i.

If the optimization of ε cannot drop below the tolerance εmax when using the implicit formu-
lation, the weighted series that was developed for the current time step is discarded. Initializing
with the known solution from the previous time step, SOMA time marches explicitly until it has
advanced the equivalent of one implicit time step. At this point the solver switches back to an
implicit method and advances.

5 Turbulence Model

For a k−ω model, the stress term is defined as

τij = (μ+μt)
(
∂ui
∂xj

+ ∂uj
∂xi

− 2
3
∂um
∂xm

δij

)
− 2ρkδij, (35)

and the heat flux term as

qj =− (κ + κt) ∂T
∂xj

, (36)
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where μt and κt are the turbulent dynamic viscosity and thermal conductivity, respectively. Using
the normalization described in Section 4, the heat flux can be rewritten as

qj = 1
(γ − 1)M2∞

(
μ

Pr
+ μt

Prt

)
∂T
∂xj

, (37)

where Prt is the turbulent Prandtl number.

In this work, we utilized the Menter single shear-stress-transport (SST) k − ω model. Full
details of the Menter-SST model, including values of constants, can be found in reference [21].
The governing equation for k is presented here as

∂ρk
∂t

+ ∂

∂xj

[
ρujk− (μ+ σkμt)

∂k
∂xj

]
= τij ∂ui

∂xj
−βkρωk, (38)

and the governing equation for ω

∂ρω

∂t
+ ∂

∂xj

[
ρujω− (μ+ σωμt) ∂ω

∂xj

]
= γ

νt
τij
∂ui
∂xj

−βωρω2+ 2 (1−F1)
ρσω2

ω

∂k
∂xj

∂ω

∂xj
. (39)

With k and ω determined, the turbulent viscosity can be calculated from

μt= ρa1k
max (a1ω,�F2)

, (40)

which allows for time advancement of the remaining Navier-Stokes equations. Strong coupling of
the SST model to the mass, momentum, and energy equations is straightforward.

6 Numerical Examples

For validation of the solution method, we chose relevant numerical problems of increasing
complexity. SOMA was first used to approximate the solution to the steady state convective-
diffusion equation (Burger’s equation) to test the method’s stability and convergence rate. Then
SOMA was used to model vortex shedding about a circular cylinder (incompressible time-accurate
Navier-Stokes equations) and on to inviscid, compressible flow past an NACA 0012 airfoil and
ONERA M6 wing at angle of attack (compressible false-transient two- and three-dimensional
Euler equations). Finally, SOMA was used to model the subsonic compressible turbulent flow over
an adiabatic flat plate with zero pressure gradient. For the turbulence problem comparison data
were taken from the NASA Langley Research Center flow verification website [22], including the
domain discretization, shown in Fig. 4. The value εmax was set to 1 × 10−7 for all results. The
simulations were run in serial using a single-core Intel i5 processor. SOMA generally runs 10%
slower on the validation problems as compared to our FVM solvers.
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Figure 4: Problem domain and nodes from [22]

6.1 Results for Convection-Diffusion
In this paper, the stationary convection-diffusion equation modeling a boundary layer also

serves to evaluate the convergence of SOMA with increasing values of np. The second order linear
differential equation is given by

d2u
dx2

− λ

ν

du
dx

= 0, 0≤ x≤ 1, λ, ν > 0, u (0)= 0, u (1)= 1, (41)

where λ and ν are the convective viscosity and diffusion coefficients, respectively. The solution to
Eq. (41) can be written as u(x)= (exRe−1)/(eRe−1), where Re= λ/ν acts as an effective Reynolds
number. The numerical solution can lead to oscillations for Reynolds numbers of 20 or lower [23].

For our validation, the Reynolds number was set to 20 and SOMA was run up to np =
300 with points uniformly distributed within the problem domain. The GRBF was utilized with
three separate optimization routines: Fmincon, a pattern search method, and a GA [8]. For
this convergence study, SOMA was run 50 times and the results averaged. Fig. 5 shows the
log of averaged RMS of the error vs. the log of np. The GA and pattern search give quintic
convergence for the initial 20–50 GRBFs, then a linear convergence rate. The results for Fmincon
are significantly worse both in terms of convergence and overall accuracy. Consequently, the GA
was used in the remaining validation cases. It should be noted that all of the SOMA solutions
for this case were stable for Re= 20.

6.2 Results for Flow Past a Cylinder
Inlet conditions for this validation case were M∞ = 0.5 and Re= 300. The surface geometry

was a circular cylinder of radius r= 0.5 centered at the origin. SOMA used np= 8,349 points. A
comparison of the results is given in the form of time histories of the coefficients for both SOMA
and reference [24]. As shown in Fig. 6, periodic unsteady values for the lift and drag coefficients
(cl and cd) match well with the comparison data.

6.3 Results for Inviscid Compressible Flow Past an Airfoil
For this validation case the conditions used were angle of incidence α = 1.25◦ and M∞ =

0.8. Results from a finite volume scheme [25] are compared against those from SOMA using
np= 11,369 points. Fig. 7 shows the Mach contours for the (a) finite volume method and (b) the
SOMA method. Fig. 8 compares the distribution of the pressure coefficient (cp) along the top and
bottom of the airfoil. Visual inspection of Figs. 7 and 8 shows good agreement between the FVM
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and SOMA especially in the cp plots with respect to value distribution, shock locations, and lack
of over- and undershoots at the shock locations. Quantitatively, Table 1 favorably compares the
normalized chord location (x/c) of the upper and lower shocks.

Figure 5: Rate of convergence-convection-diffusion equation with Re = 20. (a) Fmincon (b)
Pattern search (c) Genetic algorithm
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Figure 6: Time history of the circular cylinder’s lift and drag coefficients. (a) Reference [24] (b)
SOMA

Figure 7: NACA 0012 mach contours. (a) Finite volume [25] (b) SOMA

6.4 Results for Inviscid Compressible Flow Past a Swept Wing
For this validation case the conditions used were α = 3.06◦ and M∞ = 0.8358. Geometry

specifics for the ONERA M6 wing are available in reference [26] including taper, sweep, and span-
wise pressure tap distribution. Visual inspection of the pressure coefficient (CP) contours on the
upper surface of the wing in Fig. 9 show good agreement between an unstructured finite element
method [27] and SOMA (np = 72,791).
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Figure 8: NACA 0012 surface pressure coefficient distribution along the normalized chord (x/c).
(a) Finite volume [25] (b) SOMA

Table 1: NACA 0012 shock data conditions: α = 1.25◦ and M∞ = 0.8. Finite volume [25] and
SOMA

Method xupper/c xlower/c

FVM 0.610 0.32
SOMA 0.608 0.32

Figure 9: ONERA M6 wing surface CP contours. (a) Unstructured FEM [27], (b) SOMA

In order to show the level of quantitative agreement, chord-wise distributions of the surface
CP about the upper (U) and lower (L) surfaces of the wing are compared at span-wise locations
z/b= 0.65 and z/b= 0.80. Results from a SOMA simulation are shown in Fig. 10 alongside the
CP data from reference [26] and from a structured finite volume (STAR) simulation [1]. These
figures show general agreement with the AGARD 138 data at both span-wise locations. However,
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both methods also show over- and under-shoots at x/c locations. At the z/b= 0.80 location both
methods missed the middle ridge. Reference [26] notes that even computer codes that included
viscosity in their approximation missed the middle ridge.

Figure 10: Comparison of inviscid CP along ONERA M6 wing. (a) z/b= 0.65, (b) z/b= 0.80
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6.5 Results for Turbulent Flow over a Flat Plate
The inflow conditions for the turbulent flow over a flat plate were α = 0◦,M∞ = 0.2 and

ReL = 5 × 106, which allows for calculating stagnation temperature and pressure values from
isentropic relations. Extrapolation of static pressure to the boundary allows for calculation of the
primitive variable values at the inlet. It should be noted that in ReL, the L was defined to be the
half the length of the flat plate as in the NASA comparison test case. Symmetry conditions are
enforced along the boundary between the inflow and the front of the plate. Outflow conditions
were determined from a back pressure equal to the reference pressure, the extrapolation of density
and velocity components, and the calculation of energy from those values.

Results from the NASA test case were given using a 545 × 385 grid (equivalent to np =
209,825). With the convergence of SOMA demonstrated in Section 6.1, the code ran on a domain
of only np = 52,689 to demonstrate that SOMA can recover accurate results with a sparser
discretization than reference [22]. To facilitate comparison, results from both SOMA and the
NASA solver were plotted on an x, y grid in Matlab using the same normalizations, contours,
and coloring schemes found in reference [22]. Fig. 11 shows the turbulent kinetic energy

(
k/a2∞

)
.

Turbulent viscosity (μt/μ∞) is shown in Fig. 12 and turbulent eddy frequency (ωμ∞) /
(
ρ∞a2∞

)
is shown in Fig. 13. Despite the relative sparsity of the grid SOMA used all three figures display
good agreement.

Figure 11: Turbulent kinetic energy, k/a2∞. (a) Reference [22], (b) SOMA
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Figure 12: Turbulent viscosity, μt/μ∞. (a) Reference [22], (b) SOMA

Figure 13: Turbulent eddy frequency, ωμ∞/
(
ρ∞a2∞

)
. (a) Reference [22], (b) SOMA

7 Conclusion and Future Work

Conventional techniques in numerical modeling can still require significant man hours for grid
generation along with the need to invert large, sometimes dense, block diagonal matrices. With
significant reduction in user interaction time the Sequentially Optimized Meshfree Approximation
(SOMA) method serves as a new computational fluid dynamics solver eliminating the need for the
previously mentioned matrices.

Unlike conventional techniques that require grids or volumes along with the corresponding
connectivity data, SOMA only requires the coordinates of the evaluation points to model the
flow. SOMA approximates the dependent variables incrementally through a greedy algorithm
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and minimization of the scalar form of the governing equations. As a result, the derivation
and inversion of a condensed “mass” matrix are unnecessary. Reduction in the amount of user
interaction time allows SOMA to improve as computing power continues to increase.

Although the three-dimensional validation case was restricted to the Euler equations, SOMA
has been successfully applied to three-dimensional compressible laminar flow problems [1,2]. Since
additional flow variables can significantly enlarge the optimization search space, improvements to
the sequential optimization routine will be needed to handle a three-dimensional turbulence model.
A possible solution for future work will be the investigation of massively parallel pattern search
methods supported by parallel processing hardware.
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