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ABSTRACT

The sparrow search algorithm (SSA) is a newly proposed meta-heuristic optimization algorithm based on the
sparrow foraging principle. Similar to other meta-heuristic algorithms, SSA has problems such as slow convergence
speed and difficulty in jumping out of the local optimum. In order to overcome these shortcomings, a chaotic
sparrow search algorithm based on logarithmic spiral strategy and adaptive step strategy (CLSSA) is proposed in
this paper. Firstly, in order to balance the exploration and exploitation ability of the algorithm, chaotic mapping is
introduced to adjust the main parameters of SSA. Secondly, in order to improve the diversity of the population and
enhance the search of the surrounding space, the logarithmic spiral strategy is introduced to improve the sparrow
search mechanism. Finally, the adaptive step strategy is introduced to better control the process of algorithm
exploitation and exploration. The best chaotic map is determined by different test functions, and the CLSSA
with the best chaotic map is applied to solve 23 benchmark functions and 3 classical engineering problems. The
simulation results show that the iterative map is the best chaotic map, and CLSSA is efficient and useful for
engineering problems, which is better than all comparison algorithms.
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1 Introduction

The optimization problem is a common real-world problem that requires seeking the maxi-
mum or minimum value of a given objective function and they can be classified as single-objective
optimization problems and multi-objective optimization problems [1,2]. There are two types of
methods commonly used for optimization problems. One type is the traditional gradient-based
approach. One is the metaheuristic algorithm [3,4]. Generally speaking, the traditional gradient-
based methods often encounter difficulties in solving complex engineering problems [5]. The
existing research shows that the traditional mathematical or numerical programming methods are
difficult to deal with many non-differentiable and discontinuous problems efficiently [6]. In order
to overcome these shortcomings, a kind of metaheuristic optimization algorithm is proposed and
used to solve global optimization problems. Metaheuristic algorithms are usually divided into
three categories: evolutionary algorithms, physics-based algorithms, and swarm-based algorithms.
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Evolutionary algorithm is a kind of algorithm inspired by the mechanism of natural evolution.
Genetic Algorithm (GA) [7] based on Darwin’s theory of survival of the fittest is one of the most
famous evolutionary algorithms. There are also some other evolutionary algorithms such as Evo-
lution Strategy (ES) [8], Evolutionary Programming (EP) [9], Differential Evolution (DE) [10] and
Biogeography Based Optimization (BBO) [11]. Physical-based algorithms are based on physical
concepts to establish optimization models, such as Simulated Annealing (SA) [12], Gravity Search
Algorithm (GSA) [13], Nuclear Reaction Optimization (NRO) [14], and Black Hole Algorithm
(BHA) [15]. Swarm-based algorithms based on the characteristics of group behavior are the
focus of research in recent years. These algorithms establish optimization models by imitating the
behavior of gregarious animals [16]. Particle Swarm Optimization (PSO) [17] is the most well-
known swarm intelligence optimization algorithm among these algorithms and has been applied to
many fields. Other swarm intelligence optimization algorithms include Ant Colony Optimization
(ACO) [18], Monarch Butterfly Optimization (MBO) [19], Moth Search Algorithm (MSA) [20],
and Harris Hawk Optimization (HHO) [21]. In addition to the algorithms mentioned above, there
are more algorithms proposed, such as Earthworm Optimisation Algorithm (EOA) [22], Elephant
Herding Optimization (EHO) [23] and Slime Mould Algorithm (SMA) [24]. Besides proposing
new algorithms to solve the optimization problems, more researchers also solve them by modifying
existing algorithms. Gao et al. [25] propose a new selection mechanism to improve the DE perfor-
mance and apply it to solve the job-shop scheduling problem. To enhance the population diversity
of the equilibrium optimizer, Tang et al. [26] suggested the utilization of distribution estimation
strategies and selection pools and perform well in solving the UAV path planning problem. Chen
et al. [27] enhanced the performance of neighborhood search algorithm by introducing ad hoc
destroy/repair heuristics and a periodic perturbation procedure, with successful solution of the
dynamic vehicle routing problem Wang et al. [28] proposed a new newsvendor model and apply a
histogram-based distribution estimation algorithm to solve it. However, the no free lunch theory
states that no single algorithm can solve all problems well [29]. This motivates us to continuously
propose and improve algorithms to be applicable to more problems. SSA is a new swarm-based
optimization algorithm based on sparrow foraging principle proposed by XUE in 2020 [30], which
has the advantages of simple structure and few control parameters. In SSA, each sparrow finds
the best position by looking for food and anti-predation behavior.

However, similar to other metaheuristic algorithms, there are also problems such as reduc-
tion of population diversity and early convergence in the late iterations when solving complex
optimization problems.

Based on the discussion above, a chaos sparrow search algorithm based on logarithmic spiral
search strategy and adaptive step size strategy (CLSSA) is proposed in this paper, which employs
three strategies to enhance the global search ability of SSA. In CLSSA, different chaotic maps
are used to change the random values of the parameters in the SSA. Logarithmic spiral search
strategy is used to expand the search space and enhance population diversity. Two adaptive step
size strategies are applied to adjust the development and exploration ability of the algorithm. To
verify the performance of CLSSA, 23 benchmark functions and three engineering problems were
used for the tests. Simulation results show that the CLSSA proposed in this paper is superior to
the existing methods in terms of accuracy, convergence speed and stability.

The rest of this article is organized as follows: Section 2 introduces the principle and structure
of SSA. Section 3 introduces the improvement strategy of CLSSA. Section 4 introduces the
experimental results and analysis based on benchmark functions and engineering problems. In
Section 5, the full text is summarized, and the direction of further research is pointed out.
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2 The Basic Sparrow Search Algorithm

SSA is a novel swarm-based optimization algorithm that mainly simulates the process of
sparrow foraging. The sparrow foraging process is a kind of discoverer-follower model, and the
detection and early warning mechanism is also superimposed. Individuals with good fitness in
sparrows are the producers, and other individuals are the followers. At the same time, a certain
proportion of individuals in the population are selected for detection and early warning. If a
danger is found, these individuals fly away to find new position.

There are producers, followers, and guards in SSA. The location update is per-formed
according to their respective rules. The update rules are as follows:

Xt+1
i, j =

⎧⎨
⎩Xt

i, j× exp
( −i

α× itermax

)
if R2 < ST

Xt
i, j+Q×L if R2 ≥ ST

(1)

where t indicates the current iteration, Xt
i, j represents the value of the jth dimension of the ith

sparrow at iteration t. itermax is a constant with the largest number of iterations. α ∈ (0,1] is
a random number. R2(R2 ∈ (0,1)) and ST(ST ∈ [0.5,1)) represent the alarm value and the safety
threshold respectively, where R2 is randomly generated and ST is usually set to 0.8. Q is a random
number which obeys normal distribution. L shows a matrix of 1×D for which each element
inside is 1.

Xt+1
i, j =

⎧⎪⎨
⎪⎩
Q× exp

(
Xt
worst−Xt

i, j

i2

)
if i> n/2

Xt+1
p + |Xt+

i, j −Xt+1
p | ×A+ ×L if others

(2)

where Xp indicates the best position occupied by the discoverer, Xworst indicates the current worst
position, and A is a matrix with a row of multi-dimensional elements of 1 or −1.

Xt+1
i, j =

⎧⎪⎨
⎪⎩
Xt
best+β × |Xt

i, j−Xt
best| if fi > fg

Xt
i, j+K ×

( |Xt
i, j−Xt

worst|
(fi− fw)+ ε

)
if fi = fg

(3)

where Xbest is the current global best position, β is a step size control parameter that obeys
Gaussian distribution, K ∈ (−1, 1) is a random number, fi is the fitness of the current sparrow,
fg and fw is the best fitness and the worst fitness at present, and εis a constant to avoid zero
denominator. The pseudo code of SSA is shown in Algorithm 1:

Algorithm 1: The framework of the SSA.
Input:
itermax: the maximum iteration
PD: the number of producers
SD: the number of sparrows who perceive the danger
R2: the alarm value
N: the number of sparrows
Initialize a population of N sparrows and define its relevant parameters.

(Continued)
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Algorithm 1: (Continued)

Output: Xbest, fg.
1: while (t< itermax)
2: Rank the Fitness Values and Find the Current Best
individual and the current worst individual.
3: R2 = rand
4: for i= 1: PD
5: Using Eq. (1) update the sparrow’s location;
6: end for
7: for i= (PD + 1): n
8: Using Eq. (2) update the sparrow’s location;
9: end for
10: for l= 1: SD
11: Using Eq. (3) update the sparrow’s location;
12: end for
13: Get the current new location;
14: If the new location is better than before, update it;
15: t= t + 1
16: end while
17: return Xbest, fg.

3 The Improved Sparrow Search Algorithm

In Section 3, we introduce a new SSA variant called CLSSA, which can improve the per-
formance of the basic SSA. We introduce three strategies to improve the SSA algorithm. Firstly,
we use chaotic map sequence to replace the random parameter R2 of the algorithm. Secondly,
we use the combination of logarithmic helix strategy and original search strategy to balance the
discoverer’s development and exploration ability. finally, we use two adaptive step size strategies
to update the alert position and adjust the algorithm exploitation and exploration ability.

3.1 Chaotic Maps
Chaos is a random phenomenon in nonlinear dynamic systems, which is regular and random,

and is sensitive to initial conditions and ergodicity. According to these characteristics, chaotic
graphs represented by different equations are constructed to update the random variables in
the optimization algorithm. Table 1 and Fig. 1 show ten chaotic maps which are used in the
experiments. These ten chaotic maps have different effects in generating numerical values. More
details about the 10 chaotic maps can be found in the literature [31,32]. Many researchers have
demonstrated the effectiveness of chaotic maps in their studies, investigating the contribution of
chaotic operators in the HHO [33], Krill Herd Algorithm (KHA) [34] and WOA [35].

3.2 Logarithmic Spiral Strategy
Through experiments, it is found that the original SSA is easy to fall into the local optimum,

which leads to premature convergence. As shown in Fig. 2b, each iteration update of its discoverer
approaches the individual optimal solution straight line, which has a strong exploitation ability,
but loses the exploration of the nearby search space in the process of approaching the optimal
individual, the population diversity is reduced, and it is easy to fall into the local optimum. There-
fore, we introduce a logarithmic spiral search model [21] to solve this problem. The mathematical
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model is described as follows:

Xt
pbest= |Xt

i, j−Xt
pbest| · eal · cos (2πθ)+Xt

pbest (4)

l= 2(1− t/itermax)− 1 (5)

where a is constant that determines the shape of the spiral, whose value is 1, l is a parameter
that linearly decreases from 1 to −1, and Xpbest is the optimal position of the current iteration
individual.

Table 1: Description of the ten chaotic maps used

ID Mapping type Function

1 Chebyshev map xi+1 = cos(i cos−1(xi))
2 Circle map xi+1 = mod (xi+ b− (a/2πxk)), 1,a= 0.5 and b= 0.2

3 Gauss map xi+1 =
{
1 xi = 0

1/ mod (xi, 1) otherwaise
4 Iterative map xi+1 = sin(aπ/xi), a= 0.7
5 Logistic map xi+1 = axi(1−xi), a= 4

6 Precewise map xi+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
xi/p 0≤ xi < p

(xi− p)/(0.5− p) p≤ xi < 0.5

(1−xi− p)/(0.5− p) 0.5≤ xi < 1− p

(1−xi)/(p) 1− p≤ xi < 1
7 Sine map xi+1 = a/4 · sin(πxi), a= 4
8 Singer map xi+1 =μ(7.86xi− 23.32xi2+ 28.75xi3− 13.301875xi4),μ= 1.07
9 Sinusoidal map xi+1 = axi2 sin(πxi), a= 2.3

10 Tent map xi+1 =
{
xi/0.7 xi< 0.7

10/3× (1−xi) xi≥ 0.7

Figure 1: Chaotic maps visualization
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Figure 2: The illustration of two search model (a) the logarithmic spiral search model (b) the
original search model

It can be seen from the Fig. 2a that when individuals of each generation update their
positions, they gradually approach in a spiral shape, increasing the search for the surrounding
space, maintaining the diversity of the population, and enhancing the exploration ability of the
algorithm. Based on this analysis, the position update formula is adjusted as follows:

Xt
pbest=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xt
pbest× exp

( −i
α× itermax

)
if R2< ST & if R3< p

|Xt
i, j−Xt

pbest| × eal × cos (2πθ)+Xt
pbest if R2< ST & if R3 ≥ p

Xt
i, j+Q×L if R2 ≥ ST

(6)

where R3 is a uniformly distributed random number from 0 to 1, p is a constant and the value
is 0.5.

3.3 Adaptive Step Strategy
In the SSA, two strategies are used for the location update of the guards. The Gaussian

distribution is used to generate the step size for individuals with poor fitness. It can be seen from
the Fig. 3 that the probability of the Gaussian distribution producing a smaller step size is higher.
Conducive to the global search of the algorithm. The random step strategy is used for individuals
with better fitness, and there is still a greater probability of large step in the later iterations, which
is not conducive to algorithm convergence. Based on the above analysis, in order to balance the
exploitation and exploration capabilities of the algorithm and enhance the convergence speed of
the algorithm, an adaptive step size update formula is proposed for two strategies:

β =
⎧⎨
⎩
Cauchyrnd( ) if fitSELmean(t)≥ fitSELmean(t+ 1)

Gaussianrnd( ) if fitSELmean(t) < fitSELmean(t+ 1)
(7)

K = (2rand− 1)× (1− t/itermax)
1/2 (8)
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Xt+1
i, j =

⎧⎪⎪⎨
⎪⎪⎩
Xt
best+β × |Xt

i,j−Xt
best| if fi > fg

Xt
i, j+K ×

( |Xt
i, j−Btworst|

(fi− fw)+ ε

)
if fi = fg

(9)

where fitSELmean is the average fitness of the dominant population and SEL is the ratio of the
dominant population which is 0.35.

Figure 3: Gauss-cauchy distribution density function

Figure 4: Comparison of new and old step strategies

For the individuals with poor fitness, when the dominant population of the updated sparrow
is better than the dominant population of the previous generation, the larger step size of the



338 CMES, 2022, vol.130, no.1

Cauchy distribution is used to make the poor individual approach to the dominant population
quickly; while when the dominant population of the updated sparrow is weaker than the dominant
population of the previous generation, indicating that the renewal effect of this generation is not
good, the smaller step size of Gaussian distribution is used to strengthen the search of the space
near the individual. For individuals with better fitness, the adaptive step strategy is used. As can
be seen from the Fig. 4, the large step size produced by the large probability in the early stage
is beneficial for the individual to jump out of the local optimization, maintain the population
diversity, increase the probability of small step size in the later stage, and impose only a small
disturbance on the dominant individual, which is conducive to the convergence of the algorithm.

The pseudo code and flow chart of CLSSA is shown in Algorithm 2 and Fig. 5.

Algorithm 2: The framework of the CLSSA.
Input:
itermax: the maximum iterations
PD: the number of producers
SD: the number of sparrows who perceive the danger
R2: the alarm value
N: the number of sparrows
Initialize a population of N sparrows and define its relevant parameters.
Output: Xbest, fg.
1: while (t< itermax)
2: Rank the fitness values and find the current best
individual and the current worst individual.
3: Using iterative map update the R2
4: for i= 1: PD
5: Using Eq. (6) update the sparrow’s location;
6: end for
7: for i= (PD + 1): n
8: Using Eq. (2) update the sparrow’s location;
9: end for
10: for l= 1: SD
11: Using Eq. (9) update the sparrow’s location;
12: end for
13: Get the current new location;
14: If the new location is better than before, update it;
15: t= t + 1
16: end while
17: return Xbest, fg.

4 Experimental Results and Discussion

In Section 4, the benchmark function will be used to evaluate various chaotic map combi-
nation algorithms, and then determine which chaotic map sequence to replace the original SSA
parameters. Secondly, we need to explore the impact of different improvement strategies in CLSSA
on the optimization performance of the algorithm. Finally, we evaluate the performance of the
CLSSA and compare the results with other latest algorithms.
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Figure 5: Flow chart of CLSSA

4.1 Introduction of Benchmark Function
In this paper, 23 classical test functions are employed, including 7 unimodal functions, 6

multimodal functions and 10 fixed dimensional functions. The above test functions are all single-
objective functions. The unimodal function F1–F7 has only one global optimal value, which is
mainly used to test the development ability of the algorithm; the multimodal function has multiple
local minima, which can be used to test the exploration ability of the algorithm. The benchmark
function is shown in Table 2. The 3D view of each test function is shown in Figs. 6a–6d.

Table 2: Benchmark functions (M: Multimodal, U: Unimodal, S: Separable, N: Non-separable, D:
Dimension, Range: Limits of search space, Optimum: Global optimal value)

Test function Name Type Dim Range Optimum

f01(x)=
∑D

i=1 x
2
i Sphere US 30 [−100, 100] 0

f02(x)=
∑D

i=1 |xi| +
∏D
i−1 |xi| Schwefel 2.22 UN 30 [−10, 10] 0

f03(x)=
∑D

i=1

(∑D
j−1 xi

)2
Schwefel 1.2 UN 30 [−100, 100] 0

(continued)
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Table 2 (continued)

Test function Name Type Dim Range Optimum

f04(x)=maxi{|xi|, 1≤ i≤D} Schwefel 2.21 US 30 [−100, 100] 0

f05(x)=
∑D

i=1 100(x
2
i+1 −x2i )

2+ (xi − 1)2 Rosenbrock UN 30 [−30, 30] 0

f06(x)=
∑D

i=1 (�xi + 0.5�)2 Step US 30 [−100, 100] 0

f07(x)=
∑D

i=1 ix
4
i + random[0, 1) Quartic US 30 [−1.28, 1.28] 0

f08(x)=
∑D

i=1−xi sin(
√|xi|) Schwefel 2.26 MS 30 [−500, 500] −418.9829∗D

f09(x)=
∑D

i=1 (x2i − 10cos(2πxi)+ 10) Rastrigin MS 30 [−5.12, 5.12] 0

f10(x)= 20+ e− 20exp(−0.2
√

1
D
∑D

i=1 x
2
i )−

exp( 1
D
∑D

i=1 cos(2πxi))

Ackley MS 30 [−32, 32] 8.8818e−16

f11(x)= 1
4000

∑D
i=1 (x2i )−

(∏D
i=1 cos(

xi√
i
)
)
+ 1 Griewank MN 30 [−600, 600] 0

f12(x)= π
D {10sin2(πyi)+

∑D−1
i−1 (yi − 1)2

[1+ 10sin2(πyi+1)]+ (yD− 1)}
+∑D

i−1 u(xi, 10, 100,4)yi = 1+ xi+1
4

u(xi,a,k,m)=

⎧⎪⎨
⎪⎩
k(xi − a)m xi > a

0− a< xi < a

k(−xi − a)mxi < a

Penalized MN 30 [−50, 50] 0

f13(x)= 0.1{sin2(3πxi)+
∑D

i=1 (xi − 1)2

[1+ sin2(3πxi)]+ (xD− 1)2[1+
sin2(2πxD)]} +∑D

i−1 u(xi, 5, 100,4)

Penalized2 MN 30 [−50, 50] 0

f14(x)=
(

1
500 +

∑25
j=1

1
j+∑2

i=1 (xi−aij)6
)−1

Foxholes MS 2 [−65.53, 65.53] 0.998004

f15(x)=
∑11

i=1

(
ai − x1(b2i+bix2)

b2i +bix3+x4

)−1
Kowalik MS 4 [−5, 5] 0.0003075

f16(x)= 4x21 − 2.1x41 + 1/3x61+ x1x2− 4x22 +x42 Six Hump
Camel Back

MN 2 [−5, 5] −1.03163

f17(x)=(
x2 − 5.1

4π2 x
2
1 + 5

π x1 − 6
)2+ 10

(
1− 1

8π

)
cosx1+ 10

Branin MS 2 [−5, 10]×[0, 15] 0.398

f18(x)= [1+ (x1+ x2+ 1)2(19− 14x1 + 3x21−
14x2 + 6x1x2+ 3x22)]

×[30+ (2x1 − 3x2)2(18− 32x1 + 12x21 + 48x2−
36x1x2 + 27x22)]

Goldstein Price MN 2 [−5, 5] 3

f19(x)=−∑4
i=1 (ci exp(−∑3

j−1 aij(xj − pij)2) Hartman 3 MN 3 [0, 1] −3.8628

f20(x)=−∑4
i=1 (ci exp(−∑6

j−1 aij(xj − pij)2) Hartman 6 MN 6 [0, 1] −3.32

f21(x)=−∑5
i=1 [(X − ai)(X − ai)T + ci]

−1
Langermann 5 MN 4 [0, 10] −10.1532

f22(x)=−∑7
i=1 [(X − ai)(X − ai)T + ci]

−1
Langermann 7 MN 4 [0, 10] −10.4029

f23(x)=−∑10
i=1 [(X − ai)(X − ai)T + ci]

−1
Langermann 10 MN 4 [0, 10] −10.5364
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Figure 6: (continued)
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Figure 6: 3D view of benchmark functions (a) 3D view of benchmark F1–F6 (b) 3D view of
benchmark F7–F12 (c) 3D view of benchmark F13–F18 (d) 3D view of benchmark F19–F23

4.2 Chaos Map Test
Ten kinds of chaotic maps are combined with SSA algorithm to form new algorithms, the first

chaotic map combined algorithm is named SSA-1, the second chaotic map combined algorithm is
named SSA-2, and so on. The ten combined algorithms are compared with SSA in the benchmark
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function. In order to make a fair comparison, on the same experimental platform, the number
of populations is set to 50, and the maximum number of iterations is 300. Except for using
chaotic sequences to replace parameter R2, the other parameters are consistent with the original
literature, and the initial values of chaotic mapping sequences are set to 0.7. All the algorithms
are implemented in MATLAB R2016a and the test environment is set up on a computer with
AMD R7 4700U CPU@1.80 GHz 16GB RAM, running on Windows 10. The average value is
used to measure the accuracy of the algorithm, and the standard deviation is used to measure
the robustness of the algorithm, so the average value and standard deviation are used to measure
the performance of the algorithm. The results are recorded in Table 3. The last row in this table
presents the count of the better than, equal to or worse than SSA obtained by each chaotic map
over all functions.

It can be observed from Table 3 that SSA-8 (Singer map) outperforms or equals SSA in
14 test functions. SSA-3 (Gauss map), SSA-9 (Sinusoidal map) and SSA-10 (Tent map) perform
better than or equal to SSA in 15 test functions. SSA-5 (Logistic map), SSA-6 (Precewise map)
and SSA-7 (Sine map) perform better than or equal to SSA in 16 test functions. SSA-1 (Chebyshev
map), SSA-2 (Circle map) and SSA-4 (Iterative map) are superior or equal to SSA in 17 test
functions.

In order to further analyze the optimization ability of the eleven algorithms, the results of
these algorithms in each test function are compared and sorted according to the mean value of
Table 3. The results are shown in Table 4, and the average sorting results of each algorithm in
the last behavior of the table. SSA-4 ranks first, indicating that iterative mapping is the best
alternative to the original parameter R2. In addition to SSA-4, SSA-2, SSA-3, SSA-5, and SSA-
7 also rank higher than SSA. The above analysis shows that using chaotic map sequence to
replace the random parameter R2 in the algorithm can better improve the algorithm’s optimization
performance, and each chaotic map sequence has different improvement effects on the algorithm.
In order to visually show the performance of each algorithm in different test functions, a block
diagram is used to plot the ranking results in Table 4, as shown in Fig. 7. The larger the area
of the circle in the Fig. 7, the darker the color, indicating that the algorithm has a stronger
performance in this test function, and the numbers in the figure indicate the ranking of each
algorithm in each test function. It can be seen from Fig. 7 that SSA-4 performs better in the test
function, and only performs poorly on F12 and F14.

In order to further prove the effectiveness of using chaotic sequences to replace SSA algorithm
parameter, Figs. 8 and 9 list the convergence curves and box plots of eleven algorithms. It can
be seen from Fig. 8 that SSA performs generally in each test function, and all chaotic mapping
combination algorithms are better than SSA in convergence speed and convergence accuracy. The
box diagram is used to show the distribution of the solutions of each algorithm. It can be seen
from Fig. 9 that the optimal, median and worst values of the improved algorithm are better than
those of SSA in most functions.

Combined with the above analysis, the chaotic mapping sequence can promote the improve-
ment of SSA performance, and iterative mapping has the best effect on improving the performance
of the SSA. Therefore, in the next part of the CLSSA performance test, the iterative mapping
sequence is used to replace the random value parameter R2 in the SSA.
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Table 3: Results of 10 chaotic maps on all benchmark functions on SSA

ID SSA SSA-1 SSA-2 SSA-3 SSA-4 SSA-5 SSA-6 SSA-7 SSA-8 SSA-9 SSA-10

F1 Mean 1.72E-129 3.58E-114 7.16E-147 5.43E-156 5.83E-128 9.76E-116 6.93E-112 6.58E-124 2.74E-89 7.39E-94 1.39E-120
Std 9.40E-129 1.96E-113 2.73E-146 2.45E-155 3.19E-111 5.35E-115 3.76E-127 3.60E-123 1.50E-88 4.05E-93 7.64E-120

F2 Mean 1.78E-53 4.33E-54 2.22E-69 3.61E-75 1.77E-66 4.26E-56 1.21E-71 1.43E-62 5.11E-38 8.90E-52 1.02E-60
Std 9.73E-66 1.49E-53 1.22E-68 1.98E-74 9.71E-53 2.30E-55 6.45E-71 7.68E-62 2.80E-37 3.42E-51 5.60E-60

F3 Mean 1.04E-88 1.82E-71 9.32E-90 1.84E-116 4.05E-82 1.12E-83 7.00E-91 3.29E-80 4.80E-59 1.63E-72 1.32E-96
Std 5.70E-88 9.96E-82 5.10E-89 1.00E-115 2.22E-70 6.15E-83 3.83E-90 1.80E-79 2.63E-58 8.93E-72 5.56E-96

F4 Mean 9.18E-79 2.12E-60 2.77E-73 7.99E-97 5.34E-66 4.10E-54 3.08E-61 2.41E-61 5.70E-46 2.36E-47 8.31E-64
Std 5.03E-78 1.16E-59 1.52E-72 4.02E-96 2.92E-65 2.08E-53 1.68E-60 1.32E-60 3.12E-45 1.30E-46 3.27E-63

F5 Mean 1.65E-04 1.50E-04 3.15E-04 1.79E-04 1.24E-04 1.16E-04 1.20E-04 1.21E-04 1.09E-04 8.45E-05 1.11E-04
Std 3.36E-04 5.73E-04 7.26E-04 4.46E-04 2.16E-04 1.95E-04 1.97E-04 2.51E-04 1.90E-04 1.96E-04 2.00E-04

F6 Mean 5.81E-08 8.00E-08 3.81E-08 3.36E-08 4.50E-08 5.23E-08 6.19E-08 1.85E-07 2.27E-07 6.58E-08 5.57E-08
Std 9.15E-08 1.52E-07 5.87E-08 6.62E-08 9.31E-08 8.24E-08 1.55E-07 4.43E-07 4.66E-07 1.03E-07 1.37E-07

F7 Mean 3.49E-04 4.32E-04 4.46E-04 4.14E-04 3.36E-04 5.13E-04 4.15E-04 5.22E-04 4.37E-04 5.32E-04 6.03E-04
Std 2.81E-04 4.05E-04 3.12E-04 3.93E-04 2.85E-04 4.20E-04 4.29E-04 4.80E-04 3.49E-04 3.61E-04 4.67E-04

F8 Mean -8.19E+03 -7.93E+03 -8.15E+03 -8.16E+03 -8.21E+03 -8.21E+03 -8.12E+03 -8.03E+03 -8.09E+03 -8.27E+03 -8.08E+03
Std 6.62E+02 7.21E+02 6.60E+02 6.95E+02 7.76E+02 5.45E+02 5.86E+02 4.94E+02 7.59E+02 6.80E+02 6.19E+02

F9 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F10 Mean 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F11 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F12 Mean 3.16E-09 3.05E-09 4.30E-09 1.68E-09 4.77E-09 1.78E-09 7.68E-10 4.42E-09 2.99E-09 5.57E-09 6.23E-09
Std 5.79E-09 5.65E-09 1.41E-08 3.14E-09 9.89E-09 2.65E-09 1.53E-09 8.63E-09 5.75E-09 1.60E-08 1.29E-08

F13 Mean 5.12E-08 9.81E-08 2.00E-08 6.78E-08 3.39E-08 1.36E-07 1.31E-08 3.03E-08 3.99E-08 3.50E-08 2.29E-08
Std 1.50E-07 3.33E-07 4.66E-08 1.60E-07 5.96E-08 3.90E-07 2.01E-08 5.49E-08 6.15E-08 5.93E-08 5.03E-08

F14 Mean 4.51E+00 5.55E+00 6.19E+00 4.95E+00 5.87E+00 5.93E+00 5.80E+00 3.15E+00 5.54E+00 5.32E+00 7.10E+00
Std 5.07E+00 5.44E+00 5.79E+00 5.56E+00 5.57E+00 5.52E+00 5.61E+00 4.37E+00 5.46E+00 5.35E+00 5.47E+00

F15 Mean 3.08E-04 3.08E-04 3.08E-04 3.18E-04 3.08E-04 3.08E-04 3.08E-04 3.08E-04 3.08E-04 3.08E-04 3.08E-04
Std 4.44E-08 9.86E-07 4.64E-07 5.56E-05 1.27E-06 5.17E-07 2.58E-06 4.41E-07 8.24E-07 3.34E-06 2.78E-07

F16 Mean -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00
Std 5.53E-16 6.12E-16 5.90E-16 5.76E-16 5.53E-16 5.98E-16 5.68E-16 5.61E-16 5.98E-16 6.12E-16 6.12E-16

F17 Mean 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F18 Mean 3.90E+00 3.00E+00 3.00E+00 3.90E+00 3.00E+00 3.00E+00 5.70E+00 3.90E+00 6.60E+00 3.00E+00 4.80E+00
Std 4.93E+00 2.87E-15 2.11E-15 4.93E+00 2.11E-15 1.84E-15 8.24E+00 4.93E+00 9.34E+00 2.51E-15 6.85E+00

F19 Mean -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00
Std 2.42E-15 2.39E-15 2.39E-15 2.34E-15 2.39E-15 2.37E-15 2.36E-15 2.39E-15 2.40E-15 2.34E-15 2.48E-15

F20 Mean -3.24E+00 -3.27E+00 -3.27E+00 -3.25E+00 -3.26E+00 -3.25E+00 -3.25E+00 -3.29E+00 -3.29E+00 -3.26E+00 -3.28E+00
Std 5.70E-02 6.03E-02 5.99E-02 5.83E-02 6.05E-02 5.92E-02 5.99E-02 5.54E-02 5.54E-02 6.05E-02 5.83E-02

F21 Mean -8.79E+00 -9.81E+00 -8.62E+00 -7.94E+00 -9.64E+00 -9.81E+00 -9.13E+00 -8.79E+00 -9.81E+00 -9.47E+00 -9.13E+00
Std 2.29E+00 1.29E+00 2.38E+00 2.57E+00 1.56E+00 1.29E+00 2.07E+00 2.29E+00 1.29E+00 1.76E+00 2.07E+00

F22 Mean -8.81E+00 -1.02E+01 -8.45E+00 -8.28E+00 -9.87E+00 -1.00E+01 -8.99E+00 -1.02E+01 -1.00E+01 -9.87E+00 -9.69E+00
Std 2.48E+00 9.70E-01 2.61E+00 2.65E+00 1.62E+00 1.35E+00 2.39E+00 9.70E-01 1.35E+00 1.62E+00 1.84E+00

F23 Mean -9.82E+00 -1.05E+01 -9.82E+00 -9.09E+00 -1.04E+01 -1.02E+01 -9.82E+00 -9.82E+00 -1.05E+01 -9.82E+00 -9.82E+00
Std 1.87E+00 9.27E-04 1.87E+00 2.43E+00 9.87E-01 1.37E+00 1.87E+00 1.87E+00 7.86E-07 1.86E+00 1.87E+00

‘+/=/− 8/9/6 9/8/6 8/7/8 11/6/6 10/6/7 10/6/7 7/9/9 8/6/9 9/6/8 9/6/8
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Table 4: Ranking of 11 algorithms in the benchmark function

ID SSA SSA-1 SSA-2 SSA-3 SSA-4 SSA-5 SSA-6 SSA-7 SSA-8 SSA-9 SSA-10

F1 3 8 2 1 4 7 9 5 11 10 6
F2 9 8 3 1 4 7 2 5 11 10 6
F3 5 10 4 1 7 6 3 8 11 9 2
F4 2 8 3 1 4 9 7 6 11 10 5
F5 9 8 11 10 7 4 5 6 2 1 3
F6 6 9 2 1 3 4 7 10 11 8 5
F7 2 5 7 3 1 8 4 9 6 10 11
F8 4 11 6 5 3 2 7 10 8 1 9
F9 1 1 1 1 1 1 1 1 1 1 1
F10 1 1 1 1 1 1 1 1 1 1 1
F11 1 1 1 1 1 1 1 1 1 1 1
F12 6 5 7 2 9 3 1 8 4 10 11
F13 8 10 2 9 5 11 1 4 7 6 3
F14 2 6 10 3 8 9 7 1 5 4 11
F15 1 8 5 11 7 3 9 4 6 10 2
F16 1 1 1 1 1 1 1 1 1 1 1
F17 1 1 1 1 1 1 1 1 1 1 1
F18 7 5 1 7 3 3 10 6 11 2 9
F19 1 1 1 1 1 1 1 1 1 1 1
F20 11 5 4 10 6 9 8 1 2 7 3
F21 8 2 10 11 4 1 7 9 3 5 6
F22 9 1 10 11 6 3 8 2 4 5 7
F23 10 2 9 11 3 4 8 7 1 5 6
Mean ranks 4.69 5.08 4.43 4.52 3.91 4.30 4.73 4.65 5.21 5.17 4.82

Figure 7: Block diagram of algorithm ranking
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Figure 8: Convergence graphs of 11 algorithms on 23 representative functions
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Figure 9: (continued)
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Figure 9: Box diagrams of solutions obtained by 11 algorithms on 23 benchmark functions with
30 independent runs

4.3 Comparison of Different Improvement Strategies
As mentioned above, this paper mainly uses three strategies to improve SSA, so three dif-

ferent derivative algorithms are designed to evaluate the impact of these three strategies on
the algorithm. These three derivation algorithms are obtained by removing the corresponding
improvement strategy from CLSSA. CLSSA-1 removes both logarithmic spiral strategy and adap-
tive step strategy; CLSSA-2 removes chaotic map and adaptive step strategy at the same time;
CLSSA-3 removes chaotic map strategy and logarithmic spiral strategy at the same time. 23
benchmark functions are used to compare the performance of the three derived algorithms with
SSA and CLSSA. Each algorithm runs 30 times independently on each test function, and the
statistical average results are shown in Tables 5 and 6 show the ranking of each algorithm in the
test function. Obviously, CLSSA which includes all the improvement strategies, performed best,
ranking first on average. The performance of the derived algorithm with one improved strategy
is better than that of SSA. From the specific optimization results and sorting table provided
by the Table 6, the chaotic mapping strategy mainly improves the development ability, while the
logarithmic spiral strategy enhances the exploration ability of the algorithm, while the adaptive
step strategy enhances the exploitation ability and exploration ability of the algorithm to some
extent. The above analysis proves the effectiveness of each improvement strategy.

4.4 Performance Test of CLSSA
In order to verify the performance of CLSSA, the proposed CLSSA is compared with the

SSA, WOA, BSO [36], PSO, GSA, HHO, GWO [37], SCA [38], MVO [39], MFO [40], BBO,
FPA [41] Flower pollination algorithm for global optimization. The experimental environment is
the same as the previous article, the number of populations is set to 50, the maximum number of
iterations is 300, and the parameters of each algorithm are consistent with the original literature.
Meanwhile, to reduce the influence of randomness on the experimental results, all algorithms need
to run 30 times independently. Table 7 lists the best fitness, mean fitness and standard deviation,
in which the best mean fitness is marked in bold.
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Table 5: Results of 10 different derived algorithms on all benchmark functions

Function SSA CLSSA-1 CLSSA-2 CLSSA-3 CLSSA

F1 5.16E-109 0.00E+00 6.10E-157 5.56E-235 6.90E-201
F2 6.02E-67 1.26E-144 2.07E-70 1.56E-124 1.40E-110
F3 4.72E-95 2.73E-219 3.83E-109 1.15E-234 7.26E-159
F4 1.42E-69 9.39E-156 1.07E-79 5.59E-138 5.99E-100
F5 1.02E-04 3.44E-04 1.94E-06 3.06E-04 1.79E-05
F6 5.09E-08 6.23E-08 4.87E-10 9.87E-07 2.97E-09
F7 5.31E-04 2.08E-04 3.80E-04 2.79E-04 3.09E-04
F8 −8.13E+03 −7.75E+03 −7.78E+03 −8.65E+03 −8.48E+03
F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F10 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16
F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F12 1.73E-09 3.65E-08 2.36E-11 4.41E-08 7.08E-10
F13 6.66E-08 7.19E-08 7.27E-09 5.72E-07 1.70E-09
F14 5.80E+00 3.01E+00 1.20E+00 2.37E+00 1.52E+00
F15 3.08E-04 3.08E-04 3.35E-04 3.08E-04 3.08E-04
F16 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00
F17 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
F18 3.00E+00 3.90E+00 4.80E+00 6.60E+00 3.00E+00
F19 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00
F20 −3.27E+00 −3.26E+00 −3.27E+00 −3.28E+00 −3.27E+00
F21 −8.96E+00 −8.80E+00 −1.02E+01 −9.81E+00 −1.02E+01
F22 −9.34E+00 −8.28E+00 −1.04E+01 −1.00E+01 −1.04E+01
F23 −9.63E+00 −8.91E+00 −1.04E+01 −1.05E+01 −1.05E+01

As shown in Table 7, when solving the unimodal test functions F1–F7, CLSSA can stably
converge to the optimal value in F1–F4 and F6, and the performance is better than the com-
parison algorithm. CLSSA could not obtain the optimal value of F5, but it was 19 orders of
magnitude higher than SSA. HHO perform best on F7, with CLSSA in second position. In
the unimodal test functions F1–F7, CLSSA is better than SSA, indicating that the proposed
chaotic map sequence substitution strategy can effectively improve the local search ability of the
algorithm.

When solving the multimodal test functions F8–F13, GSA, PSO, BBO and MFO outperform
CLSSA in solving F8. For F9–F11, CLSAA, SSA, HHO can all stably converge to the optimal
value. WOA can obtain the optimal value, but it is not stable. The CLSSA has the highest
accuracy for F12–F13, with optimal values improved by 17 and 11 orders of magnitude compared
to SSA. When solving the fixed-dimensional multimodal functions F14–F23, the CLSSA performs
poorly for F14, outperforming only SSA, WOA, GSA, GWO and BBO. For the F15, optimal
values can be obtained for CLSSA and SSA, but CLSSA is more stable than SSA. All algorithms
have similar performance at F16, and all can obtain optimal values. GSA is the most stable and
CLSAA is the second most stable. The CLSSA outperforms WOA, HHO, GSA, CSA, MVO, BBO
and FPA for F17, with performance comparable to other algorithms. As for F18, the stability
of CLSSA is only weaker than BSO, PSO, and GSA. The CLSSA outperforms all comparison
algorithms for F19, F21 and F23. The GSA performs best for F22, with the CLSSA second
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best. In all multimodal test functions, CLSSA performs better than SSA, which shows that the
logarithmic spiral strategy proposed in this paper can significantly improve the performance of
algorithm exploration.

Table 6: Ranking of 5 algorithms in the benchmark function

Function SSA CLSSA-1 CLSSA-2 CLSSA-3 CLSSA

F1 5 1 4 2 3
F2 5 1 4 2 3
F3 5 2 4 1 3
F4 5 1 4 2 3
F5 3 5 1 4 2
F6 3 4 1 5 2
F7 5 1 4 2 3
F8 3 5 4 1 2
F9 1 1 1 1 1
F10 1 1 1 1 1
F11 1 1 1 1 1
F12 3 4 1 5 2
F13 3 4 2 5 1
F14 5 4 1 3 2
F15 2 4 5 1 3
F16 1 1 1 1 1
F17 1 1 1 1 1
F18 2 3 4 5 1
F19 1 1 1 1 1
F20 4 5 2 1 3
F21 4 5 1 3 1
F22 4 5 2 3 1
F23 4 5 3 2 1
Mean ranks 3.086957 2.826087 2.304348 2.304348 1.826087

Table 7: Results and comparison of different algorithms for 23 benchmark functions

ID Index WOA BSO PSO SSA GSA HHO GWO SCA MVO MFO BBO PFA CLASSA

F1 Best 2.0E-42 6.9E+02 2.1E-02 9.9E-120 3.9E+01 4.9E-63 1.1E-18 1.1E+02 2.1E+00 1.2E+02 2.8E+00 4.4E+03 2.8E-204
Mean 9.7E-52 2.8E+02 4.4E-04 0.0E+00 4.5E-17 3.8E-79 3.9E-20 2.0E+00 1.2E+00 2.8E+01 1.4E+00 2.2E+03 0.0E+00
Std 1.1E-41 4.5E+02 4.2E-02 5.4E-119 4.1E+01 2.6E-62 9.0E-19 1.4E+02 5.7E-01 7.7E+01 7.4E-01 1.5E+03 0.0E+00

F2 Best 1.0E-29 4.9E+00 2.3E-01 2.9E-67 2.7E-02 8.6E-33 1.9E-11 1.2E-01 1.9E+01 2.1E+01 5.3E-01 5.6E+01 1.2E-105
Mean 3.0E-34 4.9E-01 1.1E-02 0.0E+00 2.8E-08 3.7E-39 4.2E-12 1.6E-02 5.8E-01 2.8E+00 3.4E-01 3.3E+01 0.0E+00
Std 2.2E-29 4.1E+00 2.0E-01 1.6E-66 8.2E-02 4.4E-32 1.2E-11 1.3E-01 3.8E+01 1.7E+01 6.5E-02 1.3E+01 6.5E-105

F3 Best 4.4E+04 5.3E+05 6.3E+02 3.2E-94 8.9E+02 3.6E-53 1.3E-03 1.1E+04 3.5E+02 2.2E+04 1.1E+03 4.5E+03 1.4E-144
Mean 2.6E+04 5.4E+04 1.3E+02 0.0E+00 3.6E+02 3.5E-64 4.6E-06 1.4E+03 9.1E+01 5.4E+03 4.9E+02 1.6E+03 0.0E+00
Std 8.7E+03 6.4E+05 3.6E+02 1.7E-93 3.2E+02 1.9E-52 2.2E-03 7.3E+03 1.4E+02 1.1E+04 5.5E+02 1.5E+03 7.9E-144

F4 Best 5.5E+01 9.5E+00 5.3E+00 6.2E-65 7.2E+00 2.8E-33 9.8E-05 3.6E+01 2.5E+00 6.3E+01 1.6E+00 3.5E+01 5.2E-117
Mean 6.1E-01 3.6E+00 2.6E+00 0.0E+00 3.9E+00 3.0E-39 1.9E-05 1.7E+01 1.0E+00 3.9E+01 1.1E+00 2.5E+01 0.0E+00
Std 2.7E+01 3.3E+00 1.8E+00 3.4E-64 1.6E+00 1.2E-32 6.5E-05 1.0E+01 1.2E+00 8.8E+00 2.1E-01 3.7E+00 1.8E-116

(continued)
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Table 7 (continued)

ID Index WOA BSO PSO SSA GSA HHO GWO SCA MVO MFO BBO PFA CLASSA

F5 Best 2.9E+01 2.4E+03 1.1E+02 1.0E-04 1.2E+02 1.1E-02 2.7E+01 2.2E+05 4.5E+02 5.4E+06 2.3E+02 1.6E+06 6.1E-07
Mean 2.8E+01 2.0E+02 2.3E+01 3.1E-08 2.6E+01 1.2E-03 2.5E+01 1.1E+03 4.5E+01 5.0E+03 5.8E+01 4.4E+05 3.2E-27
Std 3.0E-01 3.0E+03 8.0E+01 1.6E-04 7.2E+01 1.8E-02 8.2E-01 5.1E+05 6.2E+02 2.9E+07 2.1E+02 8.3E+05 1.6E-06

F6 Best 1.8E+00 6.6E+02 2.7E-02 4.4E-08 4.6E+01 8.3E-05 5.6E-01 8.7E+01 2.2E+00 1.5E+03 2.9E+00 4.1E+03 4.6E-10
Mean 8.4E-01 2.4E+02 2.3E-04 2.2E-11 4.8E-17 7.6E-07 7.0E-05 9.6E+00 9.1E-01 3.7E+01 1.7E+00 2.4E+03 0.0E+00
Std 6.4E-01 3.0E+02 3.3E-02 8.1E-08 4.3E+01 8.9E-05 3.4E-01 1.3E+02 6.2E-01 4.4E+03 7.0E-01 8.1E+02 1.7E-09

F7 Best 4.7E-03 7.2E-02 2.9E-02 6.7E-04 4.5E-02 1.5E-04 2.2E-03 2.1E-01 4.0E-02 5.3E-01 1.3E-02 1.1E+00 3.2E-04
Mean 2.1E-05 1.0E-02 1.5E-02 3.1E-05 1.1E-02 1.0E-05 3.1E-04 1.6E-02 1.2E-02 1.2E-01 4.2E-03 3.7E-01 2.0E-05
Std 6.1E-03 5.2E-02 1.1E-02 5.7E-04 2.5E-02 1.2E-04 9.5E-04 1.9E-01 1.4E-02 8.1E-01 4.4E-03 4.2E-01 2.7E-04

F8 Best -1.1E+82 -4.9E+03 -9.7E+03 -8.1E+03 -2.7E+03 -1.2E+04 -6.3E+03 -3.8E+03 -7.7E+03 -9.1E+03 -8.6E+03 -6.6E+03 -8.0E+03
Mean -1.4E+81 -6.2E+03 -1.2E+04 -9.6E+03 -3.4E+03 -1.3E+04 -7.2E+03 -4.6E+03 -9.2E+03 -1.1E+04 -9.7E+03 -7.1E+03 -9.6E+03
Std 3.9E+82 3.1E+02 1.6E+03 6.1E+02 4.0E+02 2.9E+02 9.1E+02 3.4E+02 6.8E+02 8.9E+02 6.8E+02 2.5E+02 8.6E+02

F9 Best 0.0E+00 2.5E+01 5.7E+01 0.0E+00 1.7E+01 0.0E+00 4.2E+00 6.3E+01 1.2E+02 1.6E+02 3.8E+01 1.9E+02 0.0E+00
Mean 0.0E+00 2.3E+00 4.1E+01 0.0E+00 1.1E+01 0.0E+00 5.1E-13 6.8E+00 6.7E+01 6.8E+01 2.3E+01 1.6E+02 0.0E+00
Std 0.0E+00 1.3E+01 1.5E+01 0.0E+00 4.7E+00 0.0E+00 4.3E+00 3.8E+01 3.1E+01 4.6E+01 1.1E+01 1.6E+01 0.0E+00

F10 Best 6.7E-15 4.8E+00 1.3E+00 8.9E-16 1.6E-03 8.9E-16 2.2E-10 1.4E+01 2.0E+00 1.4E+01 6.5E-01 1.3E+01 8.9E-16
Mean 8.9E-16 2.1E+00 3.2E-02 8.9E-16 4.5E-09 8.9E-16 8.6E-11 2.2E-01 6.4E-01 2.7E+00 3.6E-01 7.2E+00 8.9E-16
Std 4.2E-15 2.0E+00 9.5E-01 0.0E+00 6.2E-03 0.0E+00 1.0E-10 8.0E+00 4.5E-01 7.0E+00 8.8E-02 2.2E+00 0.0E+00

F11 Best 7.4E-18 2.2E+02 5.3E-02 0.0E+00 1.1E+02 0.0E+00 6.9E-03 1.7E+00 9.7E-01 7.9E+00 1.0E+00 3.9E+01 0.0E+00
Mean 0.0E+00 1.5E+02 3.7E-03 0.0E+00 8.3E+01 0.0E+00 0.0E+00 6.6E-01 8.4E-01 1.5E+00 9.8E-01 2.4E+01 0.0E+00
Std 2.8E-17 3.0E+01 7.4E-02 0.0E+00 1.6E+01 0.0E+00 8.6E-03 1.1E+00 4.4E-02 2.3E+01 2.7E-02 8.1E+00 0.0E+00

F12 Best 9.3E-02 1.8E+00 9.3E-01 2.8E-09 1.8E+00 6.3E-06 3.8E-02 3.5E+05 2.5E+00 8.5E+06 1.1E-02 6.7E+04 4.9E-11
Mean 3.2E-02 3.5E-01 3.8E-03 1.2E-11 3.7E-01 5.6E-08 7.0E-03 1.2E+00 4.3E-01 6.6E+00 4.0E-03 2.5E+02 2.4E-28
Std 9.0E-02 1.4E+00 8.1E-01 7.4E-09 1.0E+00 7.1E-06 2.1E-02 9.1E+05 1.6E+00 4.7E+07 1.9E-02 9.2E+04 1.5E-10

F13 Best 1.3E+00 2.5E+01 6.4E-01 2.4E-08 1.5E+01 5.7E-05 4.7E-01 1.6E+06 2.1E-01 3.9E+03 1.4E-01 1.7E+06 3.6E-09
Mean 7.7E-01 5.4E+00 1.3E-03 1.9E-11 6.3E-02 7.1E-08 2.5E-04 1.1E+01 9.4E-02 3.5E+01 7.8E-02 2.5E+05 2.9E-22
Std 4.4E-01 1.4E+01 8.6E-01 5.6E-08 7.1E+00 7.2E-05 2.3E-01 3.5E+06 9.1E-02 5.6E+03 3.7E-02 1.4E+06 1.7E-08

F14 Best 2.3E+00 1.0E+00 1.0E+00 5.3E+00 7.0E+00 1.3E+00 3.9E+00 1.5E+00 1.0E+00 1.6E+00 4.6E+00 1.0E+00 1.7E+00
Mean 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.1E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00
Std 2.6E+00 1.8E-16 5.8E-17 5.3E+00 4.2E+00 9.5E-01 3.8E+00 8.9E-01 6.7E-11 1.2E+00 3.9E+00 1.8E-03 2.5E+00

F15 Best 1.1E-03 1.4E-03 5.6E-04 3.1E-04 6.0E-03 4.1E-04 4.4E-03 1.1E-03 5.4E-03 1.0E-03 2.4E-03 7.9E-04 3.1E-04
Mean 3.1E-04 3.1E-04 3.1E-04 3.1E-04 1.8E-03 3.1E-04 3.1E-04 4.8E-04 4.9E-04 4.9E-04 3.8E-04 5.4E-04 3.1E-04
Std 6.3E-04 3.6E-03 3.8E-04 1.7E-06 4.1E-03 2.4E-04 8.1E-03 3.6E-04 8.4E-03 3.5E-04 4.9E-03 1.4E-04 2.4E-07

F16 Best -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00
Mean -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00 -1.0E+00
Std 1.8E-09 6.0E-16 6.3E-16 5.5E-16 5.0E-16 3.0E-10 3.4E-08 3.6E-05 7.3E-07 6.8E-16 4.1E-12 1.8E-07 5.5E-16

F17 Best 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01
Mean 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01 4.0E-01
Std 2.6E-05 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.5E-05 1.3E-06 1.4E-03 1.7E-07 0.0E+00 2.1E-11 1.9E-09 0.0E+00

F18 Best 3.9E+00 3.0E+00 3.0E+00 3.9E+00 3.0E+00 3.0E+00 3.0E+00 3.0E+00 3.0E+00 3.0E+00 3.9E+00 3.0E+00 3.0E+00
Mean 3.0E+00 3.0E+00 3.0E+00 3.0E+00 3.0E+00 3.0E+00 3.0E+00 3.0E+00 3.0E+00 3.0E+00 3.0E+00 3.0E+00 3.0E+00
Std 4.9E+00 1.5E-15 1.7E-15 4.9E+00 4.0E-15 3.4E-07 8.2E-05 4.4E-05 5.8E-06 1.4E-15 4.9E+00 8.5E-07 4.9E-15

F19 Best -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00
Mean -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00 -3.9E+00
Std 3.8E-03 3.7E-03 2.7E-15 2.3E-15 2.5E-03 3.7E-03 1.9E-03 1.6E-03 2.3E-06 2.7E-15 5.7E-14 1.2E-06 2.4E-15

F20 Best -3.2E+00 -3.1E+00 -3.3E+00 -3.3E+00 -3.3E+00 -3.1E+00 -3.3E+00 -2.9E+00 -3.2E+00 -3.2E+00 -3.3E+00 -3.3E+00 -3.3E+00
Mean -3.3E+00 -3.3E+00 -3.3E+00 -3.3E+00 -3.3E+00 -3.3E+00 -3.3E+00 -3.3E+00 -3.3E+00 -3.3E+00 -3.3E+00 -3.3E+00 -3.3E+00
Std 7.1E-02 3.6E-01 6.0E-02 6.0E-02 1.4E-15 1.1E-01 6.9E-02 2.5E-01 6.0E-02 6.2E-02 6.0E-02 1.5E-02 5.9E-02

F21 Best -8.5E+00 -1.0E+01 -6.8E+00 -9.5E+00 -7.0E+00 -5.1E+00 -9.8E+00 -3.1E+00 -7.4E+00 -6.6E+00 -6.0E+00 -1.0E+01 -1.0E+01
Mean -1.0E+01 -1.0E+01 -1.0E+01 -1.0E+01 -1.0E+01 -1.0E+01 -1.0E+01 -5.1E+00 -1.0E+01 -1.0E+01 -1.0E+01 -1.0E+01 -1.0E+01
Std 3.0E+00 5.8E-15 3.3E+00 1.8E+00 3.6E+00 4.1E-03 1.3E+00 2.1E+00 3.1E+00 3.7E+00 3.6E+00 1.3E-01 5.4E-15

F22 Best -6.5E+00 -1.0E+01 -8.1E+00 -1.0E+01 -1.0E+01 -5.6E+00 -1.0E+01 -3.9E+00 -8.5E+00 -8.3E+00 -6.4E+00 -1.0E+01 -1.0E+01
Mean -1.0E+01 -1.0E+01 -1.0E+01 -1.0E+01 -1.0E+01 -1.0E+01 -1.0E+01 -6.0E+00 -1.0E+01 -1.0E+01 -1.0E+01 -1.0E+01 -1.0E+01
Std 3.4E+00 1.3E+00 3.4E+00 1.3E+00 1.4E-15 1.6E+00 1.9E-03 1.7E+00 3.2E+00 3.3E+00 3.6E+00 3.3E-01 1.1E-07

F23 Best -6.7E+00 -9.7E+00 -8.1E+00 -1.0E+01 -1.0E+01 -4.8E+00 -9.3E+00 -4.0E+00 -8.2E+00 -7.8E+00 -8.6E+00 -1.0E+01 -1.1E+01
Mean -1.1E+01 -1.1E+01 -1.1E+01 -1.1E+01 -1.1E+01 -8.5E+00 -1.1E+01 -7.6E+00 -1.1E+01 -1.1E+01 -1.1E+01 -1.1E+01 -1.1E+01
Std 3.7E+00 2.1E+00 3.6E+00 1.7E+00 1.5E+00 8.9E-01 2.8E+00 1.5E+00 3.3E+00 3.7E+00 3.4E+00 3.4E-01 5.6E-09
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Combined with the above analysis, the CLSSA proposed in this paper is better than all the
comparison algorithms in 12 of the 23 benchmark functions, 11 comparison algorithms in 6 test
functions, 9 comparison algorithms in 3 test functions, and CLSSA is better than SSA, in all
test functions, which proves that our proposed CLSSA has obvious advantages in optimization
accuracy.

In order to directly show the performance differences of each algorithm in solving the test
function, the algorithms are sorted according to the mean fitness of Table 7, the results are shown
in Table 8, and the last column is the average ranking of each algorithm.

Table 8: Ranking of 13 algorithms in the benchmark function

ID WOA BSO PSO SSA GSA HHO GWO SCA MVO MFO BBO FPA CLSSA

F1 4 12 6 2 9 3 5 10 7 11 8 13 1
F2 4 10 3 2 6 3 5 7 11 12 9 13 1
F3 12 13 6 2 7 3 4 10 5 11 8 9 1
F4 12 9 7 2 8 3 4 11 6 13 5 10 1
F5 5 10 6 2 8 3 7 11 9 13 8 12 1
F6 6 11 4 2 9 3 5 10 7 12 8 13 1
F7 5 10 7 3 9 1 4 11 8 12 6 13 2
F8 8 11 2 6 13 1 10 12 7 3 4 9 5
F9 1 7 9 1 6 1 5 10 11 12 8 13 1
F10 4 10 8 1 6 1 5 13 9 12 7 11 1
F11 4 13 6 1 12 1 5 9 7 10 8 11 1
F12 6 8 7 2 9 3 5 10 10 13 4 11 1
F13 8 10 7 2 9 3 6 12 5 11 4 13 1
F14 9 1 1 12 13 5 10 6 1 7 11 4 8
F15 7 9 4 1 13 3 11 7 12 6 10 5 1
F16 9 4 5 3 1 8 10 13 12 6 7 11 2
F17 13 1 1 1 1 12 7 8 9 1 11 10 1
F18 13 2 3 12 4 6 10 9 8 1 11 7 5
F19 10 11 3 2 8 12 9 13 7 4 5 6 1
F20 8 11 6 5 1 12 4 13 9 10 7 2 3
F21 6 1 9 5 8 12 4 13 7 10 11 3 1
F22 10 4 9 5 1 12 3 13 7 8 11 6 2
F23 11 5 9 4 2 12 6 13 8 10 7 3 1
Mean ranks 7.60 7.95 5.56 3.39 7.08 5.34 6.26 10.6 7.91 9.04 7.73 9.04 1.86

Fig. 10 is drawn according to the ranks in Table 8. The smaller the area of the algorithm
performance curve, the better the performance of the algorithm.

The black bold line is the sorting result curve of CLSSA, and it can be seen intuitively
that the performance of CLSSA is in the middle level on F8 and F14, and performs better in
other test functions, and its surrounding area is the smallest, indicating that CLSSA has the best
optimization performance as a whole.
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Figure 10: Ranks of average of 13 algorithms

To further illustrate the convergence performance of CLSSA, Fig. 11 lists the mean conver-
gence curves of 13 algorithms to solve these functions. For the unimodal test function F1–F7,
CLSSA has the best performance, the convergence speed is faster than all comparison algorithms,
and the convergence accuracy is also higher than all comparison algorithms. For the multimodal
functions F8–F23, CLSSA performs best in most of them. However, for functions F14, F17, and
F18, CLSSA converges slowly in the early iterations. The CLSSA converges slower in the early
iterations on F21 and F22 but can converge to better results afterwards. CLSSA converges faster
than SSA on all test functions, which shows that the variable step strategy proposed in this paper
can effectively improve the convergence speed.

To analyze the distribution characteristics of each algorithm in the test function, Fig. 12 lists
box plots of 13 algorithms. Compared with other comparison algorithms, the CLSSA proposed in
this paper performs well on most functions, and the obtained maximum, minimum, and median
values are almost the same as the optimal solution, especially for F9, F10, F11, F16, F17, F19
and F20. In other test functions, although there are individual outliers, the overall distribution is
still more concentrated than the comparison algorithm. Therefore, the CLSSA proposed in this
paper has stronger stability.

The above analysis shows that CLSSA shows strong optimization ability on low-dimensional
functions. However, the optimization algorithm is prone to fail in solving high-dimensional
complex function problems. Real-world optimization problems are mostly large-scale complex
optimization problems. Therefore, to verify the performance of CLSSA in high-dimensional prob-
lems, 13 algorithms were compared on the 100D test functions, and the experimental results are
shown in Table 9. CLSSA is better than all comparison algorithms in F1–F6 and F12–F13. HHO
performs best in F7 and F8, CLSSA ranks second and third respectively. When solving F9–F11,
CLSSA and SSA can get the best value. It can also be seen from Figs. 13 and 14 that CLSSA
performs well in other test functions except for the pool performance on F8 and can steadily and
quickly converge to a better value.
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Figure 11: Convergence graphs of 13 algorithms on 23 representative functions
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Figure 12: (continued)
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Figure 12: Box diagrams of solutions obtained by 13 algorithms on 23 benchmark functions with
30 independent runs

Table 9: Results and comparison of different algorithms for 13 benchmark functions with 100 D

ID WOA BSO PSO SSA GSA HHO GWO SCA MVO MFO BBO FPA CLSSA

F1 7.29E-41 8.74E+03 1.94E+03 3.16E-113 4.31E+03 6.49E-62 2.34E-07 1.65E+04 2.62E+02 9.33E+04 2.17E+02 2.35E+04 2.04E-201
F2 4.08E-28 7.01E+01 5.46E+01 3.81E-69 1.42E+01 1.55E-33 4.77E-05 1.46E+01 2.96E+28 3.06E+02 9.41E+00 1.37E+06 4.62E-106
F3 8.91E+05 8.62E+07 6.17E+04 3.53E-88 1.62E+04 1.25E-40 1.93E+03 2.48E+05 7.26E+04 2.61E+05 6.26E+04 5.38E+04 8.17E-115
F4 8.26E+01 4.01E+01 4.11E+01 1.41E-71 1.54E+01 1.80E-32 2.84E+00 9.05E+01 5.62E+01 9.16E+01 1.95E+01 4.85E+01 6.51E-113
F5 9.84E+01 2.40E+05 4.86E+05 6.60E-04 9.81E+04 7.12E-02 9.81E+01 1.40E+08 1.76E+04 2.58E+08 5.12E+03 1.60E+07 2.77E-04
F6 1.16E+01 7.93E+03 2.03E+03 2.24E-06 4.26E+03 5.35E-04 9.91E+00 1.58E+04 2.64E+02 9.32E+04 2.11E+02 2.59E+04 1.29E-07
F7 3.74E-03 1.53E+00 2.32E+00 4.68E-04 1.62E+00 2.04E-04 1.04E-02 2.18E+02 6.50E-01 3.92E+02 1.15E-01 2.34E+01 2.84E-04
F8 -2.21E+04 -1.37E+04 -2.77E+04 -2.25E+04 -5.15E+03 -4.18E+04 -1.66E+04 -6.88E+03 -2.26E+04 -2.22E+04 -2.35E+04 -1.35E+04 -2.32E+04
F9 0.00E+00 1.32E+02 4.10E+02 0.00E+00 1.44E+02 0.00E+00 2.23E+01 3.42E+02 7.59E+02 9.12E+02 2.50E+02 9.30E+02 0.00E+00
F10 7.76E-15 9.03E+00 7.75E+00 8.88E-16 4.92E+00 8.88E-16 4.90E-05 1.87E+01 6.95E+00 1.99E+01 3.30E+00 1.26E+01 8.88E-16
F11 1.57E-02 1.00E+03 2.02E+01 0.00E+00 1.21E+03 0.00E+00 1.13E-02 1.54E+02 3.55E+00 7.75E+02 2.87E+00 2.38E+02 0.00E+00
F12 2.39E-01 7.44E+00 5.88E+02 1.85E-08 7.39E+00 2.79E-06 2.94E-01 4.34E+08 2.48E+01 4.14E+08 2.73E+00 4.66E+06 8.72E-09
F13 5.18E+00 4.84E+03 1.24E+05 1.70E-06 4.73E+02 2.45E-04 6.97E+00 7.62E+08 1.82E+02 9.06E+08 1.07E+01 3.34E+07 1.90E-07

In summary, compared with other algorithms, the CLSSA proposed in this paper is competi-
tive, and the proposed improvement strategy can handle the relationship between exploitation and
exploration well.

4.5 CLSSA for Engineering Problems
Engineering design problem is a nonlinear optimization problem with complex geometric

shapes, various design variables and many practical engineering constraints. The performance of
the proposed algorithm is evaluated by solving practical engineering problems. In the simulation,
the population size is set to 50, and the maximum iterations is 500. The results of 30 independent
runs of CLSSA are compared with those in other literatures.
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Figure 13: Box diagrams of solutions obtained by 13 algorithms on 13 benchmark functions with
30 independent runs

4.5.1 Pressure Vessel Design Problem
The pressure vessel design optimization problem shown in Fig. 15 is a typical hybrid opti-

mization problem, whose goal is to reduce the total cost, including forming cost, material cost and
welding cost. There are four different variables: container thickness Ts(x1), head thickness Th(x2),
inner diameter R(x3) and container cylindrical section length L(x4). The comparison results are
shown in Table 10. The problem can be described as Eq. (10).

min f (x1,x2,x3,x4)= 0.6224x1x3x4 + 1.7781x2x
2
3+ 3.1661x21x4+ 19.84x21x3 (10)
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subject to
g1(X)=−x1 + 0.0193x3 ≤ 0

g2(X)=−x2 + 0.00954x3 ≤ 0

g3(X)=−πx23x4−
4
3
πx23 + 1, 296, 000≤ 0

g4(X)= x4 − 240≤ 0

Variable ranges : 1× 0.0625≤ x1, x2 ≤ 99× 0.0625, 10≤ x3, x4 ≤ 200

Figure 14: Convergence graphs of 13 algorithms on 13 representative functions
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Figure 15: Schematic of the pressure vessel design problem

Table 10: Comparison of the best solutions obtained by various approaches for the pressure vessel
design problem

Algorithm CLSSA CSDE [42] HPSO [43] GA [44] MBA [45] BBBO [46]

Optimum value

Th 0.7782 0.8125 0.8125 0.9375 0.7802 1.1250
Ts 0.3847 0.4375 0.4375 0.5000 0.3856 0.6250
R 40.3209 42.1000 42.0984 48.3290 40.4292 58.1967
L 199.9822 176.6000 176.6366 112.6790 198.4694 44.2721

Optimum cost 5885.7092 6059.7100 6059.7143 6410.3811 5889.3216 7206.6400

4.5.2 Tension/Compression Spring Design Problem
The tension/compression spring design problem is a mechanical engineering design optimiza-

tion problem, which can be used to evaluate the superiority of the algorithm. As shown in
Fig. 16, the goal of this problem is to reduce the weight of the spring. It includes four nonlinear
inequalities and three continuous variables: wire diameter w(x1), coil average diameter d(x2), coil
length or number L(x3). The comparison results are shown in Table 11. The mathematical model
of this problem can be described as Eq. (11).

min f (x1,x2,x3)= (x3 + 2)x1
2x2 (11)

subject to

g1(X)= 1− x32x3
71785x41

≤ 0

g2(X)= x2(4x2−x1)

12566x31(x2 −x1)
+ 1

5108x21
− 1≤ 0

g3(X)= 1− 140.45x1
x22x3

≤ 0

g4(X)= 2(x1 +x2)
3

− 1≤ 0

Variable range : 0.05≤ x1 ≤ 2, 0.25≤ x2 ≤ 1.3, 2.0≤ x3 ≤ 15.0
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Figure 16: Schematic of tension/compression spring design problem

Table 11: Comparison of the best solutions obtained by various approaches for the ten-
sion/compression spring design problem

Algorithm CLSSA ALO [47] GWO MFO MVO GSA

Optimum value
w 0.0518 0.0517 0.0508 0.0521 0.0500 0.0571
d 0.3592 0.3569 0.3357 0.3661 0.3159 0.4843
L 11.1441 11.2793 12.6457 10.7587 14.2583 7.6234

Optimum cost 0.0127 0.0127 0.0127 0.0127 0.0128 0.0152

Figure 17: Schematic of welded beam design problem

4.5.3 Welded Beam Design Problem
As shown in Fig. 17, the main purpose of the welded beam design problem is to reduce the

manufacturing cost of the welded beam, which mainly involves four variables: the width h (x1)
and length l (x2) of the weld zone, the depth t (x3) and the thickness b (x4), and subject to
the constraints of bending stress, shear stress, maximum end deflection and load conditions. The
comparison results are shown in Table 12. The mathematical model of the problem is described
as Eq. (12).

min f (x1,x2,x3,x4)= 1.10471x1
2x2 + 0.04811x3x4(14.0+x2) (12)
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subject to
g1(X)= τd − τ (X)≥ 0

g2(X)= σd − σ(X)≥ 0

g3(X)= x4−x1 ≥ 0

g4(X)=Pc(X)−P≥ 0

g5(X)= δd − δ(X)≥ 0

where

τ (X)=
√

(τ ′(X))2+ (τ ′′(X))2+x2τ ′(X)τ ′′(X)/

√
0.25(x22+ (x1 +x3)2)

σ (X)= 50400/x23x4

Pc(X)= 64746.002(1− 0.0282346x3)x3x34
δ(X)= 2.1952/x23x4

τ ′(X)= 6000/(
√
2x1x2)

τ ′′(X)=
6000(14+ 0.5x2)

√
0.25(x22+ (x1 +x3)2)

2(0.707x1x2(x22/12+ 0.25(x1+x3)2))

In this paper, 15 algorithms are selected and compared with CLSSA. The simulation results
show that CLSSA achieves the optimal values in all three engineering problems, which proves that
CLSSA is highly competitive.

Table 12: Comparison of the best solutions obtained by various approaches for the welded beam
design problem

Algorithm CLSSA CDE [48] HGA [49] TEO [50] HHO hHHO-SCA [51]

Optimum value

h 0.2057 0.2031 0.2057 0.2057 0.2040 0.1900
l 3.4722 3.5430 3.4709 3.4731 3.5311 3.6965
t 9.0362 9.0335 9.0396 9.0351 9.0275 9.3863
b 0.2058 0.2062 0.2057 0.2058 0.2061 0.2041

Optimum cost 1.7251 1.7335 1.7252 1.7253 1.7320 1.7790

5 Conclusions

In this paper, we use three strategies combining chaos theory, logarithmic spiral search and
adaptive steps to modify the basic sparrow search algorithm. First, the chaotic mapping is used to
generate the values of the parameter R2. Second, the logarithmic spiral search strategy is used to
expand the search of SSA to the surrounding area, thus enhancing the population diversity and
avoiding falling into local optimum. In addition, the adaptive step control strategy is proposed to
effectively balance the exploitation and exploration of SSA. To evaluate the performance of the
proposed CLSSA, 23 classical test functions are used for verification. The simulation results show
that it is effective to improve the SSA performance by using chaotic mapping to generate the value
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of parameter R2, in which the iterative mapping has the best impact. Three improvement strategies
can improve the performance of SSA. Compared with eleven advanced algorithms, CLSSA has
higher convergence accuracy, faster convergence speed and more stable performance. In addition,
CLSSA was applied to three engineering optimization problems. The results show that CLSSA
has excellent performance in terms of convergence rate and accuracy for structural engineering
design problems. In future work, we plan to further improve the performance of CLSSA. We can
hybridize CLSSA with other algorithms, such as combining with MBO, EHO, etc., with the same
excellent performance, to achieve the effect of 1 + 1>2. We can also further study the impact of
SSA parameter settings on performance. In addition, we plan to apply it to solve some real world
problems, such as unmanned combat aerial vehicles task allocation and unmanned combat aerial
vehicles path planning.
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